Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 184(14): 3762-3773.e10, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34133943

RESUMEN

Sneezing is a vital respiratory reflex frequently associated with allergic rhinitis and viral respiratory infections. However, its neural circuit remains largely unknown. A sneeze-evoking region was discovered in both cat and human brainstems, corresponding anatomically to the central recipient zone of nasal sensory neurons. Therefore, we hypothesized that a neuronal population postsynaptic to nasal sensory neurons mediates sneezing in this region. By screening major presynaptic neurotransmitters/neuropeptides released by nasal sensory neurons, we found that neuromedin B (NMB) peptide is essential for signaling sneezing. Ablation of NMB-sensitive postsynaptic neurons in the sneeze-evoking region or deficiency in NMB receptor abolished the sneezing reflex. Remarkably, NMB-sensitive neurons further project to the caudal ventral respiratory group (cVRG). Chemical activation of NMB-sensitive neurons elicits action potentials in cVRG neurons and leads to sneezing behavior. Our study delineates a peptidergic pathway mediating sneezing, providing molecular insights into the sneezing reflex arc.


Asunto(s)
Tronco Encefálico/fisiopatología , Neuropéptidos/metabolismo , Nariz/fisiopatología , Reflejo/fisiología , Estornudo/fisiología , Animales , Modelos Animales de Enfermedad , Hipersensibilidad/fisiopatología , Masculino , Ratones Endogámicos C57BL , Neuroquinina B/análogos & derivados , Neuroquinina B/metabolismo , Neuronas/metabolismo , ARN Interferente Pequeño/metabolismo , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPV/metabolismo , Grabación en Video
2.
Proc Natl Acad Sci U S A ; 116(37): 18397-18403, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451634

RESUMEN

The perception of sound relies on sensory hair cells in the cochlea that convert the mechanical energy of sound into release of glutamate onto postsynaptic auditory nerve fibers. The hair cell receptor potential regulates the strength of synaptic transmission and is shaped by a variety of voltage-dependent conductances. Among these conductances, the Ca2+- and voltage-activated large conductance Ca2+-activated K+ channel (BK) current is prominent, and in mammalian inner hair cells (IHCs) displays unusual properties. First, BK currents activate at unprecedentedly negative membrane potentials (-60 mV) even in the absence of intracellular Ca2+ elevations. Second, BK channels are positioned in clusters away from the voltage-dependent Ca2+ channels that mediate glutamate release from IHCs. Here, we test the contributions of two recently identified leucine-rich-repeat-containing (LRRC) regulatory γ subunits, LRRC26 and LRRC52, to BK channel function and localization in mouse IHCs. Whereas BK currents and channel localization were unaltered in IHCs from Lrrc26 knockout (KO) mice, BK current activation was shifted more than +200 mV in IHCs from Lrrc52 KO mice. Furthermore, the absence of LRRC52 disrupted BK channel localization in the IHCs. Given that heterologous coexpression of LRRC52 with BK α subunits shifts BK current gating about -90 mV, to account for the profound change in BK activation range caused by removal of LRRC52, we suggest that additional factors may help define the IHC BK gating range. LRRC52, through stabilization of a macromolecular complex, may help retain some other components essential both for activation of BK currents at negative membrane potentials and for appropriate BK channel positioning.


Asunto(s)
Células Ciliadas Auditivas Internas/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/farmacología , Animales , Calcio/metabolismo , Femenino , Activación del Canal Iónico/fisiología , Masculino , Potenciales de la Membrana/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transmisión Sináptica/fisiología , Transcriptoma
3.
Mol Cell Neurosci ; 56: 393-403, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23891806

RESUMEN

The axon initial segment (AIS) is highly enriched in the structural proteins ankyrin G and ßIV-spectrin, the pore-forming (α) subunits of voltage-gated sodium (Nav) channels, and functional Nav channels, and is critical for the initiation of action potentials. We previously reported that FGF14, a member of the intracellular FGF (iFGF) sub-family, is expressed in cerebellar Purkinje neurons and that the targeted inactivation of Fgf14 in mice (Fgf14(-/-)) results in markedly reduced Purkinje neuron excitability. Here, we demonstrate that FGF14 immunoreactivity is high in the AIS of Purkinje neurons and is distributed in a decreasing, proximal to distal, gradient. This pattern is evident early in the postnatal development of Purkinje neurons and is also observed in many other types of central neurons. In (Scn8a(med)) mice, which are deficient in expression of the Nav1.6 α subunit, FGF14 immunoreactivity is markedly increased and expanded in the Purkinje neuron AIS, in parallel with increased expression of the Nav1.1 (Scn1a) α subunit and expanded expression of ßIV-spectrin. Although Nav1.1, FGF14, and ßIV-spectrin are affected, ankyrin G immunoreactivity at the AIS of Scn8a(med) and wild type (WT) Purkinje neurons was not significantly different. In Fgf14(-/-) Purkinje neurons, ßIV-spectrin and ankyrin G immunoreactivity at the AIS were also similar to WT Purkinje neurons, although both the Nav1.1 and Nav1.6 α subunits are modestly, but significantly (p<0.005), reduced within sub-domains of the AIS, changes that may contribute to the reduced excitability of Fgf14(-/-) Purkinje neurons.


Asunto(s)
Axones/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Ancirinas/genética , Ancirinas/metabolismo , Células Cultivadas , Factores de Crecimiento de Fibroblastos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Transporte de Proteínas , Células de Purkinje/metabolismo , Espectrina/genética , Espectrina/metabolismo
4.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659964

RESUMEN

AMPA-type glutamate receptors (AMPAR) mediate excitatory cochlear transmission. However, the unique roles of AMPAR subunits are unresolved. Lack of subunit GluA3 (Gria3KO) in male mice reduced cochlear output by 8-weeks of age. Since Gria3 is X-linked and considering sex differences in hearing vulnerability, we hypothesized accelerated presbycusis in Gria3KO females. Here, auditory brainstem responses (ABR) were similar in 3-week-old female Gria3WT and Gria3KO mice. However, when raised in ambient sound, ABR thresholds were elevated and wave-1 amplitudes were diminished at 5-weeks and older in Gria3KO. In contrast, these metrics were similar between genotypes when raised in quiet. Paired synapses were similar in number, but lone ribbons and ribbonless synapses were increased in female Gria3KO mice in ambient sound compared to Gria3WT or to either genotype raised in quiet. Synaptic GluA4:GluA2 ratios increased relative to Gria3WT, particularly in ambient sound, suggesting an activity-dependent increase in calcium-permeable AMPARs in Gria3KO. Swollen afferent terminals were observed by 5-weeks only in Gria3KO females reared in ambient sound. We propose that lack of GluA3 induces sex-dependent vulnerability to AMPAR-mediated excitotoxicity.

5.
Elife ; 122023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36648432

RESUMEN

Cochlear sound encoding depends on α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), but reliance on specific pore-forming subunits is unknown. With 5-week-old male C57BL/6J Gria3-knockout mice (i.e., subunit GluA3KO) we determined cochlear function, synapse ultrastructure, and AMPAR molecular anatomy at ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons. GluA3KO and wild-type (GluA3WT) mice reared in ambient sound pressure level (SPL) of 55-75 dB had similar auditory brainstem response (ABR) thresholds, wave-1 amplitudes, and latencies. Postsynaptic densities (PSDs), presynaptic ribbons, and synaptic vesicle sizes were all larger on the modiolar side of the IHCs from GluA3WT, but not GluA3KO, demonstrating GluA3 is required for modiolar-pillar synapse differentiation. Presynaptic ribbons juxtaposed with postsynaptic GluA2/4 subunits were similar in quantity, however, lone ribbons were more frequent in GluA3KO and GluA2-lacking synapses were observed only in GluA3KO. GluA2 and GluA4 immunofluorescence volumes were smaller on the pillar side than the modiolar side in GluA3KO, despite increased pillar-side PSD size. Overall, the fluorescent puncta volumes of GluA2 and GluA4 were smaller in GluA3KO than GluA3WT. However, GluA3KO contained less GluA2 and greater GluA4 immunofluorescence intensity relative to GluA3WT (threefold greater mean GluA4:GluA2 ratio). Thus, GluA3 is essential in development, as germline disruption of Gria3 caused anatomical synapse pathology before cochlear output became symptomatic by ABR. We propose the hearing loss in older male GluA3KO mice results from progressive synaptopathy evident in 5-week-old mice as decreased abundance of GluA2 subunits and an increase in GluA2-lacking, GluA4-monomeric Ca2+-permeable AMPARs.


Asunto(s)
Cóclea , Sinapsis , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas , Sinapsis/fisiología , Vesículas Sinápticas , Receptores AMPA/metabolismo , Receptores de Glutamato/metabolismo
6.
Neurobiol Dis ; 33(1): 81-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18930825

RESUMEN

A missense mutation in the fibroblast growth factor 14 (FGF14) gene underlies SCA27, an autosomal dominant spinocerebellar ataxia in humans. Mice with a targeted disruption of the Fgf14 locus (Fgf14(-/-)) develop ataxia resembling human SCA27. We tested the hypothesis that loss of FGF14 affects the firing properties of Purkinje neurons, which play an important role in motor control and coordination. Current clamp recordings from Purkinje neurons in cerebellar slices revealed attenuated spontaneous firing in Fgf14(-/-) neurons. Unlike in the wild type animals, more than 80% of Fgf14(-/-) Purkinje neurons were quiescent and failed to fire repetitively in response to depolarizing current injections. Immunohistochemical examination revealed reduced expression of Nav1.6 protein in Fgf14(-/-) Purkinje neurons. Together, these observations suggest that FGF14 is required for normal Nav1.6 expression in Purkinje neurons, and that the loss of FGF14 impairs spontaneous and repetitive firing in Purkinje neurons by altering the expression of Nav1.6 channels.


Asunto(s)
Potenciales de Acción , Factores de Crecimiento de Fibroblastos/metabolismo , Células de Purkinje/fisiología , Animales , Cerebelo/fisiología , Potenciales Postsinápticos Excitadores , Factores de Crecimiento de Fibroblastos/genética , Inmunohistoquímica , Hibridación in Situ , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Canales de Sodio/metabolismo
7.
Nat Med ; 24(8): 1268-1276, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988128

RESUMEN

Itch and pain are refractory symptoms of many ocular conditions. Ocular itch is generated mainly in the conjunctiva and is absent from the cornea. In contrast, most ocular pain arises from the cornea. However, the underlying mechanisms remain unknown. Using genetic axonal tracing approaches, we discover distinct sensory innervation patterns between the conjunctiva and cornea. Further genetic and functional analyses in rodent models show that a subset of conjunctival-selective sensory fibers marked by MrgprA3 expression, rather than corneal sensory fibers, mediates ocular itch. Importantly, the actions of both histamine and nonhistamine pruritogens converge onto this unique subset of conjunctiva sensory fibers and enable them to play a key role in mediating itch associated with allergic conjunctivitis. This is distinct from skin itch, in which discrete populations of sensory neurons cooperate to carry itch. Finally, we provide proof of concept that selective silencing of conjunctiva itch-sensing fibers by pruritogen-mediated entry of sodium channel blocker QX-314 is a feasible therapeutic strategy to treat ocular itch in mice. Itch-sensing fibers also innervate the human conjunctiva and allow pharmacological silencing using QX-314. Our results cast new light on the neural mechanisms of ocular itch and open a new avenue for developing therapeutic strategies.


Asunto(s)
Ojo/patología , Ojo/fisiopatología , Dolor/patología , Dolor/fisiopatología , Prurito/patología , Prurito/fisiopatología , Animales , Conjuntiva/inervación , Conjuntiva/patología , Córnea/inervación , Córnea/patología , Humanos , Ratones Endogámicos C57BL , Neuronas Aferentes/patología , Células Receptoras Sensoriales/patología
8.
Sci Rep ; 6: 23326, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26987296

RESUMEN

CLEC16A is in a locus genetically linked to autoimmune diseases including multiple sclerosis, but the function of this gene in the nervous system is unknown. Here we show that two mouse strains carrying independent Clec16a mutations developed neurodegenerative disease characterized by motor impairments and loss of Purkinje cells. Neurons from Clec16a-mutant mice exhibited increased expression of the autophagy substrate p62, accumulation of abnormal intra-axonal membranous structures bearing the autophagy protein LC3, and abnormal Golgi morphology. Multiple aspects of endocytosis, lysosome and Golgi function were normal in Clec16a-deficient murine embryonic fibroblasts and HeLa cells. However, these cells displayed abnormal bulk autophagy despite unimpaired autophagosome formation. Cultured Clec16a-deficient cells exhibited a striking accumulation of LC3 and LAMP-1 positive autolysosomes containing undigested cytoplasmic contents. Therefore Clec16a, an autophagy protein that is critical for autolysosome function and clearance, is required for Purkinje cell survival.


Asunto(s)
Lectinas Tipo C/genética , Lisosomas/fisiología , Proteínas de Transporte de Monosacáridos/genética , Enfermedad de la Neurona Motora/patología , Mutación , Células de Purkinje/citología , Animales , Autofagia , Supervivencia Celular , Células Cultivadas , Aparato de Golgi/patología , Células HeLa , Humanos , Lectinas Tipo C/metabolismo , Ratones , Proteínas de Transporte de Monosacáridos/metabolismo , Enfermedad de la Neurona Motora/genética
9.
Mol Cell Neurosci ; 34(3): 366-77, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17208450

RESUMEN

Humans with an autosomal dominant missense mutation in fibroblast growth factor 14 (FGF14) have impaired cognitive abilities and slowly progressive spinocerebellar ataxia. To explore the mechanisms that may account for this phenotype, we show that synaptic transmission at hippocampal Schaffer collateral-CA1 synapses and short- and long-term potentiation are impaired in Fgf14-/- mice, indicating abnormalities in synaptic plasticity. Examination of CA1 synapses in Fgf14-/- mice show a significant reduction in the number of synaptic vesicles docked at presynaptic active zones and a significant synaptic fatigue/depression during high/low-frequency stimulation. In addition, mEPSC frequency, but not amplitude, is decreased in hippocampal neurons derived from Fgf14-/- mice. Furthermore, expression of selective synaptic proteins in Fgf14-/- mice was decreased. These findings suggest a novel role for FGF14 in regulating synaptic plasticity via presynaptic mechanisms by affecting the mobilization, trafficking, or docking of synaptic vesicles to presynaptic active zones.


Asunto(s)
Factores de Crecimiento de Fibroblastos/deficiencia , Hipocampo/citología , Plasticidad Neuronal/genética , Neuronas/fisiología , Sinapsis/fisiología , Transmisión Sináptica/genética , Animales , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/efectos de la radiación , Femenino , Factores de Crecimiento de Fibroblastos/fisiología , Galactósidos/metabolismo , Hipocampo/fisiología , Técnicas In Vitro , Indoles/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión/métodos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , Técnicas de Placa-Clamp/métodos , Embarazo , Sinapsis/ultraestructura
10.
Neurobiol Dis ; 26(1): 14-26, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17236779

RESUMEN

Spinocerebellar ataxia 27 (SCA27) is a recently described syndrome characterized by impaired cognitive abilities and a slowly progressive ataxia. SCA27 is caused by an autosomal dominant missense mutation in Fibroblast Growth Factor 14 (FGF14). Mice lacking FGF14 (Fgf14(-/-) mice) have impaired sensorimotor functions, ataxia and paroxysmal dyskinesia, a phenotype that led to the discovery of the human mutation. Here we extend the similarities between Fgf14(-/-) mice and FGF14(F145S) humans by showing that Fgf14(-/-) mice exhibit reliable acquisition (place learning) deficits in the Morris water maze. This cognitive deficit appears to be independent of sensorimotor disturbances and relatively selective since Fgf14(-/-) mice performed similarly to wild type littermates during cued water maze trials and on conditioned fear and passive avoidance tests. Impaired theta burst initiated long-term synaptic potentiation was also found in hippocampal slices from Fgf14(-/-) mice. These results suggest a role for FGF14 in certain spatial learning functions and synaptic plasticity.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Ritmo Teta , Estimulación Acústica , Animales , Reacción de Prevención/fisiología , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Electroencefalografía , Electrofisiología , Miedo/fisiología , Miedo/psicología , Factores de Crecimiento de Fibroblastos/genética , Galactósidos , Fuerza de la Mano/fisiología , Hipocampo/metabolismo , Hipocampo/fisiología , Inmunohistoquímica , Hibridación in Situ , Indoles , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Equilibrio Postural/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
J Physiol ; 569(Pt 1): 179-93, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16166153

RESUMEN

Genetic ablation of the fibroblast growth factor (Fgf) 14 gene in mice or a missense mutation in Fgf14 in humans causes ataxia and cognitive deficits. These phenotypes suggest that the neuronally expressed Fgf14 gene is essential for regulating normal neuronal activity. Here, we demonstrate that FGF14 interacts directly with multiple voltage-gated Na(+) (Nav) channel alpha subunits heterologously expressed in non-neuronal cells or natively expressed in a murine neuroblastoma cell line. Functional studies reveal that these interactions result in the potent inhibition of Nav channel currents (I(Na)) and in changes in the voltage dependence of channel activation and inactivation. Deletion of the unique amino terminus of the splice variant of Fgf14, Fgf14-1b, or expression of the splice variant Fgf14-1a modifies the modulatory effects on I(Na), suggesting an important role for the amino terminus domain of FGF14 in the regulation of Na(v) channels. To investigate the function of FGF14 in neurones, we directly expressed Fgf14 in freshly isolated primary rat hippocampal neurones. In these cells, the addition of FGF14-1a-GFP or FGF14-1b-GFP increased I(Na) density and shifted the voltage dependence of channel activation and inactivation. In fully differentiated neurones, FGF14-1a-GFP or FGF14-1b-GFP preferentially colocalized with endogenous Nav channels at the axonal initial segment, a critical region for action potential generation. Together, these findings implicate FGF14 as a unique modulator of Nav channel activity in the CNS and provide a possible mechanism to explain the neurological phenotypes observed in mice and humans with mutations in Fgf14.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Activación del Canal Iónico/fisiología , Riñón/fisiología , Potenciales de la Membrana/fisiología , Canales de Sodio/fisiología , Sodio/metabolismo , Línea Celular , Humanos , Líquido Intracelular/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canales de Sodio/química , Canales de Sodio/genética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA