Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(3): 629-637.e5, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33400924

RESUMEN

As a master regulator of metabolism, AMP-activated protein kinase (AMPK) is activated upon energy and glucose shortage but suppressed upon overnutrition. Exaggerated negative regulation of AMPK signaling by nutrient overload plays a crucial role in metabolic diseases. However, the mechanism underlying the negative regulation is poorly understood. Here, we demonstrate that high glucose represses AMPK signaling via MG53 (also called TRIM72) E3-ubiquitin-ligase-mediated AMPKα degradation and deactivation. Specifically, high-glucose-stimulated reactive oxygen species (ROS) signals AKT to phosphorylate AMPKα at S485/491, which facilitates the recruitment of MG53 and the subsequent ubiquitination and degradation of AMPKα. In addition, high glucose deactivates AMPK by ROS-dependent suppression of phosphorylation of AMPKα at T172. These findings not only delineate the mechanism underlying the impairment of AMPK signaling in overnutrition-related diseases but also highlight the significance of keeping the yin-yang balance of AMPK signaling in the maintenance of metabolic homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus/enzimología , Glucosa/farmacología , Proteínas de la Membrana/metabolismo , Músculo Esquelético/efectos de los fármacos , Obesidad/enzimología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/genética , Animales , Glucemia/metabolismo , Diabetes Mellitus/sangre , Diabetes Mellitus/genética , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Macaca mulatta , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Músculo Esquelético/enzimología , Obesidad/sangre , Obesidad/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Ubiquitinación
2.
Circ Res ; 130(6): 887-903, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35152717

RESUMEN

BACKGROUND: CaMKII (Ca2+/calmodulin-dependent kinase II) plays a central role in cardiac ischemia/reperfusion (I/R) injury-an important therapeutic target for ischemic heart disease. In the heart, CaMKII-δ is the predominant isoform and further alternatively spliced into 11 variants. In humans, CaMKII-δ9 and CaMKII-δ3, the major cardiac splice variants, inversely regulate cardiomyocyte viability with the former pro-death and the latter pro-survival. However, it is unknown whether specific inhibition of the detrimental CaMKII-δ9 prevents cardiac I/R injury and, if so, what is the underlying mechanism. Here, we aim to investigate the cardioprotective effect of specific CaMKII-δ9 inhibition against myocardial I/R damage and determine the underlying mechanisms. METHODS: The role and mechanism of CaMKII-δ9 in cardiac I/R injury were investigated in mice in vivo, neonatal rat ventricular myocytes, and human embryonic stem cell-derived cardiomyocytes. RESULTS: We demonstrate that CaMKII-δ9 inhibition with knockdown or knockout of its feature exon, exon 16, protects the heart against I/R-elicited injury and subsequent heart failure. I/R-induced cardiac inflammation was also ameliorated by CaMKII-δ9 inhibition, and compared with the previously well-studied CaMKII-δ2, CaMKII-δ9 overexpression caused more profound cardiac inflammation. Mechanistically, in addition to IKKß (inhibitor of NF-κB [nuclear factor-κB] kinase subunit ß), CaMKII-δ9, but not δ2, directly interacted with IκBα (NF-κB inhibitor α) with its feature exon 13-16-17 combination and increased IκBα phosphorylation and consequently elicited more pronounced activation of NF-κB signaling and inflammatory response. Furthermore, the essential role of CaMKII-δ9 in myocardial inflammation and damage was confirmed in human cardiomyocytes. CONCLUSIONS: We not only identified CaMKII-δ9-IKK/IκB-NF-κB signaling as a new regulator of human cardiomyocyte inflammation but also demonstrated that specifically targeting CaMKII-δ9, the most abundant CaMKII-δ splice variant in human heart, markedly suppresses I/R-induced cardiac NF-κB activation, inflammation, and injury and subsequently ameliorates myocardial remodeling and heart failure, providing a novel therapeutic strategy for various ischemic heart diseases.


Asunto(s)
Insuficiencia Cardíaca , Daño por Reperfusión Miocárdica , Miocarditis , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Inflamación/genética , Inflamación/prevención & control , Isquemia , Ratones , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos , Inhibidor NF-kappaB alfa , FN-kappa B , Ratas
3.
Circ Res ; 131(12): 962-976, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36337049

RESUMEN

BACKGROUND: As an integral component of cell membrane repair machinery, MG53 (mitsugumin 53) is important for cardioprotection induced by ischemia preconditioning and postconditioning. However, it also impairs insulin signaling via its E3 ligase activity-mediated ubiquitination-dependent degradation of IR (insulin receptor) and IRS1 (insulin receptor substrate 1) and its myokine function-induced allosteric blockage of IR. Here, we sought to develop MG53 into a cardioprotection therapy by separating its detrimental metabolic effects from beneficial actions. METHODS: Using immunoprecipitation-mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we investigated the role of MG53 phosphorylation at serine 255 (S255). In particular, utilizing recombinant proteins and gene knock-in approaches, we evaluated the potential therapeutic effect of MG53-S255A mutant in treating cardiac ischemia/reperfusion injury in diabetic mice. RESULTS: We identified S255 phosphorylation as a prerequisite for MG53 E3 ligase activity. Furthermore, MG53S255 phosphorylation was mediated by GSK3ß (glycogen synthase kinase 3 beta) and markedly elevated in the animal models with metabolic disorders. Thus, IR-IRS1-GSK3ß-MG53 formed a vicious cycle in the pathogenesis of metabolic disorders where aberrant insulin signaling led to hyper-activation of GSK3ß, which in turn, phosphorylated MG53 and enhanced its E3 ligase activity, and further impaired insulin sensitivity. Importantly, S255A mutant eliminated the E3 ligase activity while retained cell protective function of MG53. Consequently, the S255A mutant, but not the wild type MG53, protected the heart against ischemia/reperfusion injury in db/db mice with advanced diabetes, although both elicited cardioprotection in normal mice. Moreover, in S255A knock-in mice, S255A mutant also mitigated ischemia/reperfusion-induced myocardial damage in the diabetic setting. CONCLUSIONS: S255 phosphorylation is a biased regulation of MG53 E3 ligase activity. The MG53-S255A mutant provides a promising approach for the treatment of acute myocardial injury, especially in patients with metabolic disorders.


Asunto(s)
Diabetes Mellitus Experimental , Daño por Reperfusión , Ratones , Animales , Fosforilación , Proteínas Portadoras/metabolismo , Serina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Diabetes Mellitus Experimental/complicaciones , Proteínas de la Membrana/metabolismo , Insulina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Isquemia
4.
Circulation ; 145(15): 1154-1168, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35317609

RESUMEN

BACKGROUND: Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease, the leading cause of morbidity and mortality worldwide. At present, there is no effective therapy for reducing cardiac I/R injury. CaMKII (Ca2+/calmodulin-dependent kinase II) plays a pivotal role in the pathogenesis of severe heart conditions, including I/R injury. Pharmacological inhibition of CaMKII is an important strategy in the protection against myocardial damage and cardiac diseases. To date, there is no drug targeting CaMKII for the clinical therapy of heart disease. Furthermore, at present, there is no selective inhibitor of CaMKII-δ, the major CaMKII isoform in the heart. METHODS: A small-molecule kinase inhibitor library and a high-throughput screening system for the kinase activity assay of CaMKII-δ9 (the most abundant CaMKII-δ splice variant in human heart) were used to screen for CaMKII-δ inhibitors. Using cultured neonatal rat ventricular myocytes, human embryonic stem cell-derived cardiomyocytes, and in vivo mouse models, in conjunction with myocardial injury induced by I/R (or hypoxia/reoxygenation) and CaMKII-δ9 overexpression, we sought to investigate the protection of hesperadin against cardiomyocyte death and cardiac diseases. BALB/c nude mice with xenografted tumors of human cancer cells were used to evaluate the in vivo antitumor effect of hesperadin. RESULTS: Based on the small-molecule kinase inhibitor library and screening system, we found that hesperadin, an Aurora B kinase inhibitor with antitumor activity in vitro, directly bound to CaMKII-δ and specifically blocked its activation in an ATP-competitive manner. Hesperadin functionally ameliorated both I/R- and overexpressed CaMKII-δ9-induced cardiomyocyte death, myocardial damage, and heart failure in both rodents and human embryonic stem cell-derived cardiomyocytes. In addition, in an in vivo BALB/c nude mouse model with xenografted tumors of human cancer cells, hesperadin delayed tumor growth without inducing cardiomyocyte death or cardiac injury. CONCLUSIONS: Here, we identified hesperadin as a specific small-molecule inhibitor of CaMKII-δ with dual functions of cardioprotective and antitumor effects. These findings not only suggest that hesperadin is a promising leading compound for clinical therapy of cardiac I/R injury and heart failure, but also provide a strategy for the joint therapy of cancer and cardiovascular disease caused by anticancer treatment.


Asunto(s)
Insuficiencia Cardíaca , Daño por Reperfusión Miocárdica , Neoplasias , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Indoles , Isquemia/metabolismo , Ratones , Ratones Desnudos , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Neoplasias/patología , Ratas , Sulfonamidas
5.
Circ Res ; 128(2): 262-277, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33208036

RESUMEN

RATIONALE: The ß2-adrenoceptor (ß2-AR), a prototypical GPCR (G protein-coupled receptor), couples to both Gs and Gi proteins. Stimulation of the ß2-AR is beneficial to humans and animals with heart failure presumably because it activates the downstream Gi-PI3K-Akt cell survival pathway. Cardiac ß2-AR signaling can be regulated by crosstalk or heterodimerization with other GPCRs, but the physiological and pathophysiological significance of this type of regulation has not been sufficiently demonstrated. OBJECTIVE: Here, we aim to investigate the potential cardioprotective effect of ß2-adrenergic stimulation with a subtype-selective agonist, (R,R')-4-methoxy-1-naphthylfenoterol (MNF), and to decipher the underlying mechanism with a particular emphasis on the role of heterodimerization of ß2-ARs with another GPCR, 5-hydroxytryptamine receptors 2B (5-HT2BRs). METHODS AND RESULTS: Using pharmacological, genetic and biophysical protein-protein interaction approaches, we studied the cardioprotective effect of the ß2-agonist, MNF, and explored the underlying mechanism in both in vivo in mice and cultured rodent cardiomyocytes insulted with doxorubicin, hydrogen peroxide (H2O2) or ischemia/reperfusion. In doxorubicin (Dox)-treated mice, MNF reduced mortality and body weight loss, while improving cardiac function and cardiomyocyte viability. MNF also alleviated myocardial ischemia/reperfusion injury. In cultured rodent cardiomyocytes, MNF inhibited DNA damage and cell death caused by Dox, H2O2 or hypoxia/reoxygenation. Mechanistically, we found that MNF or another ß2-agonist zinterol markedly promoted heterodimerization of ß2-ARs with 5-HT2BRs. Upregulation of the heterodimerized 5-HT2BRs and ß2-ARs enhanced ß2-AR-stimulated Gi-Akt signaling and cardioprotection while knockdown or pharmacological inhibition of the 5-HT2BR attenuated ß2-AR-stimulated Gi signaling and cardioprotection. CONCLUSIONS: These data demonstrate that the ß2-AR-stimulated cardioprotective Gi signaling depends on the heterodimerization of ß2-ARs and 5-HT2BRs.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Cardiomiopatías/prevención & control , Fenoterol/análogos & derivados , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Receptor de Serotonina 5-HT2B/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiotoxicidad , Muerte Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Doxorrubicina , Etanolaminas/farmacología , Fenoterol/farmacología , Fibrosis , Peróxido de Hidrógeno , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Multimerización de Proteína , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2B/genética , Receptores Adrenérgicos beta 2/genética , Transducción de Señal
6.
Biochem J ; 479(17): 1909-1916, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36053137

RESUMEN

MG53 is a tripartite motif (TRIM) family E3 ligase and plays important biological functions. Here we present the cryo-EM structure of human MG53, showing that MG53 is a homodimer consisting of a 'body' and two 'wings'. Intermolecular interactions are mainly distributed in the 'body' which is relatively stable, while two 'wings' are more dynamic. The overall architecture of MG53 is distinct from those of TRIM20 and TRIM25, illustrating the broad structural diversity of this protein family.


Asunto(s)
Proteínas Portadoras , Proteínas de la Membrana , Proteínas de Motivos Tripartitos/química , Proteínas Portadoras/metabolismo , Microscopía por Crioelectrón , Humanos , Proteínas de la Membrana/metabolismo , Multimerización de Proteína , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
7.
Mol Biol Evol ; 38(7): 2930-2945, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33744959

RESUMEN

Cis-regulatory elements play important roles in tissue-specific gene expression and in the evolution of various phenotypes, and mutations in promoters and enhancers may be responsible for adaptations of species to environments. TRIM72 is a highly conserved protein that is involved in energy metabolism. Its expression in the heart varies considerably in primates, with high levels of expression in Old World monkeys and near absence in hominids. Here, we combine phylogenetic hypothesis testing and experimentation to demonstrate that mutations in promoter are responsible for the differences among primate species in the heart-specific expression of TRIM72. Maximum likelihood estimates of lineage-specific substitution rates under local-clock models show that relative to the evolutionary rate of introns, the rate of promoter was accelerated by 78% in the common ancestor of Old World monkeys, suggesting a role for positive selection in the evolution of the TRIM72 promoter, possibly driven by selective pressure due to changes in cardiac physiology after species divergence. We demonstrate that mutations in the TRIM72 promoter account for the differential myocardial TRIM72 expression of the human and the rhesus macaque. Furthermore, changes in TRIM72 expression alter the expression of genes involved in oxidative phosphorylation, which in turn affects mitochondrial respiration and cardiac energy capacity. On a broader timescale, phylogenetic regression analyses of data from 29 mammalian species show that mammals with high cardiac expression of TRIM72 have high heart rate, suggesting that the expression changes of TRIM72 may be related to differences in the heart physiology of those species.


Asunto(s)
Evolución Biológica , Miocardio/metabolismo , Primates/genética , Regiones Promotoras Genéticas/genética , Proteínas de Motivos Tripartitos/genética , Animales , Metabolismo Basal , Regulación de la Expresión Génica/genética , Frecuencia Cardíaca , Humanos , Mutación , Fosforilación Oxidativa , Primates/metabolismo , Proteínas de Motivos Tripartitos/metabolismo
8.
J Hepatol ; 77(5): 1246-1255, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820507

RESUMEN

BACKGROUND & AIMS: Several recent clinical studies have shown that serum homocysteine (Hcy) levels are positively correlated, while vitamin B12 (B12) and folate levels are negative correlated, with non-alcoholic steatohepatitis (NASH) severity. However, it is not known whether hyperhomocysteinemia (HHcy) plays a pathogenic role in NASH. METHODS: We examined the effects of HHcy on NASH progression, metabolism, and autophagy in dietary and genetic mouse models, patients, and primates. We employed vitamin B12 (B12) and folate (Fol) to reverse NASH features in mice and cell culture. RESULTS: Serum Hcy correlated with hepatic inflammation and fibrosis in NASH. Elevated hepatic Hcy induced and exacerbated NASH. Gene expression of hepatic Hcy-metabolizing enzymes was downregulated in NASH. Surprisingly, we found increased homocysteinylation (Hcy-lation) and ubiquitination of multiple hepatic proteins in NASH including the key autophagosome/lysosome fusion protein, Syntaxin 17 (Stx17). This protein was Hcy-lated and ubiquitinated, and its degradation led to a block in autophagy. Genetic manipulation of Stx17 revealed its critical role in regulating autophagy, inflammation and fibrosis during HHcy. Remarkably, dietary B12/Fol, which promotes enzymatic conversion of Hcy to methionine, decreased HHcy and hepatic Hcy-lated protein levels, restored Stx17 expression and autophagy, stimulated ß -oxidation of fatty acids, and improved hepatic histology in mice with pre-established NASH. CONCLUSIONS: HHcy plays a key role in the pathogenesis of NASH via Stx17 homocysteinylation. B12/folate also may represent a novel first-line therapy for NASH. LAY SUMMARY: The incidence of non-alcoholic steatohepatitis, for which there are no approved pharmacological therapies, is increasing, posing a significant healthcare challenge. Herein, based on studies in mice, primates and humans, we found that dietary supplementation with vitamin B12 and folate could have therapeutic potential for the prevention or treatment of non-alcoholic steatohepatitis.


Asunto(s)
Hiperhomocisteinemia , Enfermedad del Hígado Graso no Alcohólico , Animales , Ácidos Grasos , Fibrosis , Ácido Fólico , Homocisteína , Humanos , Inflamación , Metionina , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Proteínas Qa-SNARE , Vitamina B 12 , Vitaminas
9.
Circulation ; 142(11): 1077-1091, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32677469

RESUMEN

BACKGROUND: Ischemic heart disease is the leading cause of morbidity and mortality worldwide. Ischemic preconditioning (IPC) is the most powerful intrinsic protection against cardiac ischemia/reperfusion injury. Previous studies have shown that a multifunctional TRIM family protein, MG53 (mitsugumin 53; also called TRIM72), not only plays an essential role in IPC-mediated cardioprotection against ischemia/reperfusion injury but also ameliorates mechanical damage. In addition to its intracellular actions, as a myokine/cardiokine, MG53 can be secreted from the heart and skeletal muscle in response to metabolic stress. However, it is unknown whether IPC-mediated cardioprotection is causally related to MG53 secretion and, if so, what the underlying mechanism is. METHODS: Using proteomic analysis in conjunction with genetic and pharmacological approaches, we examined MG53 secretion in response to IPC and explored the underlying mechanism using rodents in in vivo, isolated perfused hearts, and cultured neonatal rat ventricular cardiomyocytes. Moreover, using recombinant MG53 proteins, we investigated the potential biological function of secreted MG53 in the context of IPC and ischemia/reperfusion injury. RESULTS: We found that IPC triggered robust MG53 secretion in rodents in vivo, perfused hearts, and cultured cardiac myocytes without causing cell membrane leakage. Mechanistically, IPC promoted MG53 secretion through H2O2-evoked activation of protein kinase-C-δ. Specifically, IPC-induced myocardial MG53 secretion was mediated by H2O2-triggered phosphorylation of protein kinase-C-δ at Y311, which is necessary and sufficient to facilitate MG53 secretion. Functionally, systemic delivery of recombinant MG53 proteins to mimic elevated circulating MG53 not only restored IPC function in MG53-deficient mice but also protected rodent hearts from ischemia/reperfusion injury even in the absence of IPC. Moreover, oxidative stress by H2O2 augmented MG53 secretion, and MG53 knockdown exacerbated H2O2-induced cell injury in human embryonic stem cell-derived cardiomyocytes, despite relatively low basal expression of MG53 in human heart. CONCLUSIONS: We conclude that IPC and oxidative stress can trigger MG53 secretion from the heart via an H2O2-protein kinase-C-δ-dependent mechanism and that extracellular MG53 can participate in IPC protection against cardiac ischemia/reperfusion injury.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Precondicionamiento Isquémico , Proteínas de la Membrana/metabolismo , Daño por Reperfusión Miocárdica , Proteína Quinasa C-delta/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Proteína Quinasa C-delta/genética
10.
Circ Res ; 124(9): 1350-1359, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30836825

RESUMEN

RATIONALE: ßARs (ß-adrenergic receptors) are prototypical GPCRs (G protein-coupled receptors) that play a pivotal role in sympathetic regulation. In heart cells, ß1AR signaling mediates a global response, including both l-type Ca2+ channels in the sarcolemma/T tubules and RyRs (ryanodine receptors) in the SR (sarcoplasmic reticulum). In contrast, ß2AR mediates local signaling with little effect on the function of SR proteins. OBJECTIVE: To investigate the signaling relationship between ß1ARs and ß2ARs. METHOD AND RESULTS: Using whole-cell patch-clamp analyses combined with confocal Ca2+ imaging, we found that the activation of compartmentalized ß2AR signaling was able to convert the ß1AR signaling from global to local mode, preventing ß1ARs from phosphorylating RyRs that were only nanometers away from sarcolemma/T tubules. This offside compartmentalization was eliminated by selective inhibition of ß2AR, GRK2 (GPCR kinase-2), ßarr1 (ß-arrestin-1), and phosphodiesterase-4. A knockin rat model harboring mutations of the last 3 serine residues of the ß1AR C terminus, a component of the putative ßarr1 binding site and GRK2 phosphorylation site, eliminated the offside compartmentalization conferred by ß2AR activation. CONCLUSIONS: ß2AR stimulation compartmentalizes ß1AR signaling into nanoscale local domains in a phosphodiesterase-4-dependent manner by targeting the C terminus of ß1ARs. This finding reveals a fundamental negative feed-forward mechanism that serves to avoid the cytotoxicity of circulating catecholamine and to sharpen the transient ß1AR response of sympathetic excitation.


Asunto(s)
Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Adrenérgicos/farmacología , Animales , Células Cultivadas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Masculino , Mutación , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Transgénicas , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Sarcolema/efectos de los fármacos , Sarcolema/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Proc Natl Acad Sci U S A ; 115(26): E5896-E5905, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891721

RESUMEN

Obesity and related metabolic diseases are becoming worldwide epidemics that lead to increased death rates and heavy health care costs. Effective treatment options have not been found yet. Here, based on the observation that baicalin, a flavonoid from the herbal medicine Scutellaria baicalensis, has unique antisteatosis activity, we performed quantitative chemoproteomic profiling and identified carnitine palmitoyltransferase 1 (CPT1), the controlling enzyme for fatty acid oxidation, as the key target of baicalin. The flavonoid directly activated hepatic CPT1 with isoform selectivity to accelerate the lipid influx into mitochondria for oxidation. Chronic treatment of baicalin ameliorated diet-induced obesity (DIO) and hepatic steatosis and led to systemic improvement of other metabolic disorders. Disruption of the predicted binding site of baicalin on CPT1 completely abolished the beneficial effect of the flavonoid. Our discovery of baicalin as an allosteric CPT1 activator opens new opportunities for pharmacological treatment of DIO and associated sequelae.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Hígado Graso , Flavonoides/farmacología , Hígado/enzimología , Mitocondrias Hepáticas/enzimología , Obesidad , Proteómica , Regulación Alostérica/efectos de los fármacos , Animales , Sitios de Unión , Dieta/efectos adversos , Activación Enzimática/efectos de los fármacos , Hígado Graso/inducido químicamente , Hígado Graso/enzimología , Hígado Graso/patología , Hígado Graso/prevención & control , Células HeLa , Humanos , Hígado/patología , Ratones , Mitocondrias Hepáticas/patología , Obesidad/inducido químicamente , Obesidad/enzimología , Obesidad/prevención & control
12.
Circulation ; 139(7): 901-914, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586741

RESUMEN

BACKGROUND: Mitsugumin 53 (MG53 or TRIM72), a striated muscle-specific E3 ligase, promotes ubiquitin-dependent degradation of the insulin receptor and insulin receptor substrate-1 and subsequently induces insulin resistance, resulting in metabolic syndrome and type 2 diabetes mellitus (T2DM). However, it is unknown how MG53 from muscle regulates systemic insulin response and energy metabolism. Increasing evidence demonstrates that muscle secretes proteins as myokines or cardiokines that regulate systemic metabolic processes. We hypothesize that MG53 may act as a myokine/cardiokine, contributing to interorgan regulation of insulin sensitivity and metabolic homeostasis. METHODS: Using perfused rodent hearts or skeletal muscle, we investigated whether high glucose, high insulin, or their combination (conditions mimicking metabolic syndrome or T2DM) alters MG53 protein concentration in the perfusate. We also measured serum MG53 levels in rodents and humans in the presence or absence of metabolic diseases, particularly T2DM. The effects of circulating MG53 on multiorgan insulin response were evaluated by systemic delivery of recombinant MG53 protein to mice. Furthermore, the potential involvement of circulating MG53 in the pathogenesis of T2DM was assessed by neutralizing blood MG53 with monoclonal antibodies in diabetic db/db mice. Finally, to delineate the mechanism underlying the action of extracellular MG53 on insulin signaling, we analyzed the potential interaction of MG53 with extracellular domain of insulin receptor using coimmunoprecipitation and surface plasmon resonance assays. RESULTS: Here, we demonstrate that MG53 is a glucose-sensitive myokine/cardiokine that governs the interorgan regulation of insulin sensitivity. First, high glucose or high insulin induces MG53 secretion from isolated rodent hearts and skeletal muscle. Second, hyperglycemia is accompanied by increased circulating MG53 in humans and rodents with diabetes mellitus. Third, systemic delivery of recombinant MG53 or cardiac-specific overexpression of MG53 causes systemic insulin resistance and metabolic syndrome in mice, whereas neutralizing circulating MG53 with monoclonal antibodies has therapeutic effects in T2DM db/db mice. Mechanistically, MG53 binds to the extracellular domain of the insulin receptor and acts as an allosteric blocker. CONCLUSIONS: Thus, MG53 has dual actions as a myokine/cardiokine and an E3 ligase, synergistically inhibiting the insulin signaling pathway. Targeting circulating MG53 opens a new therapeutic avenue for T2DM and its complications.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus/sangre , Metabolismo Energético , Resistencia a la Insulina , Proteínas de la Membrana/metabolismo , Adulto , Animales , Anticuerpos Monoclonales/farmacología , Antígenos CD/metabolismo , Biomarcadores/sangre , Glucemia/efectos de los fármacos , Estudios de Casos y Controles , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/enzimología , Diabetes Mellitus/inmunología , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Femenino , Células HEK293 , Homeostasis , Humanos , Hipoglucemiantes/farmacología , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimología , Miocardio/enzimología , Ratas Sprague-Dawley , Ratas Zucker , Receptor de Insulina/metabolismo , Transducción de Señal , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
13.
Stroke ; 50(4): 1013-1016, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30841820

RESUMEN

Background and Purpose- Emergency medical services (EMSs) are critical for early treatment of patients with ischemic stroke, yet data on EMS utilization and its association with timely treatment in China are still limited. Methods- We examined data from the Chinese Stroke Center Alliance for patients with ischemic stroke from June 2015 to June 2018. Absolute standardized difference was used for covariates' balance assessments. We used multivariable logistic models with the generalized estimating equations to account for intrahospital clustering in identifying demographic and clinical factors associated with EMS use as well as in evaluating the association of EMS use with timely treatment. Results- Of the 560 447 patients with ischemic stroke analyzed, only 69 841 (12.5%) were transported by EMS. Multivariable-adjusted results indicated that those with younger age, lower levels of education, less insurance coverage, lower income, lower stroke severity, hypertension, diabetes mellitus, and peripheral vascular disease were less likely to use EMS. However, a history of cardiovascular diseases was associated with increased EMS usage. Compared with self-transport, EMS transport was associated with significantly shorter onset-to-door time, door-to-needle time (if prenotification was sent), earlier arrival (adjusted odds ratio [95% CIs] were 2.07 [1.95-2.20] for onset-to-door time ≤2 hours, 2.32 [2.18-2.47] for onset-to-door time ≤3.5 hours), and more rapid treatment (2.96 [2.88-3.05] for IV-tPA [intravenous recombinant tissue-type plasminogen activator] in eligible patients, 1.70 [1.62-1.77] for treatment with IV-tPA by 3 hours if onset-to-door time ≤2 hours, and 1.76 [1.70-1.83] for treatment with IV-tPA by 4.5 hours if onset-to-door time ≤3.5 hours). Conclusions- Although EMS transportation is associated with substantial reductions in prehospital delay and improved likelihood of early arrival and timely treatment, rate of utilization is currently low among Chinese patients with ischemic stroke. Developing an efficient EMS system and promoting culture-adapted education efforts are necessary for improving EMS activation.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Servicios Médicos de Urgencia , Fibrinolíticos/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Activador de Tejido Plasminógeno/uso terapéutico , Adulto , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sistema de Registros , Terapia Trombolítica , Factores de Tiempo , Tiempo de Tratamiento , Resultado del Tratamiento
14.
Stroke ; 50(5): 1124-1129, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31009353

RESUMEN

Background and Purpose- We aim to compare the risk of 1-year ischemic stroke recurrence and death for atrial fibrillation diagnosed after stroke (AFDAS), atrial fibrillation known before stroke (KAF), and sinus rhythm (SR). Methods- From June 2012 to January 2013, 19 604 patients with acute ischemic stroke were admitted to 219 urban hospitals in the China National Stroke Registry II. Based on heart rhythm assessed during admission, we classified patients as AFDAS, KAF, or SR. We explored the relationship between heart rhythm groups and 1-year ischemic stroke recurrence or death by using Cox regression adjusted for multiple covariates. Considering that death is a competing risk for stroke recurrence, we used the competing risks analysis of Fine and Gray and subdistribution Cox proportional hazards to test the association between heart rhythm and 1-year outcomes. Results- Among 19 604 ischemic stroke patients, 17 727 had SR, 495 AFDAS, and 1382 KAF. At 1 year, 54 (10.9%) patients with AFDAS, 182 (13.2%) with KAF, and 1008 (5.7%) with SR had recurrent ischemic strokes ( P<0.0001). Mortality was 22.0% in patients with AFDAS, 22.1% in patients with KAF, and 7.0% in patients with SR ( P<0.0001). AFDAS-related ischemic stroke recurrence adjusted risk was higher than that of SR (adjusted subdistribution hazard ratios, 1.61; 95% CI, 1.29-2.01) but not different from that of KAF (adjusted subdistribution hazard ratio, 1.12; 95% CI, 0.87-1.45]). The adjusted risk of 1-year death for AFDAS was also higher than that of SR (hazard ratio, 1.70; 95% CI, 1.37-2.12) and not different from that of KAF (hazard ratio, 1.10; 95% CI, 0.86-1.41). Conclusions- This study showed that AFDAS had similar risk of 1-year ischemic stroke recurrence and mortality when compared with KAF and higher risk when compared with SR. The potential risk of AFDAS should be given more emphasis, and appropriate treatment is needed to achieve reduction in the incidence of stroke recurrence and mortality.


Asunto(s)
Fibrilación Atrial/mortalidad , Fibrilación Atrial/fisiopatología , Isquemia Encefálica/mortalidad , Isquemia Encefálica/fisiopatología , Accidente Cerebrovascular/mortalidad , Accidente Cerebrovascular/fisiopatología , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/diagnóstico , Isquemia Encefálica/diagnóstico , China/epidemiología , Electrocardiografía/tendencias , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mortalidad/tendencias , Recurrencia , Sistema de Registros , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico
15.
Diabetes Obes Metab ; 21(5): 1111-1120, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30575251

RESUMEN

AIMS: To investigate the progression of obesity-related type 2 diabetes mellitus (T2DM) in rhesus monkeys, especially dynamic changes in insulin and glucagon. MATERIALS AND METHODS: We followed a cohort of 52 rhesus monkeys for 7 years throughout the progression of obesity-related T2DM. Intravenous glucose tolerance tests were performed every 6 months to evaluate dynamic changes in glucose, insulin and glucagon levels. RESULTS: Obesity in rhesus monkeys increased the overall mortality and T2DM morbidity. During the progression of T2DM, glucagon remained consistently elevated, while insulin initially increased in compensation but then dropped to below normal levels when the monkeys developed overt T2DM. After a glucose challenge, both the first and second phases of insulin secretion increased during the early stage of T2DM; in later stages the first phase was delayed and the second phase was diminished. CONCLUSION: Our findings showed that, beside the decreased insulin level, hyperglucagonaemia also plays an important role in the development of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/patología , Glucagón/sangre , Insulina/sangre , Obesidad/sangre , Obesidad/patología , Animales , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/etiología , Progresión de la Enfermedad , Prueba de Tolerancia a la Glucosa , Macaca mulatta , Masculino , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/veterinaria , Obesidad/complicaciones
16.
Nature ; 494(7437): 375-9, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23354051

RESUMEN

Insulin resistance is a fundamental pathogenic factor present in various metabolic disorders including obesity and type 2 diabetes. Although skeletal muscle accounts for 70-90% of insulin-stimulated glucose disposal, the mechanism underlying muscle insulin resistance is poorly understood. Here we show in mice that muscle-specific mitsugumin 53 (MG53; also called TRIM72) mediates the degradation of the insulin receptor and insulin receptor substrate 1 (IRS1), and when upregulated, causes metabolic syndrome featuring insulin resistance, obesity, hypertension and dyslipidaemia. MG53 expression is markedly elevated in models of insulin resistance, and MG53 overexpression suffices to trigger muscle insulin resistance and metabolic syndrome sequentially. Conversely, ablation of MG53 prevents diet-induced metabolic syndrome by preserving the insulin receptor, IRS1 and insulin signalling integrity. Mechanistically, MG53 acts as an E3 ligase targeting the insulin receptor and IRS1 for ubiquitin-dependent degradation, comprising a central mechanism controlling insulin signal strength in skeletal muscle. These findings define MG53 as a novel therapeutic target for treating metabolic disorders and associated cardiovascular complications.


Asunto(s)
Proteínas Portadoras/metabolismo , Resistencia a la Insulina/fisiología , Insulina , Síndrome Metabólico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas Portadoras/genética , Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Dislipidemias/metabolismo , Eliminación de Gen , Hipertensión/metabolismo , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Proteínas de la Membrana , Síndrome Metabólico/enzimología , Síndrome Metabólico/genética , Síndrome Metabólico/prevención & control , Ratones , Obesidad/inducido químicamente , Obesidad/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Insulina/metabolismo , Transducción de Señal , Ubiquitinación
17.
Acta Pharmacol Sin ; 40(8): 1095-1105, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30643208

RESUMEN

ß-Arrestins are a small family of proteins important for signal transduction at G protein-coupled receptors (GPCRs). ß-Arrestins are involved in the desensitization of GPCRs. Recently, biased ligands possessing different efficacies in activating the G protein- versus the ß-arrestin-dependent signals downstream of a single GPCR have emerged, which can be used to selectively modulate GPCR signal transduction in such a way that desirable signals are enhanced to produce therapeutic effects while undesirable signals of the same GPCR are suppressed to avoid side effects. In the present study, we evaluated agonist bias for compounds developed along a drug discovery project of ß2-adrenoceptor agonists. About 150 compounds, including derivatives of fenoterol, 2-amino-1-phenylethanol and 2-amino-2-phenylethanol, were obtained or synthesized, and initially screened for their ß-adrenoceptor-mediated activities in the guinea pig tracheal smooth muscle relaxation assay or the cardiomyocyte contractility assay. Nineteen bioactive compounds were further assessed using both the HTRF cAMP assay and the PathHunter ß-arrestin assay. Their concentration-response data in stimulating cAMP synthesis and ß-arrestin recruitment were applied to the Black-Leff operational model for ligand bias quantitation. As a result, three compounds (L-2, L-4, and L-12) with the core structure of 5-(1-amino-2-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one were identified as a new series of ß-arrestin-biased ß2-adrenoceptor agonists, whereas salmeterol was found to be Gs-biased. These findings would facilitate the development of novel drugs for the treatment of both heart failure and asthma.


Asunto(s)
Agonistas Adrenérgicos beta/uso terapéutico , Etanolaminas/uso terapéutico , beta-Arrestinas/metabolismo , Agonistas Adrenérgicos beta/síntesis química , Animales , Broncodilatadores/síntesis química , Broncodilatadores/uso terapéutico , Células CHO , Cricetulus , Descubrimiento de Drogas , Etanolaminas/síntesis química , Cobayas , Células HEK293 , Humanos , Ligandos , Masculino , Tráquea/efectos de los fármacos
18.
J Mol Cell Cardiol ; 125: 50-60, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30339841

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by destructive polyarthritis and systemic complications. It increases cardiovascular morbidity and mortality. However, the mechanism underlying RA-related cardiac damage remains largely unknown. Here, we found and characterized a non-human primate (NHP) model with spontaneous RA similar to the human conditions. Compared with the control group, the cardiac function in RA monkeys showed progressively deterioration; histologically, we found significantly increased inflammatory cell infiltration, cell death, and fibrosis in RA monkey heart tissue. Mechanistically, the upregulated receptor-interacting protein kinase 1 (RIPK1) in RA monkey heart tissue bound to voltage-dependent anion-selective channel 1 (VDAC1), increased VDAC1 oligomerization, and subsequently induced cardiac cell death and functional impairment. These findings identified that RIPK1-VDAC1 pathway is a promising target to treat cardiac impairment in RA. This unique model of RA will provide a valuable tool for mechanistic and translational studies.


Asunto(s)
Artritis Reumatoide/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Animales , Apoptosis/fisiología , Western Blotting , Biología Computacional , Corazón/fisiología , Humanos , Inmunoprecipitación , Macaca mulatta , Ratas , Ratas Sprague-Dawley , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Canal Aniónico 1 Dependiente del Voltaje/genética
19.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt B): 1984-1990, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29017896

RESUMEN

MG53 is a member of tripartite motif family (TRIM) that expressed most abundantly in striated muscle. Using rodent models, many studies have demonstrated the MG53 not only facilitates membrane repair after ischemia reperfusion injury, but also contributes to the protective effects of both pre- and post-conditioning. Recently, however, it has been shown that MG53 participates in the regulation of many metabolic processes, especially insulin signaling pathway. Thus, sustained overexpression of MG53 may contribute to the development of various metabolic disorders in striated muscle. In this review, using cardiac muscle as an example, we will discuss muscle metabolic disturbances associated with diabetes and the current understanding of the underlying molecular mechanisms; in particular, the pathogenesis of diabetic cardiomyopathy. We will focus on the pathways that MG53 regulates and how the dysregulation of MG53 leads to metabolic disorders, thereby establishing a causal relationship between sustained upregulation of MG53 and the development of muscle insulin resistance and metabolic disorders. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.


Asunto(s)
Proteínas Portadoras/metabolismo , Diabetes Mellitus/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Metabolismo Energético , Resistencia a la Insulina , Insulina/metabolismo , Miocardio/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus/patología , Diabetes Mellitus/fisiopatología , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Humanos , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Síndrome Metabólico/fisiopatología , Miocardio/patología , Transducción de Señal , Proteínas de Motivos Tripartitos
20.
Mol Pharmacol ; 92(3): 211-218, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28432201

RESUMEN

MG53 (also known as tripartite motif, TRIM72) is a cardiac and skeletal muscle-specific TRIM-family protein that exhibits multiple biologic functions. First, MG53 participates in plasma membrane repair of the heart, skeletal muscle, and, other tissues. Second, MG53 is essentially involved in the cardioprotection of cardiac ischemic, preconditioning, and postconditioning by activating the PI3K-Akt-GSK3ß and ERK1/2 survival signaling pathways. Moreover, systemic delivery of recombinant MG53 protein ameliorates the impact of a range of injury insults on the heart, skeletal muscle, lung, kidney, skin, and brain. It is noteworthy that chronic upregulation of MG53 induces insulin resistance and metabolic diseases, such as type 2 diabetes and its cardiovascular complications, by acting as an E3 ligase to mediate the degradation of insulin receptor and insulin receptor substrate-1. In addition, MG53 negatively regulates myogenesis. In summary, MG53 is a multifunctional protein involved in the vital physiologic and pathologic processes of multiple organs and is a promising therapeutic target for various human diseases. In this review, we comprehensively summarize current research progress on the biologic functions and therapeutic potential of MG53.


Asunto(s)
Proteínas Portadoras/fisiología , Animales , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cardiomiopatías Diabéticas/etiología , Humanos , Resistencia a la Insulina , Desarrollo de Músculos , Músculo Esquelético/fisiología , Daño por Reperfusión Miocárdica/prevención & control , Transcripción Genética , Proteínas de Motivos Tripartitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA