Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 128, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354345

RESUMEN

BACKGROUNDS: Acute transplant rejection is a major component of poor prognoses for organ transplantation. Owing to the multiple complex mechanisms involved, new treatments are still under exploration. Endometrial regenerative cells (ERCs) have been widely used in various refractory immune-related diseases, but the role of ERC-derived exosomes (ERC-Exos) in alleviating transplant rejection has not been extensively studied. Signaling lymphocyte activation molecule family 6 (SLAMF6) plays an important role in regulating immune responses. In this study, we explored the main mechanism by which ERC-Exos loaded with siSLAMF6 can alleviate allogeneic transplant rejection. METHODS: C57BL/6 mouse recipients of BALB/c mouse kidney transplants were randomly divided into four groups and treated with exosomes. The graft pathology was evaluated by H&E staining. Splenic and transplanted heart immune cell populations were analyzed by flow cytometry. Recipient serum cytokine profiles were determined by enzyme-linked immunosorbent assay (ELISA). The proliferation and differentiation capacity of CD4+ T cell populations were evaluated in vitro. The α-2,6-sialylation levels in the CD4+ T cells were determined by SNA blotting. RESULTS: In vivo, mice treated with ERC-siSLAMF6 Exo achieved significantly prolonged allograft survival. The serum cytokine profiles of the recipients were significantly altered in the ERC-siSLAMF6 Exo-treated recipients. In vitro, we found that ERC-siSLAMF6-Exo considerably downregulated α-2,6-sialyltransferase (ST6GAL1) expression in CD4+ T cells, and significantly reduced α-2,6-sialylation levels. Through desialylation, ERC-siSLAMF6 Exo therapy significantly decreased CD4+ T cell proliferation and inhibited CD4+ T cell differentiation into Th1 and Th17 cells while promoting regulatory T cell (Treg) differentiation. CONCLUSIONS: Our study indicated that ERC-Exos loaded with siSLAMF6 reduce the amount of sialic acid connected to α-2,6 at the end of the N-glycan chain on the CD4+ T cell surface, increase the number of therapeutic exosomes endocytosed into CD4+ T cells, and inhibit the activation of T cell receptor signaling pathways, which prolongs allograft survival. This study confirms the feasibility of using ERC-Exos as natural carriers combined with gene therapy, which could be used as a potential therapeutic strategy to alleviate allograft rejection.


Asunto(s)
Endometrio , Exosomas , Rechazo de Injerto , Trasplante de Corazón , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Animales , Exosomas/metabolismo , Rechazo de Injerto/inmunología , Femenino , Ratones , Endometrio/metabolismo , Aloinjertos , Citocinas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Proliferación Celular , Supervivencia de Injerto
2.
Mol Cell Biochem ; 478(7): 1519-1531, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36413334

RESUMEN

Triple negative breast cancer (TNBC) is a kind of refractory cancer with poor response to conventional chemotherapy. Recently, the combination of baicalein and doxorubicin was reported to exert a synergistic antitumor effect on breast cancer. However, the underlying mechanism how baicalein sensitizes breast cancer cells to doxorubicin remains to be elucidated. Here, it was found that 20 µM baicalein increased the autophagy markers including the ratio of LC3B II/I, GFP-LC3 punctate aggregates and down-regulation of p62 expression, and up-regulated mitophagy marker PINK1 and Parkin in TNBC MDA-MB-231 cells as well. In contrast, doxorubicin decreased the levels of autophagy markers, and significantly up-regulated CDK1 in MDA-MB-231 cells. Pretreatment with baicalein markedly inhibited the doxorubicin-induced decrease in autophagy markers and up-regulation of CDK1, which was reversed by the autophagy inhibitor 3-Methyladenine. Moreover, baicalein alleviated the doxorubicin-induced expression and phosphorylation (at Ser616) of mitochondrial fission protein Drp1. Intriguingly, the autophagy inhibitor 3-Methyladenine also significantly weakened the effect of baicalein on doxorubicin-induced viability decrease and apoptosis in MDA-MB-231 cells. Taken together, our data indicate that baicalein improves the chemosensitivity of TNBC cells to doxorubicin through promoting the autophagy-mediated down-regulation of CDK1, also suggest a novel strategy for prevention of TNBC in the future.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Células MDA-MB-231 , Regulación hacia Abajo , Línea Celular Tumoral , Doxorrubicina/farmacología , Autofagia , Apoptosis , Proliferación Celular , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/farmacología
3.
Int Immunopharmacol ; 140: 112825, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39079347

RESUMEN

BACKGROUND: Exosomes derived from endometrial regenerative cells (ERC-Exos) can inherit the immunomodulatory function from ERCs, however, whether ERC-Exos exhibit such effect on inflammatory bowel diseases with mucosal immune dysregulation has not been explored. Insulin-like growth factor-Ⅱ (IGF2) is considered to possess the potential to induce an anti-inflammatory phenotype in immune cells. In this study, the contribution of IGF2 in mediating the protective efficacy of ERC-Exos on colitis was investigated. METHODS: Lentiviral transfection was employed to obtain IGF2-specific knockout ERC-Exos (IGF2-/--ERC-Exos). Experimental colitis mice induced by dextran sulfate sodium (DSS) were divided into the phosphate-buffered saline (untreated), ERC-Exos-treated and IGF2-/--ERC-Exos-treated groups. Colonic histopathological analysis and intestinal barrier function were explored. The infiltration of CD4+ T cells and dendritic cells (DCs) were analyzed by immunofluorescence staining and flow cytometry. The maturation and function of bone marrow-derived dendritic cells (BMDCs) in different exosome administrations were evaluated by flow cytometry, ELISA and the coculture system, respectively. RESULTS: Compared with the untreated group, ERC-Exos treatment significantly attenuated DSS-induced weight loss, bloody stools, shortened colon length, pathological damage, as well as repaired the weakened intestinal mucosal barrier, including promoting the goblet cells retention, restoring the intestinal barrier integrity and enhancing the expression of tight junction proteins, while the protective effect of exosomes was impaired with the knockout of IGF2 in ERC-Exos. Additionally, IGF2-expressing ERC-Exos decreased the proportions of Th1 and Th17, increased the proportions of Treg, as well as attenuated DC infiltration and maturation in mesenteric lymph nodes and lamina propria of the colitis mice. ERC-Exos were also observed to be phagocytosed by BMDCs and IGF2 is responsible for the modulating effect of ERC-Exos on BMDCs in vitro. CONCLUSIONS: Exosomes derived from ERCs can exert a therapeutic effect on experimental colitis with remarkable alleviation of the intestinal barrier damage and the abnormal mucosal immune responses. We emphasized that IGF2 plays a critical role for ERC-Exos mediated immunomodulatory function and protection against colitis.


Asunto(s)
Colitis , Sulfato de Dextran , Endometrio , Exosomas , Factor II del Crecimiento Similar a la Insulina , Animales , Femenino , Humanos , Ratones , Células Cultivadas , Colitis/inducido químicamente , Colitis/inmunología , Colitis/terapia , Colon/patología , Colon/inmunología , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Endometrio/inmunología , Endometrio/patología , Exosomas/metabolismo , Exosomas/trasplante , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Regeneración
4.
JHEP Rep ; 6(5): 101018, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38601478

RESUMEN

Background & Aims: A high human cytomegalovirus (HCMV) infection rate accompanied by an increased level of bile duct damage is observed in the perinatal period. The possible mechanism was investigated. Methods: A total of 1,120 HCMV-positive and 9,297 HCMV-negative children were recruited, and depending on age, their liver biochemistry profile was compared. Fetal and infant biliary epithelial cells (F-BECs and I-BECs, respectively) were infected with HCMV, and the differences in cells were revealed by proteomic analysis. Protein-protein interactions were examined by coimmunoprecipitation and mass spectrometry analyses. A murine cytomegalovirus (MCMV) infection model was established to assess treatment effects. Results: Perinatal HCMV infection significantly increased the level of bile duct damage. Neonatal BALB/c mice inoculated with MCMV showed obvious inflammation in the portal area with an abnormal bile duct structure. Proteomics analysis showed higher CD14 expression in F-BECs than in I-BECs. CD14 siRNA administration hindered HCMV infection, and CD14-knockout mice showed lower MCMV-induced bile duct damage. HCMV infection upregulated CD55 and poly ADP-ribose polymerase-1 (PARP-1) expression in F-BECs. Coimmunoprecipitation and mass spectrometry analyses revealed formation of the CD14-CD55 complex. siRNA-mediated inhibition of CD55 expression reduced sCD14-promoted HCMV replication in F-BECs. In MCMV-infected mice, anti-mouse CD14 antibody and PARP-1 inhibitor treatment diminished cell death, ameliorated bile duct damage, and reduced mortality. Conclusions: CD14 facilitates perinatal HCMV infection in BECs via CD55, and PARP-1-mediated cell death was detected in perinatal cytomegalovirus-infected BECs. These results provide new insight into the treatment of perinatal HCMV infection with bile duct damage. Impact and implications: Perinatal human cytomegalovirus (HCMV) infection is associated with bile duct damage, but the underlying mechanism is still unknown. We discovered that CD14 expression is increased in biliary epithelial cells during perinatal HCMV infection and facilitates viral entry through CD55. We also detected PARP-1-mediated cell death in perinatal HCMV-infected biliary epithelial cells. We showed that blocking CD14 or inhibiting PARP-1 reduced bile duct damage and mortality in a mouse model of murine cytomegalovirus infection. Our findings provide a new insight into therapeutic strategies for perinatal HCMV infection.

5.
Front Oncol ; 12: 956190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387221

RESUMEN

Gastric cancer (GC) is one of the most common tumors worldwide, and cisplatin is a standard chemotherapeutic reagent for GC treatment. However, chemoresistance is an inherent challenge which limits its application and effectiveness in clinic. This study aims to investigate the mechanism of metformin-induced cisplatin resistance in GC. Intriguingly, the upregulation of mitophagy markers, mitochondrial fission, autophagy and mitophagosome were observed in SGC-7901/DDP cells compared to those in the SGC-7901 cells. Treatment with metformin significantly increased mitochondrial fission and mitophagy in both AGS and SGC-7901 cells, resulting in decreased ATP production, which unexpectedly protected GC cells against the cytotoxicity of cisplatin. In contrast, application of Chloroquine and 3-methyladenine, two inhibitors of autophagy, significantly alleviated the protective effect of metformin on SGC-7901 and AGS cells against cytotoxicity of cisplatin. Moreover, metformin also stimulated the phosphorylation of AMPK (Thr172) and increased the expression of mitophagy markers including Parkin and PINK1 in the AMPK signaling-dependent manner. Consistently, the cell viability and cell apoptosis assay showed that metformin-induced cisplatin resistance was prevented by knockdown of AMPKα1. Taken together, all data in this study indicate that metformin induced AMPK activation and PINK1/Parkin dependent mitophagy, which may contribute to the progression of cisplatin resistance in GC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA