Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 51(9): e50, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36938898

RESUMEN

Genetic screening based on the clustered regularly interspaced palindromic repeat (CRISPR) system has been indicated to be a powerful tool for identifying regulatory genes or cis-elements. However, when applying CRISPR screens to pinpoint functional elements at particular loci, a large number of guide RNA (gRNA) spacers may be required to achieve saturated coverage. Here, we present a controlled template-dependent elongation (CTDE) method relying on reversible terminators to synthesize gRNA libraries with genomic regions of interest. By applying this approach to H3K4me3 chromatin immunoprecipitation (ChIP)-derived DNA of mammalian cells, mega-sized gRNA libraries were synthesized in a tissue-specific manner, with which we conducted screening experiments to annotate essential sites for cell proliferation. Additionally, we confirmed that an essential site within the intron of LINC00339 regulates its own mRNA and that LINC00339 is a novel regulator of the cell cycle that maintains HepG2 proliferation. The CTDE method has the potential to be automated with high efficiency at low cost, and will be widely used to identify functional elements in mammalian genomes.


Asunto(s)
Biblioteca de Genes , Genoma , Histonas , Mamíferos , ARN Guía de Sistemas CRISPR-Cas , Animales , Humanos , Proliferación Celular , Inmunoprecipitación de Cromatina , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas , ADN/genética , Genoma/genética , Genómica , Células Hep G2 , Histonas/genética , Mamíferos/genética , Especificidad de Órganos , Ciclo Celular/genética , Automatización
2.
Free Radic Biol Med ; 211: 47-62, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043870

RESUMEN

The suppression of tumor proliferation via cellular senescence has emerged as a promising approach for anti-tumor therapy. Tumor necrosis factor receptor-associated factor 2 (TRAF2), an adaptor protein involved in the NF-κB signaling pathway and reactive oxygen species (ROS) production, has been implicated in hepatocellular carcinoma (HCC) proliferation. However, little is currently known about whether TRAF2 promotes HCC development by inhibiting cellular senescence. Replicative senescence model and IR-induced mouse model demonstrated that TRAF2 expression was decrease in senescence cells or liver tissues. Depletion of TRAF2 could inhibit proliferation and arrest the cell cycle via activating p53/p21WAF1 and p16INK4a/pRb signaling pathways in HCC cells and eventually lead to cellular senescence. Mechanistically, TRAF2 deficiency increased the expression of mitochondrial protein reactive oxygen species modulator 1 (ROMO1) and subsequently activated the NAD+/SIRT3/SOD2 pathway to promote the production of ROS and cause mitochondrial dysfunction, which eventually contributed to DNA damage response (DDR). Our findings demonstrate that TRAF2 deficiency inhibits the proliferation of HCC by promoting senescence. Therefore, targeting TRAF2 through various approaches holds therapeutic potential for treating HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuina 3 , Animales , Ratones , Carcinoma Hepatocelular/patología , Senescencia Celular/genética , Neoplasias Hepáticas/patología , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Factor 2 Asociado a Receptor de TNF/genética
3.
Int Immunopharmacol ; 110: 109036, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35850053

RESUMEN

BACKGROUND: Acetaminophen (APAP) overdose can cause severe liver injury and APAP-induced liver injury (AILI) is one of the leading causes of acute liver failure (ALF). Bruton's tyrosine kinase (BTK) is a key tyrosine kinase in immune responses, which plays an important role in many inflammatory diseases. However, its effect on AILI is still not clear. Here, we aimed to assess the effect of BTK on AILI and explore its underlying mechanism. METHODS: In our study, western blot and immunohistochemistry were used to detect the expression of BTK in AILI. The C57BL/6 mice were used to check the protective effect of BTK inhibition on AILI and the activation of BTK was confirmed in mice macrophages treated with APAP. Immunofluorescence, immunohistochemistry, oxygen consumption rate (OCR) detection, polymerase chain reaction (PCR), flow cytometry and western blot were used to determine the role of BTK in mitochondrial dynamics and function of macrophages and the underlying mechanisms in AILI. RESULTS: Our results showed that BTK upregulated in AILI. BTK inhibition protected mice from AILI and BTK was activated in mice macrophages in response to APAP. Mechanically, BTK inhibition promoted mitochondrial fusion and restored mitochondrial function through phospholipase C gamma 2 (PLCγ2)-reactive oxygen species (ROS)-Optic Atrophy 1(OPA1) pathway in macrophages and finally suppressed the release of proinflammatory cytokines. CONCLUSIONS: In conclusion, we found that BTK inhibition protected mice from AILI by restoring the mitochondrial function of macrophages through the improvement of the mitochondrial dynamic imbalance via PLCγ2-ROS-OPA1 signaling pathway, which indicated that BTK might be a potential therapeutic target of AILI.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Acetaminofén/farmacología , Agammaglobulinemia Tirosina Quinasa/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Hígado , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Fosfolipasa C gamma/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
iScience ; 24(9): 103014, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34522857

RESUMEN

Therapeutic and diagnostic efficacies of small biomolecules and chemical compounds are hampered by suboptimal pharmacokinetics. Here, we developed a repertoire of robust and high-affinity antihuman serum albumin nanobodies (NbHSA) that can be readily fused to small biologics for half-life extension. We characterized the thermostability, binding kinetics, and cross-species reactivity of NbHSAs, mapped their epitopes, and structurally resolved a tetrameric HSA-Nb complex. We parallelly determined the half-lives of a cohort of selected NbHSAs in an HSA mouse model by quantitative proteomics. Compared to short-lived control nanobodies, the half-lives of NbHSAs were drastically prolonged by 771-fold. NbHSAs have distinct and diverse pharmacokinetics, positively correlating with their albumin binding affinities at the endosomal pH. We then generated stable and highly bioactive NbHSA-cytokine fusion constructs "Duraleukin" and demonstrated Duraleukin's high preclinical efficacy for cancer treatment in a melanoma model. This high-quality and versatile Nb toolkit will help tailor drug half-life to specific medical needs.

5.
bioRxiv ; 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32869034

RESUMEN

The outbreak of COVID-19 has severely impacted global health and the economy. Cost-effective, highly efficacious therapeutics are urgently needed. Here, we used camelid immunization and proteomics to identify a large repertoire of highly potent neutralizing nanobodies (Nbs) to the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD). We discovered multiple elite Nbs with picomolar to femtomolar affinities that inhibit viral infection at sub-ng/ml concentration, more potent than some of the best human neutralizing antibodies. We determined a crystal structure of such an elite neutralizing Nb in complex with RBD. Structural proteomics and integrative modeling revealed multiple distinct and non-overlapping epitopes and indicated an array of potential neutralization mechanisms. Structural characterization facilitated the bioengineering of novel multivalent Nb constructs into multi-epitope cocktails that achieved ultrahigh neutralization potency (IC50s as low as 0.058 ng/ml) and may prevent mutational escape. These thermostable Nbs can be rapidly produced in bulk from microbes and resist lyophilization, and aerosolization. These promising agents are readily translated into efficient, cost-effective, and convenient therapeutics to help end this once-in-a-century health crisis.

6.
Science ; 370(6523): 1479-1484, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33154108

RESUMEN

Cost-effective, efficacious therapeutics are urgently needed to combat the COVID-19 pandemic. In this study, we used camelid immunization and proteomics to identify a large repertoire of highly potent neutralizing nanobodies (Nbs) to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor binding domain (RBD). We discovered Nbs with picomolar to femtomolar affinities that inhibit viral infection at concentrations below the nanograms-per-milliliter level, and we determined a structure of one of the most potent Nbs in complex with the RBD. Structural proteomics and integrative modeling revealed multiple distinct and nonoverlapping epitopes and indicated an array of potential neutralization mechanisms. We bioengineered multivalent Nb constructs that achieved ultrahigh neutralization potency (half-maximal inhibitory concentration as low as 0.058 ng/ml) and may prevent mutational escape. These thermostable Nbs can be rapidly produced in bulk from microbes and resist lyophilization and aerosolization.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Afinidad de Anticuerpos , COVID-19/terapia , Camélidos del Nuevo Mundo , Escherichia coli , Humanos , Pruebas de Neutralización , Unión Proteica , Dominios Proteicos , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética
7.
Genome Biol ; 19(1): 163, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333049

RESUMEN

Current single-cell RNA-seq approaches are hindered by preamplification bias, loss of strand of origin information, and the inability to observe small-RNA and mRNA dual transcriptomes. Here, we introduce a single-cell holo-transcriptome sequencing (Holo-Seq) that overcomes all three hurdles. Holo-Seq has the same quantitative accuracy and uniform coverage with a complete strand of origin information as bulk RNA-seq. Most importantly, Holo-Seq can simultaneously observe small RNAs and mRNAs in a single cell. Furthermore, we acquire small RNA and mRNA dual transcriptomes of 32 human hepatocellular carcinoma single cells, which display the genome-wide super-enhancer activity and hepatic neoplasm kinetics of these cells.


Asunto(s)
Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Transcriptoma/genética , Animales , Células HEK293 , Humanos , Intrones/genética , Células MCF-7 , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , ARN sin Sentido/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA