Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 581
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(17): 5351-5360, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634773

RESUMEN

Ultrasensitive and reliable conductive hydrogels are significant in the construction of human-machine twinning systems. However, in extremely cold environments, freezing severely limits the application of hydrogel-based sensors. Herein, building on biomimetics, a zwitterionic hydrogel was elaborated for human-machine interaction employing multichemical bonding synergies and experimental signal analyses. The covalent bonds, hydrogen bonds, and electrostatic interactions construct a dense double network structure favorable for stress dispersion and hydrogen bond regeneration. In particular, zwitterions and ionic conductors maintained excellent strain response (99 ms) and electrical sensitivity (gauge factor = 14.52) in the dense hydrogel structure while immobilizing water molecules to enhance the weather resistance (-68 °C). Inspired by the high sensitivity, zwitterionic hydrogel-based strain sensors and remote-control gloves were designed by analyzing the experimental signals, demonstrating promising potential applications within specialized flexible materials and human-machine symbiotic systems.


Asunto(s)
Hidrogeles , Hidrogeles/química , Humanos , Dispositivos Electrónicos Vestibles , Congelación , Enlace de Hidrógeno , Electricidad Estática , Conductividad Eléctrica
2.
J Cell Mol Med ; 28(7): e18154, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494840

RESUMEN

Dopamine (DA) is a neurotransmitter synthesized in the human body that acts on multiple organs throughout the body, reaching them through the blood circulation. Neurotransmitters are special molecules that act as messengers by binding to receptors at chemical synapses between neurons. As ligands, they mainly bind to corresponding receptors on central or peripheral tissue cells. Signalling through chemical synapses is involved in regulating the activities of various body systems. Lack of DA or a decrease in DA levels in the brain can lead to serious diseases such as Parkinson's disease, schizophrenia, addiction and attention deficit disorder. It is widely recognized that DA is closely related to neurological diseases. As research on the roles of brain-gut peptides in human physiology and pathology has deepened in recent years, the regulatory role of neurotransmitters in digestive system diseases has gradually attracted researchers' attention, and research on DA has expanded to the field of digestive system diseases. This review mainly elaborates on the research progress on the roles of DA and DRs related to digestive system diseases. Starting from the biochemical and pharmacological properties of DA and DRs, it discusses the therapeutic value of DA- and DR-related drugs for digestive system diseases.


Asunto(s)
Enfermedades del Sistema Digestivo , Enfermedad de Parkinson , Humanos , Dopamina/metabolismo , Receptores Dopaminérgicos , Enfermedad de Parkinson/metabolismo , Neurotransmisores
3.
Curr Issues Mol Biol ; 46(2): 1020-1046, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38392183

RESUMEN

Post-translational modifications (PTMs) play a crucial role in protein functionality and the control of various cellular processes and secondary metabolites (SMs) in fungi. Lysine succinylation (Ksuc) is an emerging protein PTM characterized by the addition of a succinyl group to a lysine residue, which induces substantial alteration in the chemical and structural properties of the affected protein. This chemical alteration is reversible, dynamic in nature, and evolutionarily conserved. Recent investigations of numerous proteins that undergo significant succinylation have underscored the potential significance of Ksuc in various biological processes, encompassing normal physiological functions and the development of certain pathological processes and metabolites. This review aims to elucidate the molecular mechanisms underlying Ksuc and its diverse functions in fungi. Both conventional investigation techniques and predictive tools for identifying Ksuc sites were also considered. A more profound comprehension of Ksuc and its impact on the biology of fungi have the potential to unveil new insights into post-translational modification and may pave the way for innovative approaches that can be applied across various clinical contexts in the management of mycotoxins.

4.
Lancet ; 401(10380): 917-927, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36842439

RESUMEN

BACKGROUND: Reirradiation in standard fractionation for locally advanced recurrent nasopharyngeal carcinoma after a previous course of high-dose radiotherapy is often associated with substantial late toxicity, negating its overall benefit. We therefore aimed to investigate the efficacy and safety of hyperfractionation compared with standard fractionation in intensity-modulated radiotherapy. METHODS: This multicentre, randomised, open-label, phase 3 trial was done in three centres in Guangzhou, China. Eligible patients were aged 18-65 years with histopathologically confirmed undifferentiated or differentiated, non-keratinising, advanced locally recurrent nasopharyngeal carcinoma. Participants were randomly assigned (1:1) to either receive hyperfractionation (65 Gy in 54 fractions, given twice daily with an interfractional time interval of at least 6 h) or standard fractionation (60 Gy in 27 fractions, given once a day). Intensity-modulated radiotherapy was used in both groups. A computer program generated the assignment sequence and randomisation was stratified by treatment centre, recurrent tumour stage (T2-T3 vs T4), and recurrent nodal stage (N0 vs N1-N2), determined at the time of randomisation. The two primary endpoints were the incidence of severe late complications defined as the incidence of grade 3 or worse late radiation-induced complications occurring 3 months after the completion of radiotherapy until the latest follow-up in the safety population, and overall survival defined as the time interval from randomisation to death due to any cause in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT02456506. FINDINGS: Between July 10, 2015, and Dec 23, 2019, 178 patients were screened for eligibility, 144 of whom were enrolled and randomly assigned to hyperfractionation or standard fractionation (n=72 in each group). 35 (24%) participants were women and 109 (76%) were men. After a median follow-up of 45·0 months (IQR 37·3-53·3), there was a significantly lower incidence of grade 3 or worse late radiation-induced toxicity in the hyperfractionation group (23 [34%] of 68 patients) versus the standard fractionation group (39 [57%] of 68 patients; between-group difference -23% [95% CI -39 to -7]; p=0·023). Patients in the hyperfractionation group had better 3-year overall survival than those in the standard fractionation group (74·6% [95% CI 64·4 to 84·8] vs 55·0% [43·4 to 66·6]; hazard ratio for death 0·54 [95% CI 0·33 to 0·88]; p=0·014). There were fewer grade 5 late complications in the hyperfractionation group (five [7%] nasal haemorrhage) than in the standard fractionation group (16 [24%], including two [3%] nasopharyngeal necrosis, 11 [16%] nasal haemorrhage, and three [4%] temporal lobe necrosis). INTERPRETATION: Hyperfractionated intensity-modulated radiotherapy could significantly decrease the rate of severe late complications and improve overall survival among patients with locally advanced recurrent nasopharyngeal carcinoma. Our findings suggest that hyperfractionated intensity-modulated radiotherapy could be used as the standard of care for these patients. FUNDING: Key-Area Research and Development of Guangdong Province, the National Natural Science Foundation of China, the Special Support Program for High-level Talents in Sun Yat-sen University Cancer Center, the Guangzhou Science and Technology Plan Project, and the National Ten Thousand Talents Program Science and Technology Innovation Leading Talents, Sun Yat-Sen University Clinical Research 5010 Program.


Asunto(s)
Neoplasias Nasofaríngeas , Radioterapia de Intensidad Modulada , Masculino , Humanos , Femenino , Carcinoma Nasofaríngeo/radioterapia , Radioterapia de Intensidad Modulada/efectos adversos , Recurrencia Local de Neoplasia/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Hemorragia
5.
Langmuir ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38961810

RESUMEN

Surface nanobubbles forming on hydrophobic surfaces in water present an exciting opportunity as potential agents of top-down and bottom-up nanopatterning. The formation and characteristics of surface nanobubbles are strongly influenced by the physical and chemical properties of the substrate. In this study, focused ion beam (FIB) milling is used for the first time to spatially control the nucleation of surface nanobubbles with 75 nm precision. The spontaneous formation of nanobubbles on alternating lines of a self-assembled monolayer (octadecyltrichlorosilane) patterned by FIB is detected by atomic force microscopy. The effect of chemical vs topographical surface heterogeneity on the formation of nanobubbles is investigated by comparing samples with OTS coating applied pre- vs post-FIB patterning. The results confirm that nanoscale FIB-based patterning can effectively control surface nanobubble position by means of chemical heterogeneity. The effect of FIB milling on nanobubble morphology and properties, including contact angle and gas oversaturation, is also reported. Molecular dynamics simulations provide further insight into the effects of FIB amorphization on surface nanobubble formation. Combined experimental and simulation investigations offer insights to guide future nanobubble-based patterning using FIB milling.

6.
Biomacromolecules ; 25(1): 315-327, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38100369

RESUMEN

Glycopolymer-supported silver nanoparticles (AgNPs) have demonstrated a promising alternative to antibiotics for the treatment of multidrug-resistant bacteria-infected diseases. In this contribution, we report a class of biohybrid glycopolymersome-supported AgNPs, which are capable of effectively killing multidrug-resistant bacteria and disrupting related biofilms. First of all, glycopolymersomes with controllable structures were massively fabricated through reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly (PISA) in an aqueous solution driven by complementary hydrogen bonding interaction between the pyridine and amide groups of N-(2-methylpyridine)-acrylamide (MPA) monomers. Subsequently, Ag+ captured by glycopolymersomes through the coordination between pyridine-N and Ag+ was reduced into AgNPs stabilized by glycopolymersomes upon addition of the NaBH4 reducing agent, leading to the formation of the glycopolymersome@AgNPs biohybrid. As a result, they showed a wide-spectrum and enhanced removal of multidrug-resistant bacteria and biofilms compared to naked AgNPs due to the easier adhesion onto the bacterial surface and diffusion into biofilms through the specific protein-carbohydrate recognition. Moreover, the in vivo results revealed that the obtained biohybrid glycopolymersomes not only demonstrated an effective treatment for inhibiting the cariogenic bacteria but also were able to repair the demineralization of caries via accumulating Ca2+ through the recognition between carbohydrates and Ca2+. Furthermore, glycopolymersomes@AgNPs showed quite low in vitro hemolysis and cytotoxicity and almost negligible acute toxicity in vivo. Overall, this type of biohybrid glycopolymersome@AgNPs nanomaterial provides a new avenue for enhanced antibacterial and antibiofilm activities and the effective treatment of oral microbial-infected diseases.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas , Bacterias , Carbohidratos/farmacología , Piridinas , Pruebas de Sensibilidad Microbiana
7.
Eur J Pediatr ; 183(4): 1891-1900, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38319404

RESUMEN

Retinopathy of prematurity (ROP) is an important cause of avoidable childhood visual impairment, and the increase in number and survival of premature infants may inflate its burden globally. We aimed to comprehensively assess the trends and inequalities in the burden of ROP-related visual impairment and to identify improvement gaps to facilitate appropriate actions in neonatal care systems. We obtained ROP data from the Global Burden of Disease 2019 study. We employed joinpoint regression analysis to assess the trends of the burden of ROP-related visual impairment, measured by age-standardised prevalence rates, health equity analysis methods to evaluate cross-country burden inequalities, and data envelopment and stochastic frontier analyses to identify improvement gaps based on the development status, i.e., sociodemographic index (SDI). Between 1990 and 2019, the age-standardised prevalence rates of ROP-related visual impairment significantly increased worldwide (average annual percentage change: 0.23 [95% confidence interval, 0.21-0.26] among males and 0.26 [0.25-0.27] among females), primarily in developed regions. Although significant SDI-related cross-country inequalities were identified, these reduced over time (slope index of inequality: -57.74 [-66.22 to -49.25] in 1990 to -29.68 [-38.39 to -20.97] in 2019; health concentration index: -0.11 [-0.13 to -0.09] in 1990 to -0.07 [-0.09 to -0.06] in 2019). Notably, some less-developed countries exhibited superior performance despite limited resources, whereas others with a higher SDI delivered lagging performance.  Conclusion: The global burden of ROP-related visual impairment has steadily increased between 1990 and 2019, with disproportionate burden concentration among less-developed countries, requiring appropriate preventive and intervention measures. What is Known: • Retinopathy of prematurity (ROP) is an important cause of avoidable childhood visual impairment. • The prevalence of ROP is anticipated to increase due to the growing number of extremely premature infants. What is New: • The prevalence of ROP-related visual impairment has increased worldwide, primarily in developed regions, with declining but persisting cross-country inequalities. • The increasing burden of ROP-related visual impairment should be considered as part of global and national health agendas, requiring interventions with proven efficacy.


Asunto(s)
Enfermedades del Recién Nacido , Retinopatía de la Prematuridad , Recién Nacido , Masculino , Lactante , Femenino , Humanos , Niño , Retinopatía de la Prematuridad/complicaciones , Retinopatía de la Prematuridad/epidemiología , Países en Desarrollo , Recien Nacido Extremadamente Prematuro , Prevalencia , Trastornos de la Visión/epidemiología , Trastornos de la Visión/etiología , Edad Gestacional
8.
Clin Oral Implants Res ; 35(4): 443-453, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38318691

RESUMEN

OBJECTIVES: This prospective clinical study aimed to evaluate the accuracy and 1-year clinical follow-up performance of dental implant placement with an autonomous dental implant robot (ADIR) system in full-arch implant surgery. MATERIALS AND METHODS: Twelve patients with edentulous arches or final dentition received 102 implants using the ADIR system. Global platform deviation, global apex deviation, and global angular deviation between the planned and actual implants were calculated after surgery. Data were statistically analyzed for factors including jaws, implant positions, patient sequences, implant systems, and implant length. Surgery duration was recorded. Patients were followed for 3 months and 1 year after surgery. Periodontal parameters, buccal bone thickness (BBT), and facial vertical bone wall peak (IP-FC) were recorded. RESULTS: Among the 102 implants, the mean (SD) global platform deviation, global apex deviation, and global angular deviation were 0.53 (0.19) mm, 0.58 (0.17) mm, and 1.83 (0.82)°, respectively. The deviation differences between the mandible and maxilla did not show statistical significance (p > .05). No statistically significant differences were found for the jaws, implant positions, patient sequences, implant systems, and implant length to the deviations (p > .05). The periodontal parameters, the BBT, and IP-FC remained stable during 1-year follow-up. CONCLUSION: The ADIR system showed excellent positional accuracy. The 1-year follow-up after full-arch implant surgery indicated that the ADIR system could achieve promising clinical performance. Additional clinical evidence is requisite to furnish guidelines for the implementation of the ADIR system in full-arch implant surgery.


Asunto(s)
Implantes Dentales , Procedimientos Quirúrgicos Robotizados , Cirugía Asistida por Computador , Humanos , Implantación Dental Endoósea , Estudios Prospectivos , Tomografía Computarizada de Haz Cónico , Diseño Asistido por Computadora , Imagenología Tridimensional
9.
Clin Oral Implants Res ; 35(3): 258-267, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38031528

RESUMEN

OBJECTIVES: This study aims at examining the correlation of intraosseous temperature change with drilling impulse data during osteotomy and establishing real-time temperature prediction models. MATERIALS AND METHODS: A combination of in vitro bovine rib model and Autonomous Dental Implant Robotic System (ADIR) was set up, in which intraosseous temperature and drilling impulse data were measured using an infrared camera and a six-axis force/torque sensor respectively. A total of 800 drills with different parameters (e.g., drill diameter, drill wear, drilling speed, and thickness of cortical bone) were experimented, along with an independent test set of 200 drills. Pearson correlation analysis was done for linear relationship. Four machining learning (ML) algorithms (e.g., support vector regression [SVR], ridge regression [RR], extreme gradient boosting [XGboost], and artificial neural network [ANN]) were run for building prediction models. RESULTS: By incorporating different parameters, it was found that lower drilling speed, smaller drill diameter, more severe wear, and thicker cortical bone were associated with higher intraosseous temperature changes and longer time exposure and were accompanied with alterations in drilling impulse data. Pearson correlation analysis further identified highly linear correlation between drilling impulse data and thermal changes. Finally, four ML prediction models were established, among which XGboost model showed the best performance with the minimum error measurements in test set. CONCLUSION: The proof-of-concept study highlighted close correlation of drilling impulse data with intraosseous temperature change during osteotomy. The ML prediction models may inspire future improvement on prevention of thermal bone injury and intelligent design of robot-assisted implant surgery.


Asunto(s)
Implantes Dentales , Procedimientos Quirúrgicos Robotizados , Robótica , Animales , Bovinos , Implantes Dentales/efectos adversos , Procedimientos Quirúrgicos Robotizados/efectos adversos , Diseño de Equipo , Osteotomía/efectos adversos , Implantación Dental Endoósea/efectos adversos , Calor
10.
BMC Musculoskelet Disord ; 25(1): 464, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877449

RESUMEN

BACKGROUND: To analyze the risk factors for the development of avascular necrosis (AVN) of the femoral head after reduction surgery in children with developmental hip dysplasia (DDH), and to establish a prediction nomogram. METHODS: The clinical data of 134 children with DDH (169 hips) treated with closure reduction or open reduction from December 2016 to December 2019 were retrospectively analyzed. Independent risk factors for AVN after DDH reduction being combined with cast external immobilization were determined by univariate analysis and multivariate logistic regression and used to generate nomograms predicting the occurrence of AVN. RESULTS: A total of 169 hip joints in 134 children met the inclusion criteria, with a mean age at surgery of 10.7 ± 4.56 months (range: 4-22 months) and a mean follow-up duration of 38.32 ± 27.00 months (range: 12-94 months). AVN developed in 42 hip joints (24.9%); univariate analysis showed that the International Hip Dysplasia Institute (IHDI) grade, preoperative development of the femoral head ossification nucleus, cartilage acetabular index, femoral head to acetabular Y-shaped cartilage distance, residual acetabular dysplasia, acetabular abduction angle exceeding 60°, and the final follow-up acetabular index (AI) were associated with the development of AVN (P < 0.05). Multivariate logistic regression analysis showed that the preoperative IHDI grade, development of the femoral head ossification nucleus, acetabular abduction angle exceeding 60°, and the final follow-up AI were independent risk factors for AVN development (P < 0.05). Internal validation of the Nomogram prediction model showed a consistency index of 0.833. CONCLUSION: Preoperative IHDI grade, preoperative development of the femoral head ossification nucleus, final AI, and acetabular abduction angle exceeding 60° are risk factors for AVN development. This study successfully constructed a Nomogram prediction model for AVN after casting surgery for DDH that can predict the occurrence of AVN after casting surgery for DDH.


Asunto(s)
Displasia del Desarrollo de la Cadera , Necrosis de la Cabeza Femoral , Nomogramas , Humanos , Masculino , Femenino , Necrosis de la Cabeza Femoral/etiología , Necrosis de la Cabeza Femoral/cirugía , Necrosis de la Cabeza Femoral/diagnóstico por imagen , Factores de Riesgo , Estudios Retrospectivos , Displasia del Desarrollo de la Cadera/cirugía , Displasia del Desarrollo de la Cadera/diagnóstico por imagen , Lactante , Cabeza Femoral/cirugía , Cabeza Femoral/diagnóstico por imagen , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Luxación Congénita de la Cadera/cirugía , Luxación Congénita de la Cadera/diagnóstico por imagen , Estudios de Seguimiento
11.
J Sci Food Agric ; 104(2): 1092-1106, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37782112

RESUMEN

BACKGROUND: Flavonoids are vital for the development of high-quality grapes and wine, and manganese deficiency decreases grape berry coloration. However, the effects and underlying mechanisms of action of manganese sulfate on grape metabolic profiles have not been adequately researched. In this study, three concentrations of manganese sulfate solutions, 0.5 µmol·L-1 (low, L), 5 µmol·L-1 (middle, M - the standard manganese concentration of Hoagland nutrient solution, control), and 1000 µmol·L-1 (high, H), were applied to the 'Cabernet Sauvignon' grapevine (Vitis vinifera L.) to explore the effect on berry composition. RESULTS: Manganese application improved manganese concentration effectively in grape organs. Furthermore, the concentrations of malvidin 3-O-(6-O-acetyl)-glucoside, malvidin 3-O-glucoside, malvidin-trans-3-O-(6-O-p-coumaryl)-glucoside, and peonidin 3-O-(6-O-acetyl)-glucoside increased significantly under H treatment. Weighted gene co-expression network analysis (WGCNA) revealed that the structural genes (VvDFR, VvUFGT, and VvOMT) of flavonoid biosynthesis were upregulated under H treatment, and their transcription levels correlated positively with malvidin- and peonidin-derived anthocyanin concentrations. CONCLUSIONS: This study suggested that manganese application regulates berry transcriptional and flavonoid metabolic profiles, providing a theoretical basis for improving the color of red grapes and wines. © 2023 Society of Chemical Industry.


Asunto(s)
Vitis , Vino , Vitis/química , Flavonoides/análisis , Transcriptoma , Manganeso/análisis , Antocianinas/análisis , Vino/análisis , Metaboloma , Glucósidos/análisis , Frutas/química
12.
Saudi Pharm J ; 32(7): 102123, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38911279

RESUMEN

Biodegradable and biocompatible biomaterials have several important applications in drug delivery. The biomaterial family known as poly(ester amide)s (PEAs) has garnered considerable interest because it exhibits the benefits of both polyester and polyamide, as well as production from readily available raw ingredients and sophisticated synthesis techniques. Specifically, α-amino acid-based PEAs (AA-PEAs) are promising carriers because of their structural flexibility, biocompatibility, and biodegradability. Herein, we summarize the latest applications of PEAs in drug delivery systems, including antitumor, gene therapy, and protein drugs, and discuss the prospects of drug delivery based on PEAs, which provides a reference for designing safe and efficient drug delivery carriers.

13.
Angew Chem Int Ed Engl ; 63(27): e202404207, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647637

RESUMEN

Alkyl borane compounds-mediated polymerizations have expanded to Lewis pair polymerization, free radical polymerization, ionic ring-opening polymerization, and polyhomologation. The bifunctional organoborane catalysts that contain the Lewis acid and ammonium or phosphonium salt in one molecule have demonstrated superior catalytic performance for ring-opening polymerization of epoxides and ring-opening copolymerization of epoxides and CO2 than their two-component analogues, i.e., the blend of organoborane and ammonium or phosphonium salt. To explore the origin of the differences of the one-component and two-component organoborane catalysts, here we conducted a systematic investigation on the catalytic performances of these two kinds of organoborane catalysts via terpolymerization of epoxide, carbon dioxide and anhydride. The resultant terpolymers produced independently by bifunctional and binary organoborane catalyst exhibited distinct microstructures, where a series of gradient polyester-polycarbonate terpolymers with varying polyester content were afforded using the bifunctional catalyst, while tapering diblock terpolymers were obtained using the binary system. The bifunctional catalyst enhances the competitiveness of CO2 insertion than anhydride, which leads to the premature incorporation of CO2 into the polymer chains and ultimately results in the formation of gradient terpolymers. DFT calculations revealed the role of electrostatic interaction and charge distribution caused by intramolecular synergistic effect for bifunctional organoborane catalyst.

14.
J Cell Mol Med ; 27(18): 2631-2642, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37638698

RESUMEN

Ion channels and transporters are ubiquitously expressed on cell membrane, which involve in a plethora of physiological process such as contraction, neurotransmission, secretion and so on. Ion channels and transporters is of great importance to maintaining membrane potential homeostasis, which is essential to absorption of nutrients in gastrointestinal tract. Most of nutrients are electrogenic and require ion channels and transporters to absorb. This review summarizes the latest research on the role of ion channels and transporters in regulating nutrient uptake such as K+ channels, Ca2+ channels and ion exchangers. Revealing the mechanism of ion channels and transporters associated with nutrient uptake will be helpful to provide new methods to diagnosis and find potential targets for diseases like diabetes, inflammatory bowel diseases, etc. Even though some of study still remain ambiguous and in early stage, we believe that ion channels and transporters will be novel therapeutic targets in the future.


Asunto(s)
Canales Iónicos , Fenómenos Fisiológicos , Transporte Biológico , Homeostasis , Nutrientes
15.
Funct Integr Genomics ; 23(3): 286, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650991

RESUMEN

BACKGROUND: Glioblastoma (GBM) is an aggressive and unstoppable malignancy. Natural killer T (NKT) cells, characterized by specific markers, play pivotal roles in many tumor-associated pathophysiological processes. Therefore, investigating the functions and complex interactions of NKT cells is great interest for exploring GBM. METHODS: We acquired a single-cell RNA-sequencing (scRNA-seq) dataset of GBM from Gene Expression Omnibus (GEO) database. The weighted correlation network analysis (WGCNA) was employed to further screen genes subpopulations. Subsequently, we integrated the GBM cohorts from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases to describe different subtypes by consensus clustering and developed a prognostic model by least absolute selection and shrinkage operator (LASSO) and multivariate Cox regression analysis. We further investigated differences in survival rates and clinical characteristics among different risk groups. Furthermore, a nomogram was developed by combining riskscore with the clinical characteristics. We investigated the abundance of immune cells in the tumor microenvironment (TME) by CIBERSORT and single sample gene set enrichment analysis (ssGSEA) algorithms. Immunotherapy efficacy assessment was done with the assistance of Tumor Immune Dysfunction and Exclusion (TIDE) and The Cancer Immunome Atlas (TCIA) databases. Real-time quantitative polymerase chain reaction (RT-qPCR) experiments and immunohistochemical profiles of tissues were utilized to validate model genes. RESULTS: We identified 945 NKT cells marker genes from scRNA-seq data. Through further screening, 107 genes were accurately identified, of which 15 were significantly correlated with prognosis. We distinguished GBM samples into two distinct subtypes and successfully developed a robust prognostic prediction model. Survival analysis indicated that high expression of NKT cell marker genes was significantly associated with poor prognosis in GBM patients. Riskscore can be used as an independent prognostic factor. The nomogram was demonstrated remarkable utility in aiding clinical decision making. Tumor immune microenvironment analysis revealed significant differences of immune infiltration characteristics between different risk groups. In addition, the expression levels of immune checkpoint-associated genes were consistently elevated in the high-risk group, suggesting more prominent immune escape but also a stronger response to immune checkpoint inhibitors. CONCLUSIONS: By integrating scRNA-seq and bulk RNA-seq data analysis, we successfully developed a prognostic prediction model that incorporates two pivotal NKT cells marker genes, namely, CD44 and TNFSF14. This model has exhibited outstanding performance in assessing the prognosis of GBM patients. Furthermore, we conducted a preliminary investigation into the immune microenvironment across various risk groups that contributes to uncover promising immunotherapeutic targets specific to GBM.


Asunto(s)
Glioblastoma , Células T Asesinas Naturales , Humanos , Glioblastoma/genética , Pronóstico , Secuencia de Bases , RNA-Seq , Microambiente Tumoral/genética
16.
Small ; 19(45): e2303598, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37434392

RESUMEN

Atomically dispersed iron sites on nitrogen-doped carbon (Fe-NC) are the most active Pt-group-metal-free catalysts for oxygen reduction reaction (ORR). However, due to oxidative corrosion and the Fenton reaction, Fe-NC catalysts are insufficiently active and stable. Herein, w e demonstrated that the axial Cl-modified Fe-NC (Cl-Fe-NC) electrocatalyst is active and stable for the ORR in acidic conditions with high H2 O2 tolerance. The Cl-Fe-NC exhibits excellent ORR activity, with a high half-wave potential (E1/2 ) of 0.82 V versus a reversible hydrogen electrode (RHE), comparable to Pt/C (E1/2 = 0.85 V versus RHE) and better than Fe-NC (E1/2 = 0.79 V versus RHE). X-ray absorption spectroscopy analysis confirms that chlorine is axially integrated into the FeN4. More interestingly, compared to Fe-NC, the Fenton reaction is markedly suppressed in Cl-Fe-NC. In situ electrochemical impedance spectroscopy reveals that Cl-Fe-NC provides efficient electron transfer and faster reaction kinetics than Fe-NC. Density functional theory calculations reveal that incorporating Cl into FeN4 can drive the electron density delocalization of the FeN4 site, leading to a moderate adsorption free energy of OH* (∆GOH* ), d-band center, and a high onset potential, and promotes the direct four-electron-transfer ORR with weak H2 O2 binding ability compared to Cl-free FeN4, indicating superior intrinsic ORR activity.

17.
Small ; 19(34): e2300801, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37072877

RESUMEN

Sub-10 nm nanoparticles are known to exhibit extraordinary size-dependent properties for wide applications. Many approaches have been developed for synthesizing sub-10 nm inorganic nanoparticles, but the fabrication of sub-10 nm polymeric nanoparticles is still challenging. Here, a scalable, spontaneous confined nanoemulsification strategy that produces uniform sub-10 nm nanodroplets for template synthesis of sub-10 nm polymeric nanoparticles is proposed. This strategy introduces a high-concentration interfacial reaction to create overpopulated surfactants that are insoluble at the droplet surface. These overpopulated surfactants act as barriers, resulting in highly accumulated surfactants inside the droplet via a confined reaction. These surfactants exhibit significantly changed packing geometry, solubility, and interfacial activity to enhance the molecular-level impact on interfacial instability for creating sub-10 nm nanoemulsions via self-burst nanoemulsification. Using the nanodroplets as templates, the fabrication of uniform sub-10 nm polymeric nanoparticles, as small as 3.5 nm, made from biocompatible polymers and capable of efficient drug encapsulation is demonstrated. This work opens up brand-new opportunities to easily create sub-10 nm nanoemulsions and advanced ultrasmall functional nanoparticles.

18.
J Membr Biol ; 256(4-6): 301-316, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37039840

RESUMEN

For a long time, the physiological activity of TRP ion channels and the response to various stimuli have been the focus of attention, and the physiological functions mediated by ion channels have subtle links with the occurrence of various diseases. Our group has been engaged in the study of ion channels. In recent years, the report rate of TRPA1, the only member of the TRPA subfamily in the newly described TRP channel, has been very high. TRPA1 channels are not only abundantly expressed in peptidergic nociceptors but are also found in many nonneuronal cell types and tissues, and through the regulation of Ca2+ influx, various neuropeptides and signaling pathways are involved in the regulation of nerves, respiration, circulation, and various diseases and inflammation throughout the body. In this review, we mainly summarize the effects of TRPA1 on various systems in the body, which not only allows us to have a more systematic and comprehensive understanding of TRPA1 but also facilitates more in-depth research on it in the future.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Nociceptores/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo , Humanos
19.
Cytokine ; 162: 156089, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36463659

RESUMEN

Chemerin is a protein encoded by the Rarres2 gene that acts through endocrine or paracrine regulation. Chemerin can bind to its receptor, regulate insulin sensitivity and adipocyte differentiation, and thus affect glucose and lipid metabolism. There is growing evidence that it also plays an important role in diseases such as inflammation and cancer. Chemerin has been shown to play a role in the pathogenesis of inflammatory and metabolic diseases caused by leukocyte chemoattractants in a variety of organs, but its biological function remains controversial. In conclusion, the exciting findings collected over the past few years clearly indicate that targeting Chemerin signaling as a biological target will be a major research goal in the future. This article reviews the pathophysiological roles of Chemerin in various systems and diseases,and expect to provide a rationale for its role as a clinical therapeutic target.


Asunto(s)
Quimiocinas , Péptidos y Proteínas de Señalización Intercelular , Humanos , Quimiocinas/metabolismo , Transducción de Señal , Factores Quimiotácticos/metabolismo , Inflamación/metabolismo
20.
BMC Cancer ; 23(1): 560, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330494

RESUMEN

BACKGROUND: Cuproptosis is a regulated cell death form associated with tumor progression, clinical outcomes, and immune response. However, the role of cuproptosis in pancreatic adenocarcinoma (PAAD) remains unclear. This study aims to investigate the implications of cuproptosis-related genes (CRGs) in PAAD by integrated bioinformatic methods and clinical validation. METHODS: Gene expression data and clinical information were downloaded from UCSC Xena platform. We analyzed the expression, mutation, methylation, and correlations of CRGs in PAAD. Then, based on the expression profiles of CRGs, patients were divided into 3 groups by consensus clustering algorithm. Dihydrolipoamide acetyltransferase (DLAT) was chosen for further exploration, including prognostic analysis, co-expression analysis, functional enrichment analysis, and immune landscape analysis. The DLAT-based risk model was established by Cox and LASSO regression analysis in the training cohort, and then verified in the validation cohort. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) assays were performed to examine the expression levels of DLAT in vitro and in vivo, respectively. RESULTS: Most CRGs were highly expressed in PAAD. Among these genes, increased DLAT could serve as an independent risk factor for survival. Co-expression network and functional enrichment analysis indicated that DLAT was engaged in multiple tumor-related pathways. Moreover, DLAT expression was positively correlated with diverse immunological characteristics, such as immune cell infiltration, cancer-immunity cycle, immunotherapy-predicted pathways, and inhibitory immune checkpoints. Submap analysis demonstrated that DLAT-high patients were more responsive to immunotherapeutic agents. Notably, the DLAT-based risk score model possessed high accuracy in predicting prognosis. Finally, the upregulated expression of DLAT was verified by RT-qPCR and IHC assays. CONCLUSIONS: We developed a DLAT-based model to predict patients' clinical outcomes and demonstrated that DLAT was a promising prognostic and immunological biomarker in PAAD, thereby providing a new possibility for tumor therapy.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Pronóstico , Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Acetiltransferasa de Residuos Dihidrolipoil-Lisina , Biomarcadores , Cobre , Apoptosis , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA