Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 73(15): 5264-5278, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35641129

RESUMEN

Waterlogging severely affects the growth, development, and yield of crops. Accurate high-throughput phenotyping is important for exploring the dynamic crop waterlogging response in the field, and the genetic basis of waterlogging tolerance. In this study, a multi-model remote sensing phenotyping platform based on an unmanned aerial vehicle (UAV) was used to assess the genetic response of rapeseed (Brassica napus) to waterlogging, by measuring morphological traits and spectral indices over 2 years. The dynamic responses of the morphological and spectral traits indicated that the rapeseed waterlogging response was severe before the middle stage within 18 d after recovery, but it subsequently decreased partly. Genome-wide association studies identified 289 and 333 loci associated with waterlogging tolerance in 2 years. Next, 25 loci with at least nine associations with waterlogging-related traits were defined as highly reliable loci, and 13 loci were simultaneously identified by waterlogging tolerance coefficients of morphological traits, spectral indices, and common factors. Forty candidate genes were predicted in the regions of 13 overlapping loci. Our study provides insights into the understanding of the dynamic process and genetic basis of rapeseed waterlogging response in the field by a high-throughput UAV phenotyping platform. The highly reliable loci identified in this study are valuable for breeding waterlogging-tolerant rapeseed cultivars.


Asunto(s)
Brassica napus , Brassica rapa , Brassica rapa/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Dispositivos Aéreos No Tripulados
2.
Nat Commun ; 15(1): 934, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296979

RESUMEN

Genomic DNA exhibits high heterogeneity in terms of its dynamic within the nucleus, its structure and functional roles. CRISPR-based imaging approaches can image genomic loci in living cells. However, conventional CRISPR-based tools involve expressing constitutively fluorescent proteins, resulting in high background and nonspecific nucleolar signal. Here, we construct fluorogenic CRISPR (fCRISPR) to overcome these issues. fCRISPR is designed with dCas9, an engineered sgRNA, and a fluorogenic protein. Fluorogenic proteins are degraded unless they are bound to specific RNA hairpins. These hairpins are inserted into sgRNA, resulting in dCas9: sgRNA: fluorogenic protein ternary complexes that enable fluorogenic DNA imaging. With fCRISPR, we image various genomic DNA in different human cells with high signal-to-noise ratio and sensitivity. Furthermore, fCRISPR tracks chromosomes dynamics and length. fCRISPR also allows DNA double-strand breaks (DSBs) and repair to be tracked in real time. Taken together, fCRISPR offers a high-contrast and sensitive platform for imaging genomic loci.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Humanos , ADN/genética , Genoma , Genómica
3.
Front Plant Sci ; 11: 617, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587594

RESUMEN

Rapeseed is an important oil crop in China. Timely estimation of rapeseed stand count at early growth stages provides useful information for precision fertilization, irrigation, and yield prediction. Based on the nature of rapeseed, the number of tillering leaves is strongly related to its growth stages. However, no field study has been reported on estimating rapeseed stand count by the number of leaves recognized with convolutional neural networks (CNNs) in unmanned aerial vehicle (UAV) imagery. The objectives of this study were to provide a case for rapeseed stand counting with reference to the existing knowledge of the number of leaves per plant and to determine the optimal timing for counting after rapeseed emergence at leaf development stages with one to seven leaves. A CNN model was developed to recognize leaves in UAV-based imagery, and rapeseed stand count was estimated with the number of recognized leaves. The performance of leaf detection was compared using sample sizes of 16, 24, 32, 40, and 48 pixels. Leaf overcounting occurred when a leaf was much bigger than others as this bigger leaf was recognized as several smaller leaves. Results showed CNN-based leaf count achieved the best performance at the four- to six-leaf stage with F-scores greater than 90% after calibration with overcounting rate. On average, 806 out of 812 plants were correctly estimated on 53 days after planting (DAP) at the four- to six-leaf stage, which was considered as the optimal observation timing. For the 32-pixel patch size, root mean square error (RMSE) was 9 plants with relative RMSE (rRMSE) of 2.22% on 53 DAP, while the mean RMSE was 12 with mean rRMSE of 2.89% for all patch sizes. A sample size of 32 pixels was suggested to be optimal accounting for balancing performance and efficiency. The results of this study confirmed that it was feasible to estimate rapeseed stand count in field automatically, rapidly, and accurately. This study provided a special perspective in phenotyping and cultivation management for estimating seedling count for crops that have recognizable leaves at their early growth stage, such as soybean and potato.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA