Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(8): 4174-4185, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38359328

RESUMEN

Emulsification flooding can effectively enhance crude oil recovery to solve the problem of petroleum shortage. In this work, a modified Janus Nano Calcium carbonate (JNC-12) with a particle size of 30-150 nm was synthesized, and an in situ emulsification nanofluid (ISEN) was prepared with JNC-12 and alkyl polyglycoside (APG). Scanning electron microscope (SEM) showed that the dispersion of JNC-12 in air or APG solution was better than Nano Calcium carbonate (Nano CaCO3). The emulsification properties, interfacial tension, and expansion modulus of ISEN were studied, and the result showed that with the increase in salinity, the emulsification rate decreased, the water yield rate increased, the interfacial tension first decreased and then increased, and the expansion modulus first increased and then decreased. With the increase in temperature, the emulsification rate, emulsion viscosity, and interfacial tension decreased. With the increased oil-water volume, the water yield rate and the emulsion viscosity increased. With increase in the concentration of JNC-12, the water yield rate, the emulsion viscosity, and the interfacial tension decreased but the expansion modulus increased. The emulsion generated by emulsifying ISEN with crude oil was an O/W emulsion, the crude oil viscosity was 4-10 times that of emulsion, and the average particle size of emulsion was 1.107 µm. The addition of ISEN caused the decrease in interfacial tension of oil-water to 0.01-0.1 mN/m. The wettability alteration experiment found that ISEN could change the lipophilic rock to hydrophilic rock. Finally, the core displacement experiments showed that compared with the first water flooding, the oil recovery of the second water flooding after ISEN flooding enhanced by 17.6%. This research has important guiding significance for in situ emulsified nanofluid flooding to enhance oil recovery.

2.
J Nanobiotechnology ; 21(1): 281, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598162

RESUMEN

BACKGROUND: Iron sulfide nanomaterials have been successfully employed as therapeutic agents for bacterial infection therapy and catalytic-ferroptosis synergistic tumor therapy due to their unique structures, physiochemical properties, and biocompatibility. However, biomedical research and understanding of the biological functions of iron sulfides are insufficient, and how iron sulfide nanomaterials affect reactive oxygen species (ROS) in diseases remains unknown. Acute kidney injury (AKI) is associated with high levels of ROS, and therefore nanomedicine-mediated antioxidant therapy has emerged as a novel strategy for its alleviation. RESULTS: Here, mackinawite nanozymes were synthesized from glutathione (GSH) and iron ions (Fe3+) (denoted as GFeSNs) using a hydrothermal method, and then evaluated as ROS scavengers for ROS-related AKI treatment. GFeSNs showed broad-spectrum ROS scavenging ability through synergistic interactions of multiple enzymes-like and hydrogen polysulfide-releasing properties. Furthermore, both in vitro and in vivo experiments demonstrated that GFeSNs exhibited outstanding cytoprotective effects against ROS-induced damage at extremely low doses and significantly improved treatment outcomes in AKI. CONCLUSIONS: Given the synergetic antioxidant properties and high biocompatibility, GFeSNs exhibit great potential for the treatment of AKI and other ROS-associated diseases.


Asunto(s)
Lesión Renal Aguda , Antioxidantes , Animales , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Lesión Renal Aguda/tratamiento farmacológico , Hierro , Peces , Glutatión
3.
ACS Omega ; 9(30): 33111-33118, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100293

RESUMEN

The technology of CO2-enhanced gas recovery (CO2-EGR) plays a pivotal role in the CCUS (Carbon Capture, Utilization, and Storage) industry, which helps to achieve a win-win situation of economic benefit and environmental benefit for gas fields. Shale gas reservoirs, with their unique geological and surface engineering advantages, are one of the most promising options for CCUS implementation. Focusing on shale formations within the mid-deep blocks of the Sichuan Basin, this study conducted competitive adsorption experiments using multicomponent gases. Through physical simulations and single-well numerical modeling, factors such as injection volume, timing, shut-in time, and huff-n-puff rounds were examined for their impact on recovery. The results show that the higher the CO2 content in the injected medium, the more pronounced advantage in gas adsorption on shale surfaces. Optimal performance was achieved with a CO2 content in the injection medium of 80% to 100%, an injection volume of 0.2-0.3 PV, a shut-in time exceeding 6 h, and a relatively delayed injection timing. The recovery in the first round of huff-n-puff was increased by 24.2% to 47.8%, which gave a full play to the role of huff-n-puff and achieved favorable benefits. Based on the middle-deep geological parameters, a single-well numerical simulation was established, which demonstrates that single-well EUR (estimated ultimate recovery) can be increased by 14.2% to 19.8% compared to gas wells without CO2 injection. This study provides essential guidance for the enhanced recovery in shale gas reservoirs through CO2 huff-n-puff.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA