Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Br J Nutr ; : 1-10, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37039482

RESUMEN

The objective was to evaluate the association between serum carotenoid levels and respiratory morbidity and mortality in a nationally representative sample of US adults. We assessed the association of serum carotenoid levels with respiratory morbidity and mortality using logistic regression and proportional hazards regression models. Meanwhile, a series of confounders were controlled in regression models and restricted cubic spline, which included age, sex, race, marriage, education, income, drinking, smoking, regular exercise, BMI, daily energy intake, vitamin E, vitamin C, fruit intake, vegetable intake, diabetes, hypertension, asthma, emphysema and chronic bronchitis. Compared with participants in the lowest tertiles, participants in the highest tertiles of serum total carotenoids, ß-cryptoxanthin and lutein/zeaxanthin levels had a significantly lower prevalence of emphysema (ORtotal carotenoids = 0·61, 95% CI: 0·41-0·89, ORß-cryptoxanthin = 0·67, 95% CI: 0·49-0·92), chronic bronchitis (ORß-cryptoxanthin = 0·66, 95% CI: 0·50-0·87) and asthma (Q2: ORlutein/zeaxanthin = 0·78, 95% CI: 0·62-0·97); participants in the highest tertiles of total carotenoids, α-carotene, lutein/zeaxanthin and lycopene had a lower risk of respiratory mortality (hazard ratio (HR)total carotenoids = 0·62, 95% CI: 0·42-0·90, HRα-carotene = 0·54, 95% CI: 0·36-0·82, HRlutein/zeaxanthin = 0·48, 95% CI: 0·33-0·71, HRlycopene = 0·66, 95% CI: 0·45-0·96) than those in the lowest tertiles. Higher serum total carotenoids and ß-cryptoxanthin levels is associated with decreased prevalence of emphysema and chronic bronchitis, and higher serum total carotenoids, α-carotene, lutein/zeaxanthin and lycopene levels had a lower mortality of respiratory disease.

2.
Cell Mol Life Sci ; 78(7): 3105-3125, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33438055

RESUMEN

Doxorubicin (DOX) is an anthracycline chemotherapy drug used in the treatment of various types of cancer. However, short-term and long-term cardiotoxicity limits the clinical application of DOX. Currently, dexrazoxane is the only approved treatment by the United States Food and Drug Administration to prevent DOX-induced cardiotoxicity. However, a recent study found that pre-treatment with dexrazoxane could not fully improve myocardial toxicity of DOX. Therefore, further targeted cardioprotective prophylaxis and treatment strategies are an urgent requirement for cancer patients receiving DOX treatment to reduce the occurrence of cardiotoxicity. Accumulating evidence manifested that Sirtuin 1 (SIRT1) could play a crucially protective role in heart diseases. Recently, numerous studies have concentrated on the role of SIRT1 in DOX-induced cardiotoxicity, which might be related to the activity and deacetylation of SIRT1 downstream targets. Therefore, the aim of this review was to summarize the recent advances related to the protective effects, mechanisms, and deficiencies in clinical application of SIRT1 in DOX-induced cardiotoxicity. Also, the pharmaceutical preparations that activate SIRT1 and affect DOX-induced cardiotoxicity have been listed in this review.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Cardiotoxicidad/prevención & control , Doxorrubicina/efectos adversos , Sirtuina 1/uso terapéutico , Animales , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Humanos , Transducción de Señal
3.
Molecules ; 27(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36080488

RESUMEN

Ganlanye (GLY), the leaf of Canarium album (Lour.) DC., is a traditional Chinese medicinal herb for warm disease treatment. We found that its aqueous extract could inhibit the influenza A virus. To find and characterize anti-influenza virus phytochemicals from GLY, we performed (1) bioassay-guided isolation, (2) a cell and animal assay, and (3) a mechanism study. Bioassay-guided isolation was used to identify the effective components. Influenza virus-infected MDCK cell and BALB/c mouse models were employed to evaluate the anti-influenza virus activities. A MUNANA assay was performed to find the NA inhibitory effect. As a result, urolithin M5 was obtained from the crude extract of GLY. It inhibited influenza virus activities in vitro and in vivo by suppressing the viral NA activity. In the MDCK cell model, urolithin M5 could inhibit an oseltamivir-resistant strain. In a PR8-infected mouse model, 200 mg/kg/d urolithin M5 protected 50% of mice from death and improved lung edema conditions. GLY was recorded as a major traditional herb for warm disease treatment. Our study identified GLY as a potent anti-influenza herb and showed urolithin M5 as the active component. We first report the in vivo activity of urolithin M5 and support the anti-influenza application of GLY.


Asunto(s)
Antivirales , Burseraceae , Subtipo H1N1 del Virus de la Influenza A , Neuraminidasa , Animales , Antivirales/química , Burseraceae/química , Perros , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/antagonistas & inhibidores , Oseltamivir/farmacología , Hojas de la Planta/química
4.
Pharmacol Res ; 169: 105596, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33831565

RESUMEN

Fibroblast growth factor 1 (FGF1) has a critical regulatory role in the development of the cardiovascular system (CVS) and is strongly associated with the progression or treatment of cardiovascular diseases (CVDs). However, the regulatory mechanisms of FGF1 in CVS and CVDs have not yet been fully elucidated. Therefore, this review article summarized the existing literature reports on the role of FGF1 in CVS under physiological and pathological conditions. First, the expression and physiological functions of endogenous FGF1 is fully demonstrated. Then, we analyzed the role of exogenous FGF1 in normal CVS and related pathological processes. Specifically, the potential signaling pathways might be mediated by FGF1 in CVDs treatment is discussed in detail. In addition, the barriers and feasible solutions for the application of FGF1 are further analyzed. Finally, we highlight therapeutic considerations of FGF1 for CVDs in the future. Thus, this article may be as a reference to provide some ideas for the follow-up research.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/efectos de los fármacos , Factor 1 de Crecimiento de Fibroblastos/fisiología , Animales , Enfermedades Cardiovasculares/fisiopatología , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Sistema Cardiovascular/metabolismo , Factor 1 de Crecimiento de Fibroblastos/farmacología , Humanos
5.
Pharmacol Res ; 164: 105331, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33285232

RESUMEN

Sestrin2 (Sesn2) is a powerful anti-oxidant that can prevent acute and chronic diseases. The role of Sesn2 has been thoroughly reviewed in liver, nervous system, and immune system diseases. However, there is a limited number of reviews that have summarized the effects of Sesn2 in heart and vascular diseases, and very less literature-based information is available on involvement of Sesn2 in renal and respiratory pathologies. This review summarizes the latest research on Sesn2 in multi-organ stress responses, with a particular focus on the protective role of Sesn2 in cardiovascular, respiratory, and renal diseases, emphasizing the potential therapeutic benefit of targeting Sesn2 in stress-related diseases.


Asunto(s)
Proteínas Nucleares/metabolismo , Animales , Cardiopatías/metabolismo , Humanos , Enfermedades Renales/metabolismo , Enfermedades Respiratorias/metabolismo , Estrés Fisiológico , Enfermedades Vasculares/metabolismo
6.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769028

RESUMEN

Ribosome-inactivating proteins (RIPs) hydrolyze the N-glycosidic bond and depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. In this study, we have purified and characterized lyophyllin, an unconventional RIP from Lyophyllum shimeji, an edible mushroom. The protein resembles peptidase M35 domain of peptidyl-Lys metalloendopeptidases. Nevertheless, protein either from the mushroom or in recombinant form possessed N-glycosidase and protein synthesis inhibitory activities. A homology model of lyophyllin was constructed. It was found that the zinc binding pocket of this protein resembles the catalytic cleft of a classical RIP, with key amino acids that interact with the adenine substrate in the appropriate positions. Mutational studies showed that E122 may play a role in stabilizing the positively charged oxocarbenium ion and H121 for protonating N-3 of adenine. The tyrosine residues Y137 and Y104 may be used for stacking the target adenine ring. This work first shows a protein in the peptidase M35 superfamily based on conserved domain search possessing N-glycosidase activity.


Asunto(s)
Agaricales/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Inactivadoras de Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Endorribonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , Células HeLa , Células Hep G2 , Humanos , Unión Proteica/fisiología , ARN Ribosómico 28S/metabolismo , Ratas , Ricina/metabolismo
7.
Bioorg Chem ; 102: 104106, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32739481

RESUMEN

Parasitic characteristics, mutations and resistance of influenza A virus make it difficult for current influenza antiviral drugs to maintain long-term effectiveness. Currently, to design non-adamantane compounds targeting the S31N mutant of M2 proton channel is a promising direction for the development of novel anti-influenza drugs. In our previous research, a pinanamine-based antiviral M090 was discovered to target hemagglutinin instead of M2, with its structure being highly similar to reported M2-S31N inhibitors. Herein, a series of pinane oxime derivatives were designed from scratch and evaluated for anti-influenza activity and their cytotoxicity in vitro. Utilizing a combination of structure-activity relationship analysis, electrophysiological assay and molecular docking, the most potent compound 11h, as a M2-S31N blocker, exhibited excellent activity with EC50 value at the low micromolar level against both H3N2 and H1N1. No significant toxicity of 11h was observed. In addition, compound 11h was located tightly in the pore of the drug-binding site with the thiophene moiety facing down toward the C-terminus, and did not adopt a similar position and orientation as the reference inhibitor.


Asunto(s)
Antivirales/farmacología , Monoterpenos Bicíclicos/farmacología , Diseño de Fármacos , Virus de la Influenza A/efectos de los fármacos , Oximas/farmacología , Animales , Antivirales/síntesis química , Antivirales/química , Monoterpenos Bicíclicos/síntesis química , Monoterpenos Bicíclicos/química , Perros , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby/efectos de los fármacos , Células de Riñón Canino Madin Darby/virología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oximas/síntesis química , Oximas/química , Relación Estructura-Actividad
8.
BMC Complement Altern Med ; 18(1): 150, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739459

RESUMEN

BACKGROUND: Sheng Jiang San (SJS), a multi-herb formulation, is used in treating high fever, thirsty and anxiety in ancient China and it is sometimes used to treat seasonal influenza nowadays. However, there is no evidence-based investigation and mechanism research to support the anti-influenza efficacy of SJS. This study aims at evaluating the anti-influenza effect of SJS and investigating its possible mechanism. METHODS: The inhibitory effect of SJS against different influenza virus strains on MDCK cells was examined. Influenza virus infected BALB/c mice were employed to evaluate the efficacy as in vivo model. Mice challenged with A/PR/8/34 (H1N1) were orally administrated 1 g/kg/day of SJS for seven days and monitored for 14 days. The survival rate, body weight changes, lung index, lung viral load, histopathologic changes and immune regulation of the mice were measured. The underlying anti-influenza virus mechanism of SJS was studied by a series of biological assays to determine if hemagglutinin, ribonucleoprotein complex or neuraminidase were targets of SJS. RESULTS: Results showed SJS exerted a broad-spectrum of inhibitory effects on multiple influenza strains in a dose-dependent manner. IC50 of SJS against A/WSN/33 (H1N1) was lower than 35 µg/ml. SJS also protected 50% of mice from A/PR/8/34 (H1N1) infection. The lung index and the lung viral load of SJS treated mice were significantly decreased compared with untreated mice. Meanwhile, SJS targeted on neuraminidase of influenza virus as SJS at 2 mg/ml inhibited 80% of neuraminidase enzymatic activity. SJS also significantly down-regulated TNF-α and up-regulated IL-2 of influenza virus induced mice. CONCLUSIONS: Thus, SJS is a useful formulation for treating influenza virus infection.


Asunto(s)
Antivirales/farmacología , Medicamentos Herbarios Chinos/farmacología , Gripe Humana/metabolismo , Pulmón/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Animales , Citocinas/análisis , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/inmunología , Gripe Humana/patología , Pulmón/química , Pulmón/inmunología , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones , Neuraminidasa/efectos de los fármacos , Neuraminidasa/metabolismo
9.
J Ethnopharmacol ; 331: 118258, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663783

RESUMEN

HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE: Sangbaipi Decoction (SBPD) is an effective treatment for lung diseases caused by phlegm-heat obstruction according to Jingyue Quanshu, and soothes panting by purging the lung meridian. It is composed of anti-pyretic herbs (e.g., Scutellaria baicalensis Georgi and Coptis chinensis Franch.) and antitussive herbs (e.g., Cortex Mori and Armeniacae Semen Amarum). Therefore, we hypothesized that SBPD has therapeutic effects on lung injury caused by influenza virus. AIM OF THE STUDY: This study aimed to explore anti-influenza activity, active components, and mechanisms of SBPD. MATERIALS AND METHODS: The anti-influenza activities of SBPD were determined in 48 h drug-treated MDCK cell model using CPE and plaque reduction assays, and 24 h drug-treated A549 cells using qRT-PCR. The in vivo efficacy of SBPD (1.0 g/kg/day and 0.5 g/kg/day) was evaluated in PR8 infected BALB/c mice. The chemical component was assessed through HPLC-Q-TOF MS/MS analysis. Network pharmacology was built via TCMSP, GeneCards, DisgeNet, OMIM, DrugBank databases, and Cytoscape software. Additionally, TOA, HI and NAI assays were employed to investigate impact on the virus replication cycle with different concentrations of SBPD (2.5 mg/mL, 1.25 mg/mL, or 0.625 mg/mL). RESULTS: In MDCK infected with viruses A/PR/8/34, A/Hong Kong/1/68, or A/California/4/2009, the IC50 values of SBPD were 0.80 mg/mL, 1.20 mg/mL, and 1.25 mg/mL. In A549 cells, SBPD treatment reduced cytokine expression (e.g., TNF-α, IL-6, IL-1ß) (p < 0.05). In PR8 infected BALB/c mice, SBPD improved the survival rate of infected mice, reduced lung index (p < 0.05), protected lung tissue from pathological damage, and regulated cytokine overexpression (p < 0.05). 29 components of SBPD were identified in SBPD treated mouse serum including some phytochemicals targeting influenza proteins. HI and NAI assays suggested the potential antiviral mechanism of SBPD through inhibition of HA and NA. CONCLUSION: This study is the first to demonstrate the anti-influenza and the anti-inflammatory effects of SBPD in vitro and in vivo. Its major anti-influenza phytochemicals were explored and its inhibitory effects on HA and NA protein were proved. It provides more options for anti-influenza drug discovery.


Asunto(s)
Antivirales , Medicamentos Herbarios Chinos , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Perros , Células de Riñón Canino Madin Darby , Humanos , Células A549 , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Ratones , Proteínas Virales , Replicación Viral/efectos de los fármacos , Femenino , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología
10.
Nutr Rev ; 82(3): 361-373, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37226405

RESUMEN

Despite intensive studies for decades, the common mechanistic correlations among the underlying pathology of diabetes mellitus (DM), its complications, and effective clinical treatments remain poorly characterized. High-quality diets and nutrition therapy have played an indispensable role in the management of DM. More importantly, tribbles homolog 3 (TRIB3), a nutrient-sensing and glucose-responsive regulator, might be an important stress-regulatory switch, linking glucose homeostasis and insulin resistance. Therefore, this review aimed to introduce the latest research progress on the crosstalk between dietary nutrition intervention and TRIB3 in the development and treatment of DM. This study also summarized the possible mechanisms involved in the signaling pathways of TRIB3 action in DM, in order to gain an in-depth understanding of dietary nutrition intervention and TRIB3 in the pathogenesis of DM at the organism level.


Asunto(s)
Diabetes Mellitus , Proteínas Serina-Treonina Quinasas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Dieta , Proteínas Represoras/metabolismo
11.
Phytomedicine ; 129: 155680, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38728923

RESUMEN

OBJECTIVE: Influenza, a viral respiratory illness, leads to seasonal epidemics and occasional pandemics. Given the rising resistance and adverse reactions associated with anti-influenza drugs, Traditional Chinese Medicine (TCM) emerges as a promising approach to counteract the influenza virus. Specifically, Haoqin Qingdan Tang (HQQDT), a TCM formula, has been employed as an adjuvant treatment for influenza in China. However, the active compounds and underlying mechanisms of HQQDT remain unknown. AIM: The aim of this study was to investigate HQQDT's antiviral and anti-inflammatory activities in both in vivo and in vitro, and further reveal its active ingredients and mechanism. METHODS: In vivo and in vitro experiments were conducted to verify the antiviral and anti-inflammatory activities of HQQDT. Subsequently, the active ingredients and mechanism of HQQDT were explored through combining high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS) analysis and network pharmacology. Finally, the examinations of cell cytokines and signaling pathways aimed to elucidate the predicted mechanisms. RESULTS: The results indicated that HQQDT exhibited inhibitory effects on influenza viruses A/PR/8/34 (H1N1), A/HK/1/68 (H3N2), and A/California/4/2009 (H1N1) in vitro. Furthermore, HQQDT enhanced the survival rate of influenza-infected mice, reduced the lung index and lung virus titer, and mitigated lung tissue damage in vivo. The proinflammatory cytokine expression levels upon influenza virus infection in PR8-induced A549 cells or mice were suppressed by HQQDT, including IL-6, IL-1ß, CCL2, CCL4, IP-10, interferon ß1 (IFN-ß1), the interferon regulatory factor 3 (IRF3), and hemagglutinin (HA). Twenty-two active components of HQQDT against influenza were identified using HPLC-Q-TOF-MS analysis. Based on network pharmacological predictions, the JAK/STAT signaling pathway is considered the most relevant for HQQDT's action against influenza. Finally, western blot assays revealed that HQQDT regulated the protein level of the JAK/STAT signaling pathway in PR8-infected A549 cells and lung tissue. CONCLUSION: These findings verified the antiviral and anti-inflammatory effects of HQQDT through JAK-STAT signaling pathway in influenza infections, laying the foundation for its further development.


Asunto(s)
Antivirales , Medicamentos Herbarios Chinos , Virus de la Influenza A , Quinasas Janus , Infecciones por Orthomyxoviridae , Transducción de Señal , Animales , Perros , Femenino , Humanos , Ratones , Células A549 , Antiinflamatorios/farmacología , Antivirales/farmacología , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Quinasas Janus/metabolismo , Pulmón/efectos de los fármacos , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones Endogámicos BALB C , Farmacología en Red , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Factores de Transcripción STAT/metabolismo
12.
Antioxid Redox Signal ; 40(10-12): 598-615, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37265150

RESUMEN

Aims: Obese patients are highly sensitive to adriamycin (ADR)-induced cardiotoxicity. However, the potential mechanism of superimposed toxicity remains to be elucidated. Sestrin 2 (SESN2), a potential antioxidant, could attenuate stress-induced cardiomyopathy; therefore, this study aims to explore whether SESN2 enhances cardiac resistance to ADR-induced oxidative damage in high-fat diet (HFD)-induced obese mice. Results: The results revealed that obesity decreased SESN2 expression in ADR-exposed heart. And, HFD mice may predispose to ADR-induced cardiotoxicity, which was probably associated with inhibiting protein kinase B (AKT), glycogen synthase kinase-3 beta (GSK-3ß) phosphorylation and subsequently blocking nuclear localization of nuclear factor erythroid-2 related factor 2 (NRF2), ultimately resulting in cardiac oxidative damage. However, these destructive cascades and cardiac oxidative damage effects induced by HFD/sodium palmitate combined with ADR were blocked by overexpression of SESN2. Moreover, the antioxidant effect of SESN2 could be largely abolished by sh-Nrf2 or wortmannin. And sulforaphane, an NRF2 agonist, could remarkably reverse cardiac pathological and functional abnormalities caused by ADR in obese mice. Innovation and Conclusion: This study demonstrated that SESN2 might be a promising therapeutic target for improving anthracycline-related cardiotoxicity in obesity by upregulating activity of NRF2 via AKT/GSK-3ß/Src family tyrosine kinase signaling pathway. Antioxid. Redox Signal. 40, 598-615.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Antioxidantes/metabolismo , Cardiotoxicidad , Dieta Alta en Grasa/efectos adversos , Doxorrubicina/toxicidad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones Obesos , Factor 2 Relacionado con NF-E2/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/etiología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sestrinas/metabolismo
13.
Heliyon ; 9(3): e14649, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37101493

RESUMEN

Qingjie-Tuire (QT) granule was approved for clinical use and its combination was reported to treat influenza infection. To explore its active component and mechanism, the components of QT granule were retrieved from UPLC-UC-Q-TOF/MS analysis. The genes corresponding to the targets were retrieved using GeneCards and TTD database. The herb-compound-target network was constructed by Cytoscape. The target protein-protein interaction network was built using STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of QT granule to IAV were performed for further study. The regulation to different signaling transduction events and cytokine/chemokine expression of QT granule was evaluated using Western blotting and real-time qPCR. Totally, 47 compounds were identified and effect of QT granule on cell STAT1/3 signaling pathways was confirmed by A549 cell model. The efficiency of QT granule on host cell contributes to its clinical application and mechanism research.

14.
J Ethnopharmacol ; 303: 115918, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436715

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fu Rong Ye (FRY), the leaf of Hibiscus mutabilis L., is a Chinese medicinal herb used to treat coughs and respiratory diseases. FRY is the major herbal component of the patent medicine Fupo Ganmao Granules for treating common cold. However, its anti-influenza active components and mechanism were not identified. AIM: Here, we aim to a) isolate the anti-influenza phytochemicals from FRY extract and b) explore its anti-flu mechanism. MATERIAL AND METHODS: Bioassay guided isolation was performed to get anti-influenza virus components. Influenza virus infected cells and mouse model were employed for efficacy evaluation. RESULTS: Using bioassay-guided isolation, the flavonoid tiliroside was obtained, which inhibited four IAV strains in MDCK cells with EC50 ranging from 3.87 to 27.61 µM by suppressing the viral ribonucleoprotein activity. Tiliroside also significantly downregulated the expression of cytokines/chemokines in A549 cells, and protected 50% of PR8-infected BALB/c mice from death and at 800 mg/kg/day, improved lung edema conditions. CONCLUSION: Tiliroside is effective for influenza virus infection treatment and promising for further drug development. This study is the first to demonstrate that tiliroside in FRY acts against influenza virus.


Asunto(s)
Hibiscus , Gripe Humana , Animales , Perros , Ratones , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Gripe Humana/tratamiento farmacológico , Flavonoides , Células de Riñón Canino Madin Darby
15.
Eur J Med Chem ; 260: 115775, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37672932

RESUMEN

Antrafenine is a drug initially designed for anti-inflammation uses. In this work we have synthesized a library of its structural analogs and tested the anti-influenza activities. These analogs belong to a group of 2-(quinolin-4-yl)amino benzamides or 2-(quinolin-4-yl)amino benzoate derivatives. Best performers were identified, namely 12, 34, 41, with IC50 against A/WSN/33 (H1N1) of 5.53, 3.21 and 6.73 µM respectively. These chemicals were also effective against A/PR/8/34 (H1N1), A/HK/1/68 (H3N2) and B/Florida/04/2006 viruses. Time-of-addition study and minigenome luciferase reporter assay both supported that the compounds act on the ribonucleoprotein (RNP) components. Using 34 and 41 as representative compounds, we determined by microscale thermophoresis that this group of compounds bind to both PA C-terminal domain and the nucleoprotein (NP) which is the most abundant subunit of the RNP. Taken together, we have identified a new class of anti-influenza compounds with dual molecular targets and good potential to be further developed. IMPORTANCE: The influenza viruses, especially influenza A and B subtypes, cause many deaths each year. The high mutation rate of the virus renders available therapeutics less effective with time. In this work we identify a new class of compounds, structurally similar to the anti-inflammation drug antrafenine, with good potency against influenza A strains. The IC50 of the best performers are within low micromolar range and thus have good potential for further development.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/tratamiento farmacológico , Piperazinas
16.
Redox Biol ; 52: 102310, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452917

RESUMEN

Although it is known that the expression and activity of sirtuin 1 (SIRT1) significantly decrease in doxorubicin (DOX)-induced cardiomyopathy, the role of interaction between SIRT1 and sestrin 2 (SESN2) is largely unknown. In this study, we investigated whether SESN2 could be a crucial target of SIRT1 and the effect of their regulatory interaction and mechanism on DOX-induced cardiac injury. Here, using DOX-treated cardiomyocytes and cardiac-specific Sirt1 knockout mice models, we found SIRT1 deficiency aggravated DOX-induced cardiac structural abnormalities and dysfunction, whereas the activation of SIRT1 by resveratrol (RES) treatment or SIRT1 overexpression possessed cardiac protective effects. Further studies indicated that SIRT1 exerted these beneficial effects by markedly attenuating DOX-induced oxidative damage and apoptosis in a SESN2-dependent manner. Knockdown of Sesn2 impaired RES/SIRT1-mediated protective effects, while upregulation of SESN2 efficiently rescued DOX-induced oxidative damage and apoptosis. Most importantly, SIRT1 activation could reduce DOX-induced SESN2 ubiquitination possibly through reducing the interaction of SESN2 with mouse double minute 2 (MDM2). The recovery of SESN2 stability in DOX-impaired primary cardiomyocytes by SIRT1 was confirmed by Mdm2-siRNA transfection. Taken together, our findings indicate that disrupting the interaction between SESN2 and MDM2 by SIRT1 to reduce the ubiquitination of SESN2 is a novel regulatory mechanism for protecting hearts from DOX-induced cardiotoxicity and suggest that the activation of SIRT1-SESN2 axis has potential as a therapeutic approach to prevent DOX-induced cardiotoxicity.


Asunto(s)
Cardiomiopatías , Cardiotoxicidad , Animales , Apoptosis , Cardiomiopatías/metabolismo , Cardiotoxicidad/tratamiento farmacológico , Doxorrubicina/efectos adversos , Ratones , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Sestrinas , Sirtuina 1/genética , Sirtuina 1/metabolismo
17.
J Ethnopharmacol ; 292: 115175, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35306041

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Canarium album (Lour.) DC. belongs to the Burseraceae family. Its leaf, named as Ganlanye (GLY), was recorded to treat warm disease symptoms via clearing lung heat and toxicants in medical classics. Its aqueous extract had anti-influenza activity in our previous phenotypic screening. However, its active components and mechanism were not identified. AIM: We aim to isolate the anti-influenza phytochemicals from GLY extract and explore its anti-flu mechanism. MATERIAL AND METHODS: Influenza A virus infected MDCK cells were used to test the compounds and fractions. Structural analyses of new compounds were performed via NMR calculation with the combination of DP4plus probability method and computed electronic circular dichroism (ECD). Hemagglutination inhibitory assay and neuraminidase inhibitory assay were performed to find the target protein. Molecular docking and recombinant virus were used to confirm the action site of the three new canaroleosides. RESULTS: Three new phenolic glycosides, canaroleosides A-C (1-3), and three known flavonoids (4-6), were isolated from the GLY aqueous extract and their anti-influenza virus mechanism was revealed. The absolute configurations of 1-3 were determined by ECD method, with the structure of the 2,5-dihydroxybenzoic acid moiety in 1 assigned by NMR calculation. Compound 1 was found to suppress both hemagglutinin and neuraminidase activities. Compounds 2, 3 4 and 6 inhibited neuraminidase, while compound 5 inhibited hemagglutinin. 1-3 could interact with Arg152 of the viral neuraminidase based on the result of molecular docking and reverse genetics. CONCLUSION: Six phytochemicals were isolated from GLY aqueous extract and found to inhibit influenza A strains. They were found to interact with hemagglutinin or neuraminidase and canaroleosides 1-3 could interact with Arg152 of the viral neuraminidase. This study provided more evidence on the anti-influenza effect of Ganlan and laid the foundation for further generation of potent NA inhibitors.


Asunto(s)
Burseraceae , Gripe Humana , Antivirales , Burseraceae/química , Hemaglutininas , Humanos , Simulación del Acoplamiento Molecular , Neuraminidasa , Fitoquímicos/farmacología , Extractos Vegetales/farmacología
18.
Front Pharmacol ; 13: 940406, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110535

RESUMEN

Doxorubicin (DOX), an anthracycline type of chemotherapy, is an effective therapy for several types of cancer, but serious side effects, such as severe hepatotoxicity, limit its use currently. Accordingly, an effective therapeutic strategy to prevent DOX-related hepatotoxicity is urgently needed. Through the inhibition of oxidative stress, fibroblast growth factor 1 (FGF1) is an effect therapy for a variety of liver diseases, but its use is limited by an increased risk of tumorigenesis due to hyperproliferation. Resveratrol (RES), a natural product, inhibits the growth of many cancer cell lines, including liver, breast, and prostate cancer cells. Therefore, this study explored whether and how RES in combination with FGF1 can alleviate DOX-induced hepatotoxicity. The results showed that RES or FGF1 alone improved DOX-induced hepatic inflammation, apoptosis and oxidative stress, and these adverse effects were further attenuated after treatment with both RES and FGF1. Mechanistically, both in vivo and in vitro results showed that RES/FGF1 reduced oxidative stress and thereby alleviated liver injury by promoting nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) and subsequently upregulating expression of antioxidant proteins in an adenosine monophosphate-activated protein kinase (AMPK)-dependent manner. Together, our results not only demonstrate that co-treatment with RES and FGF1 significantly inhibited DOX-induced hepatic inflammation and apoptosis, but also that co-treatment with RES and FGF1 markedly suppressed DOX-induced hepatic oxidative stress, via targeting the AMPK/NRF2 pathway and subsequently ameliorating hepatic dysfunction. Thus, the combination of RES and FGF1 may provide a new therapeutic strategy for limiting DOX-induced hepatotoxicity.

19.
Front Pharmacol ; 13: 862618, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677434

RESUMEN

Osteoblast dysfunction, induced by high glucose (HG), negatively impacts bone homeostasis and contributes to the pathology of diabetic osteoporosis (DOP). One of the most widely recognized mechanisms for osteoblast dysfunction is oxidative stress. Resveratrol (RES) is a bioactive antioxidant compound to combat oxidative damage. However, its role in the protection of HG-induced osteoblast dysfunction has not been clarified. Therefore, our study aimed to explore potential regulatory mechanisms of RES for attenuating HG-induced osteoblast dysfunction. Our results showed that osteoblast dysfunction under HG condition was significantly ameliorated by RES via the activation of nuclear factor erythroid 2-related factor (NRF2) to suppress oxidative stress. Furthermore, using Nrf2-shRNA and wortmannin, we identified that activation of NRF2 via RES was regulated by the AKT/glycogen synthase kinase 3ß (GSK3ß)/FYN axis.

20.
Redox Biol ; 49: 102219, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34990928

RESUMEN

A cumulative and progressively developing cardiomyopathy induced by adriamycin (ADR)-based chemotherapy is a major obstacle for its clinical application. However, there is a lack of safe and effective method to protect against ADR-induced cardiotoxicity. Here, we found that mRNA and protein levels of FGF1 were decreased in ADR-treated mice, primary cardiomyocytes and H9c2 cells, suggesting the potential effect of FGF1 to protect against ADR-induced cardiotoxicity. Then, we showed that treatment with a FGF1 variant (FGF1ΔHBS) with reduced proliferative potency significantly prevented ADR-induced cardiac dysfunction as well as ADR-associated cardiac inflammation, fibrosis, and hypertrophy. The mechanistic study revealed that apoptosis and oxidative stress, the two vital pathological factors in ADR-induced cardiotoxicity, were largely alleviated by FGF1ΔHBS treatment. Furthermore, the inhibitory effects of FGF1ΔHBS on ADR-induced apoptosis and oxidative stress were regulated by decreasing p53 activity through upregulation of Sirt1-mediated p53 deacetylation and enhancement of murine double minute 2 (MDM2)-mediated p53 ubiquitination. Upregulation of p53 expression or cardiac specific-Sirt1 knockout (Sirt1-CKO) almost completely abolished FGF1ΔHBS-induced protective effects in cardiomyocytes. Based on these findings, we suggest that FGF1ΔHBS may be a potential therapeutic agent against ADR-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Animales , Apoptosis , Cardiotoxicidad/patología , Doxorrubicina/efectos adversos , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/farmacología , Ratones , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA