Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Transl Med ; 19(1): 261, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34130714

RESUMEN

BACKGROUND: Activator protein-1 (AP1), a c-Fos-JUN transcription factor complex, mediates many cytobiological processes. c-Fos has been implicated in immunoglobulin (Ig)E activation of mast cells (MCs) via high-affinity IgE Fc receptor (FcεRI) binding. This study examined c-Fos involvement in MC activation and tested the effects of the c-Fos/AP1 inhibitor T-5224 on MCs activation and allergic responses. METHODS: In vitro studies were conducted with two MC model systems: rat basophilic leukemia cells (RBLs) and mouse bone marrow derived mast cells (BMMCs). MC degranulation and effector functions were examined with ß-hexosaminidase release and cytokine secretion assays. c-Fos/AP1 was inhibited with T-5224. c-Fos activity was suppressed with short hairpin RNA targeting c-Fos (shFos). In vivo immune responses were evaluated in passive cutaneous anaphylaxis (PCA) and ovalbumin-induced active systemic anaphylaxis (ASA) models, as well as in an oxazolone (OXA)-induced model of atopic dermatitis, a common allergic disease. RESULTS: c-Fos expression was elevated transcriptionally and translationally in IgE-stimulated MCs. c-Fos binding of the Egr1 (early growth response 1) promoter upregulated Egr1 transcription, leading to production of interleukin (IL)4. T-5224 reduced FcεRI-mediated MC degranulation (evidenced by ß-hexosaminidase activity and histamine levels) and diminished EGR1 and IL4 expression. T-5224 attenuated IgE-mediated allergic responses in PCA and ASA models, and it suppressed MC-mediated atopic dermatitis in mice. CONCLUSION: IgE binding can activate MCs via a c-Fos/Egr1/IL-4 axis. T-5224 suppresses MC activation in vitro and in vivo and thus represents a promising potential strategy for targeting MC activation to treat allergic diseases.


Asunto(s)
Anafilaxia , Mastocitos , Animales , Degranulación de la Célula , Proteína 1 de la Respuesta de Crecimiento Precoz , Inmunoglobulina E , Inflamación , Interleucina-4 , Ratones , Ratas , Factor de Transcripción AP-1
2.
Food Funct ; 14(6): 2857-2869, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36880662

RESUMEN

Immunoglobulin (Ig)E-associated mast cell (MC) activation triggers pro-inflammatory signals that underlie type I allergic diseases. Here, we examined the effects of the natural isoflavone formononetin (FNT) on IgE-mediated MC activation and associated mechanisms of high-affinity IgE receptor (FcεRI) signal inhibition. The effects of FNT on the mRNA expression of inflammatory factors, release of histamine and ß-hexosaminidase (ß-hex), and expression of signaling proteins and ubiquitin (Ub)-specific proteases (USPs) were analyzed in two sensitized/stimulated MC lines. FcεRIγ-USP interactions were detected by co-immunoprecipitation (IP). FNT dose-dependently inhibited ß-hex activity, histamine release, and inflammatory cytokine expression in FcεRI-activated MCs. FNT suppressed IgE-induced NF-κB and MAPK activity in MCs. The oral administration of FNT attenuated passive cutaneous anaphylaxis (PCA) reactions and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) reactions in mice. FNT reduced the FcεRIγ chain expression, via increased proteasome-mediated degradation, and induced FcεRIγ ubiquitination by inhibiting USP5 and/or USP13. FNT and USP inhibition may be useful for suppressing IgE-mediated allergic diseases.


Asunto(s)
Anafilaxia , Isoflavonas , Ratones , Animales , Receptores de IgE/genética , Receptores de IgE/metabolismo , Mastocitos , Transducción de Señal , Anafilaxia/tratamiento farmacológico , Inmunoglobulina E/metabolismo , Isoflavonas/farmacología , Isoflavonas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Degranulación de la Célula
3.
Food Funct ; 13(6): 3621-3631, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35262138

RESUMEN

Mast cells (MCs) are the main effector cells in the onset of high-affinity receptor for IgE (FcεRI)-mediated allergic diseases. The aim of this study was to test whether dihydrocoumarin (DHC), a food flavoring agent derived from Melilotus officinalis, can block IgE-induced MC activation effects and to examine the potential molecular mechanisms by which DHC affects MC activation. Rat basophilic leukemia cells (RBLs) and mouse bone marrow-derived mast cells (BMMCs) were sensitized with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated with DNP-human serum albumin antigen, and treated with DHC. Western blot analyses were performed to detect the expression of signaling proteins. Murine IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) models were used to examine DHC effects on allergic reactions in vivo. DHC inhibited MC degranulation, as evidenced by reduced ß-hexosaminidase activity and histamine levels, and reduced morphological changes associated with MC activation, namely cellular elongation and F-actin reorganization. DHC inhibited the activation of MAPK, NF-κB, and AP-1 pathways in IgE-activated MCs. Additionally, DHC could attenuate IgE/Ag-induced allergic reactions (dye extravasation and ear thickening) in PCA as well as OVA challenge-induced reactions in ASA mice (body temperature, serum histamine and IL-4 secretion changes). In conclusion, DHC suppressed MC activation. DHC may represent a new MC-suppressing treatment strategy for the treatment of IgE-mediated allergic diseases.


Asunto(s)
Anafilaxia , Mastocitos , Anafilaxia/tratamiento farmacológico , Animales , Degranulación de la Célula , Aromatizantes/metabolismo , Inmunoglobulina E/metabolismo , Inflamación/metabolismo , Ratones , Anafilaxis Cutánea Pasiva , Ratas
4.
Biochem Pharmacol ; 192: 114722, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34384759

RESUMEN

Mast cells (MCs) initiate and maintain allergic inflammation. Upon being stimulated with immunoglobulin (Ig)E and antigen (Ag), MCs exhibit FcεRI (high-affinity IgE) receptor-mediated degranulation, cytokine secretion, and increased focal adhesion kinase (FAK) activity. The aims of this study were to examine mechanisms of FAK regulation in IgE-mediated MC activation and the effects of FAK inhibition on MC-mediated allergic responses. FAK activity was manipulated with short hairpin RNA (shRNA) knockdown, FAK overexpression, and the FAK inhibitor PF-431396 (PF). Gene expression and kinase activation were analyzed with quantitative molecular biology assays. PF effects were tested in the passive cutaneous anaphylaxis (PCA), active systemic anaphylaxis (ASA), and allergic conjunctivitis (AC) mouse models. Our results showed that FAK overexpression increased IgE-mediated degranulation and reduced the dexamethasone inhibitory effect on MCs activation. The FAK inhibitor PF diminished MC release of ß-hexosaminidase (ß-hex), histamine, and inflammatory cytokines, via a mechanism that involves MAPK and NF-κB signaling pathways. CaMKII was identified as a robust FAK-associating protein. Inhibition of CaMKII activation by KN-93 suppressed FAK activity and its downstream pathway. PF attenuated inflammatory responses in our PCA and ASA models, and relieved signs of allergic disease in AC model mice. In conclusions, MC degranulation and production of inflammatory mediators in allergic disease may be consequent to FcεRI crosslinking inducing CaMKII-mediated activation of FAK activity. FAK inhibition may represent a new MC-suppressing treatment strategy for the treatment of allergic diseases.


Asunto(s)
Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/metabolismo , Hipersensibilidad/metabolismo , Inmunoglobulina E/toxicidad , Mastocitos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Quinasa 1 de Adhesión Focal/inmunología , Hipersensibilidad/tratamiento farmacológico , Hipersensibilidad/inmunología , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Inhibidores de Proteínas Quinasas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA