Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acc Chem Res ; 56(12): 1539-1552, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37163207

RESUMEN

ConspectusNanosynthesis is the art of creating nanostructures, with on-demand synthesis as the ultimate goal. Noble metal nanoparticles have wide applications, but the available synthetic methods are still limited, often giving nanospheres and symmetrical nanocrystals. The fundamental reason is that the conventional weak ligands are too labile to influence the materials deposition, so the equivalent facets always grow equivalently. Considering that the ligands are the main synthetic handles in colloidal synthesis, our group has been exploring strong ligands for new growth modes, giving a variety of sophisticated nanostructures. The model studies often involve metal deposition on seeds functionalized with a certain strong ligand, so that the uneven distribution of the surface ligands could guide the subsequent deposition.In this Account, we focus on the design principles underlying the new growth modes, summarizing our efforts in this area along with relevant literature works. The basics of ligand control are first revisited. Then, the four major growth modes are summarized as follows: (1) The curvature effects would divert the materials deposition away from the high-curvature tips when the ligands are insufficient. With ligands fully covering the seeds, the sparser ligand packing at the tips would then promote the initial nucleation thereon. (2) The strong ligands may get trapped under the incoming metal layer, thus modulating the interfacial energy of the core-shell interface. The evidence for embedded ligands is discussed, along with examples of Janus nanostructures arising from the synthetic control, including metal-metal, metal-semiconductor, and metal-C60 systems using a variety of ligands. (3) Active surface growth is an unusual mode with divergent growth rates, so that part of the emerging surface is inhibited, and the growth is focused onto a few active sites. With seeds attached to oxide substrates, the selective deposition at the metal-substrate interface produces ultrathin nanowires. The synthesis can be generally applied to grow Au, Ag, Pd, Pt, and hybrid nanowires, with straight, spiral, or helical structures, and even rapid alteration of segments via electrochemical methods. In contrast, active surface growth for colloidal nanoparticles has to be more carefully controlled. The rich growth phenomena are discussed, highlighting the role of strong ligands, the control of deposition rates, the chiral induction, and the evidence for the active sites. (4) An active site with sparse ligands could also be exploited in etching, where the freshly exposed surface would promote further etching. The result is an unusual sharpening etching mode, in contrast to the conventional rounding mode for minimized surface energy.Colloidal nanosynthesis holds great promise for scalable on-demand synthesis, providing the crucial nanomaterials for future explorations. The strong ligands have delivered powerful synthetic controls, which could be further enhanced with in-depth studies on growth mechanisms and synthetic strategies, as well as functions and properties.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38904624

RESUMEN

Objective: To analyze the manifestations of infectious mononucleosis and its impact on liver function in children. Methods: This retrospective study analyzed clinical data from 695 children with infectious mononucleosis (IM) who were hospitalized at the Department of Pediatrics, Chengdu First People's Hospital between January 1, 2017, and December 31, 2022. They were analyzed into two groups according to whether their ALT was greater than 40 U/L. Demographic variables, clinical features, and laboratory findings were collected from medical records. Statistical analyses were performed using the Statistic Package for Social Science (SPSS) 26. Results: A total of 695 children with infectious mononucleosis (IM)(409 males and 286 females) were included in the study. The age distribution was 161 infants (<3 years), 357 preschoolers (3-7 years), and 177 school-aged children (≥7 years). After clinical recovery, 61 cases had elevated liver enzymes. Asynchronous changes in AST and ALT were present in 18 children. The highest proportion of fever onset (75.2%) occurred in infancy (P = .00). Elevated AST, lymphocyte percentage and WBCs, age in school age, uncomplicated myocardial injury these were the risk factors for the development of liver injury in children with infectious mononucleosis. P values were .00, .048, .021, .000 and .002, respectively. 95% CIs were 65., 2-315.52, 1.01-3.48, 1.18- 7.37, 2.57-13.52 and 1.79-13.35, respectively. Conclusions: The clinical features vary with sex and age. Children with IM who are school-aged, without myocardial injury, and have elevated WBC, lymphocyte percentage, and AST should be monitored for potential liver damage. Careful evaluation is necessary following clinical recovery to determine if vaccination is appropriate.

3.
Small ; 19(29): e2207907, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37052515

RESUMEN

The localized surface plasmon resonance (LSPR) is one of the important properties for noble metal nanoparticles. Tuning the LSPR on demand thus has attracted tremendous interest. Beyond the size and shape control, manipulating intraparticle coupling is an effective way to tailor their LSPR. The charge transfer plasmon (CTP) is the most important mode of conductive coupling between subunits linked by conductive bridges that are well studied for structures prepared on substrates by lithography method. However, the colloidal synthesis of CTP structure remains a great challenge. This work reports the colloidal synthesis of extraordinary bridged Au core-satellite structures by exploiting the buffer effect of polydopamine shell on Au core for Au atom diffusion, in which the Au bridge is well controlled in terms of width and length. Benefiting from the tunable Au bridges, the resonance energy of the CTP can be readily controlled. As a result, the LSPR absorptions of the core-satellite structures are continuously tuned within the NIR spectral range (from 900 to >1300 nm), demonstrating their great potentials for ultrafast nano-optics and biomedical applications.

4.
Small ; 19(29): e2300587, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37035961

RESUMEN

Precise structural control has attracted tremendous interest in pursuit of the tailoring of physical properties. Here, this work shows that through strong ligand-mediated interfacial energy control, Au-Cu2 O dumbbell structures where both the Au nanorod (AuNR) and the partially encapsulating Cu2 O domains are highly crystalline. The synthetic advance allows physical separation of the Au and Cu2 O domains, in addition to the use of long nanorods with tunable absorption wavelength, and the crystalline Cu2 O domain with well-defined facets. The interplay of plasmon and Schottky effects boosts the photocatalytic performance in the model photodegradation of methyl orange, showing superior catalytic efficiency than the AuNR@Cu2 O core-shell structures. In addition, compared to the typical core-shell structures, the AuNR-Cu2 O dumbbells can effectively electrochemically catalyze the CO2 to C2+ products (ethanol and ethylene) via a cascade reaction pathway. The excellent dual function of both photo- and electrocatalysis can be attributed to the fine physical separation of the crystalline Au and Cu2 O domains.

5.
Plant Cell Environ ; 46(11): 3420-3432, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37469026

RESUMEN

Drought and high salinity are major environmental factors that reduce plant growth and development, leading to loss of plant productivity in agriculture. Under these stress conditions, photosynthesis is greatly suppressed despite the high cellular energy cost of stress response processes. Currently, the process that allows plants to secure the energy required for osmotic stress responses remains elusive. Here, we provide evidence that cytochrome b5 reductase 1 (CBR1), a cytochrome b5 reductase, plays an important role in ATP production in response to NaCl and dehydration stresses. Overexpression and loss of function of CBR1 led to enhanced resistance and sensitivity, respectively, to osmotic stress. Upon exposure to osmotic stress, CBR1 was localised to the endoplasmic reticulum (ER) instead of to mitochondria, where it was localised under normal conditions. Transgenic plants overexpressing ER-targeted CBR1 showed enhanced resistance to osmotic stress. Moreover, CBR1-ER and CBR1-OX plants, had higher levels of ATP and unsaturated fatty acids under osmotic stress. However, these effects were abrogated by thioridazine and 2-deoxy glucose, inhibitors of ß-oxidation and glycolysis, respectively. Based on these results, we propose that ER-localised CBR1 triggers ATP production via the production and ß-oxidation of polyunsaturated fatty acids under osmotic stress.


Asunto(s)
Citocromos b5 , Ácidos Grasos Insaturados , Presión Osmótica/fisiología , Citocromos b5/farmacología , Oxidorreductasas , Retículo Endoplásmico , Mitocondrias , Adenosina Trifosfato , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas
6.
World J Surg Oncol ; 21(1): 171, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37280630

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally. It is essential to identify new CRC-associated therapeutic targets and diagnostic biomarkers. Previous studies have demonstrated that a series of circular RNAs (circRNAs) play a crucial role in CRC pathogenesis. This study assessed the potential of hsa_circ_0064559 in tumor cell growth and progression of CRC. METHODS: Six pairs of matched CRC and normal colorectal tissue samples were sequenced using the Affymetrix Clariom D array. Using RNA interference, the expression of thirteen circRNAs was knocked down in CRC cells. The proliferation of CRC cell lines (RKO and SW620 cells) was detected using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Apoptosis and cell cycle were determined by flow-cytometric analysis. An in vivo study uses nude mice to establish a CRC mouse model. The differentially expressed genes were analyzed using Affymetrix primeview human GeneChip array and verified by polymerase chain reaction. RESULTS: Affymetrix Clariom D array analysis revealed that thirteen circRNAs were upregulated in CRC. The proliferation of CRC cell lines was decreased, while the proportion of apoptotic and G1 phase cells was higher after hsa_circ_0064559 knockdown. In vivo xenograft nude mice model revealed that the volume and weight of the tumor were reduced by hsa_circ_0064559 knockdown. In Affymetrix primeview human GeneChip array, we found six upregulated genes (STAT1, ATF2, TNFRSF10B, TGFBR2, BAX, and SQSTM1) and two downregulated genes (SLC4A7 and CD274) related to apoptosis and proliferation of colorectal cancer cells after hsa_circ_0064559 knockdown. CONCLUSIONS: The hsa_circ_0064559 knockdown could inhibit the proliferation, promote apoptosis in CRC cell lines in vitro, and inhibit the development of CRC tumors in vivo. The mechanism may be related to activating a wide range of signaling pathways. The hsa_circ_0064559 may be a potential biomarker for early diagnosis or prognosis of CRC and a novel drug target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Animales , Ratones , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Ciclo Celular , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica
7.
Mol Biol Rep ; 49(10): 9997-10011, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35819557

RESUMEN

BACKGROUND: Biological and abiotic stresses such as salt, extreme temperatures, and pests and diseases place major constraints on plant growth and crop yields. Fatty acids (FAs) and FA- derivatives are unique biologically active substance that show a wide range of functions in biological systems. They are not only participated in the regulation of energy storage substances and cell membrane plasm composition, but also extensively participate in the regulation of plant basic immunity, effector induced resistance and systemic resistance and other defense pathways, thereby improving plant resistance to adversity stress. Fatty acid desaturases (FADs) is involved in the desaturation of fatty acids, where desaturated fatty acids can be used as substrates for FA-derivatives. OBJECTIVE: In this paper, the role of omega-FADs (ω-3 FADs and ω-6 FADs) in the prokaryotic and eukaryotic pathways of fatty acid biosynthesis in plant defense against stress (biological and abiotic stress) and the latest research progress were summarized. Moreover' the existing problems in related research and future research directions were also discussed. RESULTS: Fatty acid desaturases are involved in various responses of plants during biotic and abiotic stress. For example, it is involved in regulating the stability and fluidity of cell membranes, reactive oxygen species signaling pathways, etc. In this review, we have collected several experimental studies to represent the differential effects of fatty acid desaturases on biotic and abiotic species. CONCLUSION: Fatty acid desaturases play an important role in regulating biotic and abiotic stresses.


Asunto(s)
Ácido Graso Desaturasas , Metabolismo de los Lípidos , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Especies Reactivas de Oxígeno , Estrés Fisiológico
8.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808132

RESUMEN

The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.


Asunto(s)
Pared Celular/fisiología , Lignina/biosíntesis , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Xilema/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Madera/crecimiento & desarrollo , Xilema/metabolismo
9.
Tumour Biol ; 37(4): 5591-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26577854

RESUMEN

Bcl2-associated athanogene 3 (BAG3) has been reported to be elevated in various tumors. However, it is unclear whether BAG3 has a functional role in the initiation and progression of colorectal cancer (CRC). Here, we collected CRC samples and cell lines to validate the pathway by using gene and protein assays. RT-PCR showed that the expression of BAG3 mRNA in CRC tissues was obviously higher than that in non-tumor tissues (p < 0.001). Immunohistochemical analysis showed that immunoreactivity of BAG3 was found in most CRC tissues and strongly correlated with TNM stage (p = 0.001), differentiation (p = 0.003), and metastasis (p = 0.010). Low expression of BAG3 in HCT-8 significantly reduced cellular proliferation, migration, and invasion. The analysis of in vitro cell showed that HCT-8 cells were exposed to si-BAG3, and its growth was inhibited depending on modulation of cell cycle G1/S checkpoints and cell cycle regulators, involving cyclin D1, cyclin A2, and cyclin B1. Furthermore, suppression of the epithelial-mesenchymal transition (EMT) by si-BAG3 is linked to the decreased expression of E-cadherin and the increased expression of N-cadherin, vimentin, and MMP9. In conclusion, in the present study, we demonstrated that BAG3 overexpression plays a critical role in cell proliferation, migration, and invasion of colorectal cancer. Our data suggests targeted inhibition of BAG3 may be useful for patients with CRC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal/genética , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Adulto , Anciano , Proteínas Reguladoras de la Apoptosis/biosíntesis , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias Colorrectales/patología , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias
10.
Virology ; 596: 110125, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38805804

RESUMEN

Influenza viruses present a significant threat to global health. The production of a universal vaccine is considered essential due to the ineffectiveness of current seasonal influenza vaccines against mutant strains. mRNA technology offers new prospects in vaccinology, with various candidates for different infectious diseases currently in development and testing phases. In this study, we encapsulated a universal influenza mRNA vaccine. The vaccine encoded influenza hemagglutinin (HA), nucleoprotein (NP), and three tandem repeats of matrix protein 2 (3M2e). Twice-vaccinated mice exhibited strong humoral and cell-mediated immune responses in vivo. Notably, these immune responses led to a significant reduction in viral load of the lungs in challenged mice, and also conferred protection against future wild-type H1N1, H3N2, or H5N1 influenza virus challenges. Our findings suggest that this mRNA-universal vaccine strategy for influenza virus may be instrumental in mitigating the impact of future influenza pandemics.


Asunto(s)
Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae , Proteínas de la Matriz Viral , Vacunas de ARNm , Animales , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Ratones , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Anticuerpos Antivirales/inmunología , Vacunas de ARNm/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Proteínas de la Matriz Viral/inmunología , Proteínas de la Matriz Viral/genética , Femenino , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Protección Cruzada/inmunología , Carga Viral , Pulmón/virología , Pulmón/inmunología , Humanos , Proteínas Viroporinas
11.
Imeta ; 3(2): e193, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882488

RESUMEN

The assembly of two sorghum T2T genomes corrected the assembly errors in the current reference, uncovered centromere variation, boosted functional genomics research, and accelerated sorghum improvement.

12.
Hum Gene Ther ; 35(1-2): 48-58, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37646399

RESUMEN

Oncolytic viruses are able to lyse tumor cells selectively in the liver without killing normal hepatocytes, in addition to activating the immune response. Oncolytic virus therapy is expected to revolutionize the treatment of liver cancer, including hepatocellular carcinoma (HCC), one of the most frequent and fatal malignancies. In this study, reverse genetics techniques were exploited to load NA fragments of the A/PuertoRico/8/34 virus (PR8) with GV1001 peptides derived from human telomerase reverse transcriptase. An in vitro assessment of the therapeutic effect of the recombinant oncolytic virus was followed by an in vivo study in mice with HCC. The recombinant virus was verified by sequencing of the recombinant viral gene sequence, and viral virulence was detected by hemagglutination assays and based on the 50% tissue culture infectious dose (TCID50). The morphological structure of the virus was observed by electron microscopy, and GV1001 peptide was localized by cellular immunofluorescence. The selective cytotoxicity of the recombinant oncolytic virus in vitro was demonstrated in cultured HCC cells and normal hepatocytes, as only the tumor cells were killed; the normal cells were not significantly altered. Consistent with the in vitro results, the recombinant oncolytic influenza virus significantly inhibited liver tumor growth in mice in vivo, in addition to inducing an antitumor immune response, including an increase in the number of CD4+ and CD8+ T lymphocytes and, in turn, improving survival. Our results suggest that oncolytic influenza virus carrying GV1001 is a promising immunotherapy in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Viroterapia Oncolítica , Virus Oncolíticos , Orthomyxoviridae , Humanos , Ratones , Animales , Virus Oncolíticos/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Viroterapia Oncolítica/métodos , Inmunidad , Línea Celular Tumoral
13.
Sci Rep ; 14(1): 329, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172565

RESUMEN

The expression level of SLC35A3 is associated with the prognosis of many cancers, but its role in colorectal cancer (CRC) is unclear. The purpose of our study was to elucidate the role of SLC35A3 in CRC. The expression levels of SLC35A3 in CRC were evaluated through tumor immune resource assessment (TIMER), The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), Human Protein Atlas (HPA), qRT-PCR, and immunohistochemical evaluation. TCGA, GEO, and ICGC databases were used to analyze the diagnostic and prognostic value of SLC35A3 in CRC. A overall survival (OS) model was constructed and validated based on the expression level of SLC35A3 and multivariable analysis results. The cBioPortal tool was used to analyze SLC35A3 mutation in CRC. The UALCAN tool was used to analyze the promoter methylation level of SLC35A3 in colorectal cancer. In addition, the role of SLC35A3 in CRC was determined through GO analysis, KEGG analysis, gene set enrichment analysis (GSEA), immune infiltration analysis, and immune checkpoint correlation analysis. In vitro experiments validated the function of SLC35A3 in colorectal cancer cells. Compared with adjacent normal tissues and colonic epithelial cells, the expression of SLC35A3 was decreased in CRC tissues and CRC cell lines. Low expression of SLC35A3 was associated with N stage, pathological stage, and lymphatic infiltration, and it was unfavorable for OS, disease-specific survival (DSS), recurrence-free survival (RFS), and post-progression survival (PPS). According to the Receiver Operating Characteristic (ROC) analysis, SLC35A3 is a potential important diagnostic biomarker for CRC patients. The nomograph based on the expression level of SLC35A3 showed a better predictive model for OS than single prognostic factors and TNM staging. SLC35A3 has multiple types of mutations in CRC, and its promoter methylation level is significantly decreased. GO and KEGG analysis indicated that SLC35A3 may be involved in transmembrane transport protein activity, cell communication, and interaction with neurotransmitter receptors. GSEA revealed that SLC35A3 may be involved in energy metabolism, DNA repair, and cancer pathways. In addition, SLC35A3 was closely related to immune cell infiltration and immune checkpoint expression. Immunohistochemistry confirmed the positive correlation between SLC35A3 and helper T cell infiltration. In vitro experiments showed that overexpression of SLC35A3 inhibited the proliferation and invasion capability of colorectal cancer cells and promoted apoptosis. The results of this study indicate that decreased expression of SLC35A3 is closely associated with poor prognosis and immune cell infiltration in colorectal cancer, and it can serve as a promising independent prognostic biomarker and potential therapeutic target.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Humanos , Biomarcadores , Comunicación Celular , Línea Celular , Neoplasias Colorrectales/genética , Pronóstico
14.
Adv Sci (Weinh) ; : e2403116, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816935

RESUMEN

To overcome current limitations in photoimmunotherapy, such as insufficient tumor antigen generation and a subdued immune response, a novel photo-/metallo dual-mode immunotherapeutic agent (PMIA) is introduced for potent near-infrared (NIR) light-triggered cancer therapy. PMIA features a dumbbell-like AuPt heterostructure decorated with starry Pt nanoclusters, meticulously engineered for enhancing plasmonic catalysis through multi-dimensional regulation of Pt growth on Au nanorods. Under NIR laser exposure, end-tipped Pt nanoclusters induce efficient electron-hole spatial separation along the longitudinal axis, resulting in radial and axial electron distribution polarization, conferring unique anisotropic properties to PMIA. Additionally, starry Pt nanoclusters on the sides of Au nanorods augment the local electron enrichment field. Validated through finite-difference time-domain analysis and Raman scattering, this configuration fosters local electron enrichment, facilitating robust reactive oxygen species generation for potent photoimmunotherapy. Moreover, Pt nanoclusters facilitate Pt2+ ion release, instigating intranuclear DNA damage and inducing synergistic immunogenic cell death (ICD) for metalloimmunotherapy. Consequently, PMIA elicits abundant danger-associated molecular patterns, promotes T cell infiltration, and triggers systemic immune responses, effectively treating primary and distant tumors, inhibiting metastasis in vivo. This study unveils a pioneering dual-mode ICD amplification strategy driven by NIR light, synergistically integrating photoimmunotherapy and metalloimmunotherapy, culminating in potent cancer photometalloimmunotherapy.

15.
Nanomedicine (Lond) ; 18(22): 1585-1606, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37830425

RESUMEN

Phototherapeutics is gaining momentum as a mainstream treatment for cancer, with gold-semiconductor nanocomposites showing promise as potent phototherapeutic agents due to their structural tunability, biocompatibility and functional diversity. Such nanohybrids possess plasmonic characteristics in the presence of gold and the catalytic nature of semiconductor units, as well as the unexpected physicochemical properties arising from the contact interface. This perspective provides an overview of the latest research on gold-semiconductor nanocomposites for photodynamic, photothermal and photocatalytic therapy. The relationship between the spatial configuration of these nanohybrids and their practical performance was explored to deliver comprehensive insights and guidance for the design and fabrication of novel composite nanoplatforms to enhance the efficiency of phototherapeutics, promoting the development of nanotechnology-based advanced biomedical applications.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Oro/química , Fototerapia , Neoplasias/tratamiento farmacológico , Semiconductores
16.
Int J Biol Macromol ; 236: 123848, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36863674

RESUMEN

Photocatalytic technology has been extensively studied in the removal of toxic Cr(VI) from wastewater. However, common powdery photocatalysts suffer from poor recyclability and secondly pollution. Herein, the zinc indium sulfide (ZnIn2S4) particles were integrated onto the sodium alginate foam(SA) matrix through a facile way to obtain foam-shape catalyst. Diverse characterization techniques including X-ray diffraction(XRD), Fourier transform infrared(FT-IR), scanning electron microscope(SEM) and X-ray photoelectron spectroscopy(XPS) were employed to reveal the composite compositions, organic-inorganic interface interactions, mechanical property, and pore morphology of the foams. Results demonstrated that the ZnIn2S4 crystals wrapped on SA skeleton tightly and constructed a flower-like structure. As-prepared hybrid foam with lamellar structure showed great potential in Cr(VI) treatment due to the presence of macropores and highly available active sites. A maximum Cr(VI) photoreduction efficiency of 93 % were observed over the optimal sample of ZS-1 (with a ZnIn2S4:SA mass ratio of 1:1) under visible irradiation. When tested with mixed pollutants (Cr(VI)/dyes), the ZS-1 sample displayed an enhanced removal efficiency of 98 % for Cr(VI) and 100 % for Rhodamine B(RhB). Moreover, the composite maintained prominent photocatalytic performance and a relatively integral 3D structure scaffold after continuous six runs, revealing its superior reusability and durability.


Asunto(s)
Alginatos , Contaminantes Químicos del Agua , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química , Adsorción , Cromo/química
17.
Front Chem ; 11: 1138932, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36762190

RESUMEN

Hybrid nanostructures have garnered considerable interest because of their fascinating properties owing to the hybridization of materials and their structural varieties. In this study, we report the synthesis of [Au@Rh(OH)3]-Au island heterostructures using a seed-mediated sequential growth method. Through the thiol ligand-mediated interfacial energy, Au@Rh(OH)3 core-shell structures with varying shell thicknesses were successfully obtained. On these Au@Rh(OH)3 core-shell seeds, by modulating the diffusion of HAuCl4 in the porous Rh(OH)3 shell, site-specific growth of Au islands on the inner Au core or on the surface of the outer Rh(OH)3 shell was successfully achieved. Consequently, two types of distinct structures, the Au island-on-[Au@Rh(OH)3] dimer and Au island-Au bridge-[Au@Rh(OH)3] dumbbell structures with thin necks were obtained. Further modulations of the growth kinetics led to the formation of Au plate-Au bridge-[Au@Rh(OH)3] heterostructures with larger structural anisotropy. The flexible structural variations were demonstrated to be an effective means of modulating the plasmonic properties; the Au-Au heterostructures exhibited tunable localized surface plasmon resonance in the visible-near-infrared spectral region and can be used as surface-enhanced Raman scattering (SERS) substrates capable of emitting strong SERS signals. This diffusion-controlled growth of Au bridges in the Rh(OH)3 shells (penetrating growth) is an interesting new approach for structural control, which enriches the tool box for colloidal nanosynthesis. This advancement in structural control is expected to create new approaches for colloidal synthesis of sophisticated nanomaterials, and eventually enable their extensive applications in various fields.

18.
Front Immunol ; 14: 1235575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799727

RESUMEN

Objective: Bazhen Decoction (BZD) is a common adjuvant therapy drug for colorectal cancer (CRC), although its anti-tumor mechanism is unknown. This study aims to explore the core components, key targets, and potential mechanisms of BZD treatment for CRC. Methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) was employed to acquire the BZD's active ingredient and targets. Meanwhile, the Drugbank, Therapeutic Target Database (TTD), DisGeNET, and GeneCards databases were used to retrieve pertinent targets for CRC. The Venn plot was used to obtain intersection targets. Cytoscape software was used to construct an "herb-ingredient-target" network and identify core targets. GO and KEGG pathway enrichment analyses were conducted using R language software. Molecular docking of key ingredients and core targets of drugs was accomplished using PyMol and Autodock Vina software. Cell and animal research confirmed Bazhen Decoction efficacy and mechanism in treating colorectal cancer. Results: BZD comprises 173 effective active ingredients. Using four databases, 761 targets related to CRC were identified. The intersection of BZD and CRC yielded 98 targets, which were utilized to construct the "herb-ingredient-target" network. The four key effector components with the most targets were quercetin, kaempferol, licochalcone A, and naringenin. Protein-protein interaction (PPI) analysis revealed that the core targets of BZD in treating CRC were AKT1, MYC, CASP3, ESR1, EGFR, HIF-1A, VEGFR, JUN, INS, and STAT3. The findings from molecular docking suggest that the core ingredient exhibits favorable binding potential with the core target. Furthermore, the GO and KEGG enrichment analysis demonstrates that BZD can modulate multiple signaling pathways related to CRC, like the T cell receptor, PI3K-Akt, apoptosis, P53, and VEGF signaling pathway. In vitro, studies have shown that BZD dose-dependently inhibits colon cancer cell growth and invasion and promotes apoptosis. Animal experiments have shown that BZD treatment can reverse abnormal expression of PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53 genes. BZD also increases the ratio of CD4+ T cells to CD8+ T cells in the spleen and tumor tissues, boosting IFN-γ expression, essential for anti-tumor immunity. Furthermore, BZD has the potential to downregulate the PD-1 expression on T cell surfaces, indicating its ability to effectively restore T cell function by inhibiting immune checkpoints. The results of HE staining suggest that BZD exhibits favorable safety profiles. Conclusion: BZD treats CRC through multiple components, targets, and metabolic pathways. BZD can reverse the abnormal expression of genes such as PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53, and suppresses the progression of colorectal cancer by regulating signaling pathways such as PI3K-AKT, P53, and VEGF. Furthermore, BZD can increase the number of T cells and promote T cell activation in tumor-bearing mice, enhancing the immune function against colorectal cancer. Among them, quercetin, kaempferol, licochalcone A, naringenin, and formaronetin are more highly predictive components related to the T cell activation in colorectal cancer mice. This study is of great significance for the development of novel anti-cancer drugs. It highlights the importance of network pharmacology-based approaches in studying complex traditional Chinese medicine formulations.


Asunto(s)
Neoplasias Colorrectales , Quempferoles , Animales , Ratones , Simulación del Acoplamiento Molecular , Caspasa 3 , Farmacología en Red , Linfocitos T CD8-positivos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Quercetina , Proteína p53 Supresora de Tumor , Factor A de Crecimiento Endotelial Vascular , Neoplasias Colorrectales/tratamiento farmacológico , Receptores ErbB
19.
Medicine (Baltimore) ; 100(40): e27448, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34622864

RESUMEN

RATIONALE: Small bowel adenocarcinoma (SBA), an uncommon gastrointestinal malignant tumor, is difficult to diagnose at an early stage because of its non-specific disease presentation. Metachronous SBA is a special type of SBA that is rarely reported. We herein report a case of metachronous primary SBA following resection of rectal adenocarcinoma. PATIENT CONCERNS: A 65-year-old man presented to our hospital after having experienced recurrent bowel obstruction for 6 months. He had undergone a Dixon operation 30 months previously followed by adjuvant chemotherapy with capecitabine plus oxaliplatin. DIAGNOSIS: Abdominal computed tomography showed thickened bowel walls in the right lower abdomen, and the patient was initially misdiagnosed with intestinal adhesion. After the operation, he was diagnosed with primary SBA (T3N0M0, stage IIA). INTERVENTIONS: Treatment with a transnasal ileus tube was ineffective. Therefore, we performed small intestinal segmental resection and side-to-side anastomosis through open surgery. OUTCOMES: The patient completed all postoperative adjuvant chemotherapy, and posttreatment surveillance revealed no further abnormalities. LESSONS: This case suggests that patients with colorectal adenocarcinoma may have an increased risk of metachronous SBA. Corresponding symptoms in high-risk patients should raise clinicians' suspicion for SBA, and further detailed examinations are imperative. Early screening for SBA may help to improve the patients' prognosis.


Asunto(s)
Adenocarcinoma/diagnóstico , Neoplasias del Íleon/diagnóstico , Adenocarcinoma/patología , Adenocarcinoma/cirugía , Anciano , Humanos , Neoplasias del Íleon/patología , Neoplasias del Íleon/cirugía , Obstrucción Intestinal/diagnóstico por imagen , Obstrucción Intestinal/etiología , Masculino , Tomografía Computarizada por Rayos X
20.
Cancer Manag Res ; 12: 8023-8035, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32943935

RESUMEN

OBJECTIVE: Monoamine oxidase A (MAO-A) is a mitochondrial protein involved in tumourigenesis in different types of cancer. However, the biological function of MAO-A in gastric cancer development remains unknown. METHODS: We examined MAO-A expression in gastric cancer tissues and in gastric cancer cell lines by immunohistochemistry and Western blot analyses. CCK8, FACS and bromodeoxyuridine incorporation assays were performed to assess the effects of MAO-A on gastric cancer cell proliferation. The role of MAO-A in mitochondrial function was determined through MitoSOX Red staining, ATP generation and glycolysis assays. RESULTS: In the present study, we observed that MAO-A was significantly upregulated in gastric cancer tissues and in AGS and MGC803 cells. The observed MAO-A inhibition indicated decreased cell cycle progression and proliferation. Silencing MAO-A expression was associated with suppressed migration and invasion of gastric cancer cells in vitro. Moreover, alleviated mitochondrial damage in these cells was demonstrated by decreased levels of mitochondrial reactive oxygen species and increased ATP generation. MAO-A knockdown also regulated the expression of the glycolysis rate-limiting enzymes hexokinase 2 and pyruvate dehydrogenase. Finally, we observed that the glycolysis-mediated effect was weakened in AGS and MGC803 cells when MAO-A was blocked. CONCLUSION: The findings of the present study indicate that MAO-A is responsible for mitochondrial dysfunction and aerobic glycolysis, which in turn leads to the proliferation and metastasis of human gastric tumour cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA