RESUMEN
The biosafety level 3 (BSL-3) requirement to culture severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a bottleneck for research. Here, we report a trans-complementation system that produces single-round infectious SARS-CoV-2 that recapitulates authentic viral replication. We demonstrate that the single-round infectious SARS-CoV-2 can be used at BSL-2 laboratories for high-throughput neutralization and antiviral testing. The trans-complementation system consists of two components: a genomic viral RNA containing ORF3 and envelope gene deletions, as well as mutated transcriptional regulator sequences, and a producer cell line expressing the two deleted genes. Trans-complementation of the two components generates virions that can infect naive cells for only one round but does not produce wild-type SARS-CoV-2. Hamsters and K18-hACE2 transgenic mice inoculated with the complementation-derived virions exhibited no detectable disease, even after intracranial inoculation with the highest possible dose. Thus, the trans-complementation platform can be safely used at BSL-2 laboratories for research and countermeasure development.
Asunto(s)
COVID-19/virología , Contención de Riesgos Biológicos/métodos , SARS-CoV-2 , Células A549 , Animales , Chlorocebus aethiops , Cricetinae , Prueba de Complementación Genética/métodos , Genoma Viral , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , ARN Viral , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Células Vero , Virulencia , Replicación ViralRESUMEN
The B.1.1.7 variant (also known as Alpha) of SARS-CoV-2, the cause of the COVID-19 pandemic, emerged in the UK in the summer of 2020. The prevalence of this variant increased rapidly owing to an increase in infection and/or transmission efficiency1. The Alpha variant contains 19 nonsynonymous mutations across its viral genome, including 8 substitutions or deletions in the spike protein that interacts with cellular receptors to mediate infection and tropism. Here, using a reverse genetics approach, we show that of the 8 individual spike protein substitutions, only N501Y resulted in consistent fitness gains for replication in the upper airway in a hamster model as well as in primary human airway epithelial cells. The N501Y substitution recapitulated the enhanced viral transmission phenotype of the eight mutations in the Alpha spike protein, suggesting that it is a major determinant of the increased transmission of the Alpha variant. Mechanistically, the N501Y substitution increased the affinity of the viral spike protein for cellular receptors. As suggested by its convergent evolution in Brazil, South Africa and elsewhere2,3, our results indicate that N501Y substitution is an adaptive spike mutation of major concern.
Asunto(s)
Sustitución de Aminoácidos , COVID-19/transmisión , COVID-19/virología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Unión Competitiva , Bronquios/citología , Células Cultivadas , Cricetinae , Humanos , Masculino , Mesocricetus , Modelos Moleculares , Mutación , Unión Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Replicación ViralRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses1-3. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins4-8, particularly those containing post-translational modifications required for transcriptional regulation9-11. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation12-14. However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.
Asunto(s)
COVID-19 , Epigénesis Genética , Histonas , Interacciones Microbiota-Huesped , Imitación Molecular , SARS-CoV-2 , Proteínas Virales , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Epigenoma/genética , Histonas/química , Histonas/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuing to evolve around the world, generating new variants that are of concern on the basis of their potential for altered transmissibility, pathogenicity, and coverage by vaccines and therapeutic agents1-5. Here we show that serum samples taken from twenty human volunteers, two or four weeks after their second dose of the BNT162b2 vaccine, neutralize engineered SARS-CoV-2 with a USA-WA1/2020 genetic background (a virus strain isolated in January 2020) and spike glycoproteins from the recently identified B.1.617.1, B.1.617.2, B.1.618 (all of which were first identified in India) or B.1.525 (first identified in Nigeria) lineages. Geometric mean plaque reduction neutralization titres against the variant viruses-particularly the B.1.617.1 variant-seemed to be lower than the titre against the USA-WA1/2020 virus, but all sera tested neutralized the variant viruses at titres of at least 1:40. The susceptibility of the variant strains to neutralization elicited by the BNT162b2 vaccine supports mass immunization as a central strategy to end the coronavirus disease 2019 (COVID-19) pandemic globally.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , Pruebas de Neutralización , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Chlorocebus aethiops , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/genética , Células Vero , Vacunas de ARNmRESUMEN
Resistance represents a major challenge for antibody-based therapy for COVID-191-4. Here we engineered an immunoglobulin M (IgM) neutralizing antibody (IgM-14) to overcome the resistance encountered by immunoglobulin G (IgG)-based therapeutics. IgM-14 is over 230-fold more potent than its parental IgG-14 in neutralizing SARS-CoV-2. IgM-14 potently neutralizes the resistant virus raised by its corresponding IgG-14, three variants of concern-B.1.1.7 (Alpha, which first emerged in the UK), P.1 (Gamma, which first emerged in Brazil) and B.1.351 (Beta, which first emerged in South Africa)-and 21 other receptor-binding domain mutants, many of which are resistant to the IgG antibodies that have been authorized for emergency use. Although engineering IgG into IgM enhances antibody potency in general, selection of an optimal epitope is critical for identifying the most effective IgM that can overcome resistance. In mice, a single intranasal dose of IgM-14 at 0.044 mg per kg body weight confers prophylactic efficacy and a single dose at 0.4 mg per kg confers therapeutic efficacy against SARS-CoV-2. IgM-14, but not IgG-14, also confers potent therapeutic protection against the P.1 and B.1.351 variants. IgM-14 exhibits desirable pharmacokinetics and safety profiles when administered intranasally in rodents. Our results show that intranasal administration of an engineered IgM can improve efficacy, reduce resistance and simplify the prophylactic and therapeutic treatment of COVID-19.
Asunto(s)
COVID-19/prevención & control , COVID-19/virología , Inmunoglobulina M/administración & dosificación , Inmunoglobulina M/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Administración Intranasal , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/efectos adversos , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/metabolismo , COVID-19/inmunología , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunoglobulina A/genética , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/efectos adversos , Inmunoglobulina M/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Ingeniería de Proteínas , Receptores Virales/antagonistas & inhibidores , Receptores Virales/metabolismo , SARS-CoV-2/genética , Tratamiento Farmacológico de COVID-19RESUMEN
SARS-CoV-2 mRNA-based vaccines are about 95% effective in preventing COVID-191-5. The dynamics of antibody-secreting plasmablasts and germinal centre B cells induced by these vaccines in humans remain unclear. Here we examined antigen-specific B cell responses in peripheral blood (n = 41) and draining lymph nodes in 14 individuals who had received 2 doses of BNT162b2, an mRNA-based vaccine that encodes the full-length SARS-CoV-2 spike (S) gene1. Circulating IgG- and IgA-secreting plasmablasts that target the S protein peaked one week after the second immunization and then declined, becoming undetectable three weeks later. These plasmablast responses preceded maximal levels of serum anti-S binding and neutralizing antibodies to an early circulating SARS-CoV-2 strain as well as emerging variants, especially in individuals who had previously been infected with SARS-CoV-2 (who produced the most robust serological responses). By examining fine needle aspirates of draining axillary lymph nodes, we identified germinal centre B cells that bound S protein in all participants who were sampled after primary immunization. High frequencies of S-binding germinal centre B cells and plasmablasts were sustained in these draining lymph nodes for at least 12 weeks after the booster immunization. S-binding monoclonal antibodies derived from germinal centre B cells predominantly targeted the receptor-binding domain of the S protein, and fewer clones bound to the N-terminal domain or to epitopes shared with the S proteins of the human betacoronaviruses OC43 and HKU1. These latter cross-reactive B cell clones had higher levels of somatic hypermutation as compared to those that recognized only the SARS-CoV-2 S protein, which suggests a memory B cell origin. Our studies demonstrate that SARS-CoV-2 mRNA-based vaccination of humans induces a persistent germinal centre B cell response, which enables the generation of robust humoral immunity.
Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , Células Plasmáticas/inmunología , Vacunas Sintéticas/inmunología , Adulto , Anciano , Animales , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , COVID-19/prevención & control , Chlorocebus aethiops , Células Clonales/citología , Células Clonales/inmunología , Centro Germinal/citología , Voluntarios Sanos , Humanos , Persona de Mediana Edad , Células Plasmáticas/citología , SARS-CoV-2/inmunología , Factores de Tiempo , Células Vero , Vacunas de ARNmRESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein substitution D614G became dominant during the coronavirus disease 2019 (COVID-19) pandemic1,2. However, the effect of this variant on viral spread and vaccine efficacy remains to be defined. Here we engineered the spike D614G substitution in the USA-WA1/2020 SARS-CoV-2 strain, and found that it enhances viral replication in human lung epithelial cells and primary human airway tissues by increasing the infectivity and stability of virions. Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission. Sera from hamsters infected with D614 virus exhibit modestly higher neutralization titres against G614 virus than against D614 virus, suggesting that the mutation is unlikely to reduce the ability of vaccines in clinical trials to protect against COVID-19, and that therapeutic antibodies should be tested against the circulating G614 virus. Together with clinical findings, our work underscores the importance of this variant in viral spread and its implications for vaccine efficacy and antibody therapy.
Asunto(s)
COVID-19/transmisión , COVID-19/virología , Aptitud Genética , Mutación , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pulmón/virología , Masculino , Mesocricetus/virología , Modelos Biológicos , Mucosa Nasal/virología , Pruebas de Neutralización , Estabilidad Proteica , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Técnicas de Cultivo de Tejidos , Tráquea/virología , Carga Viral , Virión/química , Virión/patogenicidad , Virión/fisiología , Replicación Viral/genéticaRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-a new coronavirus that has led to a worldwide pandemic1-has a furin cleavage site (PRRAR) in its spike protein that is absent in other group-2B coronaviruses2. To explore whether the furin cleavage site contributes to infection and pathogenesis in this virus, we generated a mutant SARS-CoV-2 that lacks the furin cleavage site (ΔPRRA). Here we report that replicates of ΔPRRA SARS-CoV-2 had faster kinetics, improved fitness in Vero E6 cells and reduced spike protein processing, as compared to parental SARS-CoV-2. However, the ΔPRRA mutant had reduced replication in a human respiratory cell line and was attenuated in both hamster and K18-hACE2 transgenic mouse models of SARS-CoV-2 pathogenesis. Despite reduced disease, the ΔPRRA mutant conferred protection against rechallenge with the parental SARS-CoV-2. Importantly, the neutralization values of sera from patients with coronavirus disease 2019 (COVID-19) and monoclonal antibodies against the receptor-binding domain of SARS-CoV-2 were lower against the ΔPRRA mutant than against parental SARS-CoV-2, probably owing to an increased ratio of particles to plaque-forming units in infections with the former. Together, our results demonstrate a critical role for the furin cleavage site in infection with SARS-CoV-2 and highlight the importance of this site for evaluating the neutralization activities of antibodies.
Asunto(s)
COVID-19/virología , Furina/metabolismo , Mutación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/patología , COVID-19/fisiopatología , Línea Celular , Chlorocebus aethiops , Cricetinae , Femenino , Humanos , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/fisiopatología , Enfermedades Pulmonares/virología , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteolisis , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Replicación Viral/genéticaRESUMEN
Rapidly emerging SARS-CoV-2 variants jeopardize antibody-based countermeasures. Although cell culture experiments have demonstrated a loss of potency of several anti-spike neutralizing antibodies against variant strains of SARS-CoV-21-3, the in vivo importance of these results remains uncertain. Here we report the in vitro and in vivo activity of a panel of monoclonal antibodies (mAbs), which correspond to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron and Lilly, against SARS-CoV-2 variant viruses. Although some individual mAbs showed reduced or abrogated neutralizing activity in cell culture against B.1.351, B.1.1.28, B.1.617.1 and B.1.526 viruses with mutations at residue E484 of the spike protein, low prophylactic doses of mAb combinations protected against infection by many variants in K18-hACE2 transgenic mice, 129S2 immunocompetent mice and hamsters, without the emergence of resistance. Exceptions were LY-CoV555 monotherapy and LY-CoV555 and LY-CoV016 combination therapy, both of which lost all protective activity, and the combination of AbbVie 2B04 and 47D11, which showed a partial loss of activity. When administered after infection, higher doses of several mAb cocktails protected in vivo against viruses with a B.1.351 spike gene. Therefore, many-but not all-of the antibody products with Emergency Use Authorization should retain substantial efficacy against the prevailing variant strains of SARS-CoV-2.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/farmacología , Anticuerpos Antivirales/uso terapéutico , COVID-19/virología , Pruebas de Neutralización , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/inmunología , COVID-19/genética , COVID-19/inmunología , COVID-19/prevención & control , Chlorocebus aethiops , Femenino , Humanos , Masculino , Mesocricetus/inmunología , Mesocricetus/virología , Ratones , Ratones Transgénicos , Profilaxis Posexposición , Profilaxis Pre-Exposición , SARS-CoV-2/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células VeroRESUMEN
BACKGROUND: The emergence of immune-escape variants of severe acute respiratory syndrome coronavirus 2 warrants the use of sequence-adapted vaccines to provide protection against coronavirus disease 2019. METHODS: In an ongoing phase 3 trial, adults older than 55 years who had previously received three 30-µg doses of the BNT162b2 vaccine were randomly assigned to receive 30 µg or 60 µg of BNT162b2, 30 µg or 60 µg of monovalent B.1.1.529 (omicron) BA.1-adapted BNT162b2 (monovalent BA.1), or 30 µg (15 µg of BNT162b2 + 15 µg of monovalent BA.1) or 60 µg (30 µg of BNT162b2 + 30 µg of monovalent BA.1) of BA.1-adapted BNT162b2 (bivalent BA.1). Primary objectives were to determine superiority (with respect to 50% neutralizing titer [NT50] against BA.1) and noninferiority (with respect to seroresponse) of the BA.1-adapted vaccines to BNT162b2 (30 µg). A secondary objective was to determine noninferiority of bivalent BA.1 to BNT162b2 (30 µg) with respect to neutralizing activity against the ancestral strain. Exploratory analyses assessed immune responses against omicron BA.4, BA.5, and BA.2.75 subvariants. RESULTS: A total of 1846 participants underwent randomization. At 1 month after vaccination, bivalent BA.1 (30 µg and 60 µg) and monovalent BA.1 (60 µg) showed neutralizing activity against BA.1 superior to that of BNT162b2 (30 µg), with NT50 geometric mean ratios (GMRs) of 1.56 (95% confidence interval [CI], 1.17 to 2.08), 1.97 (95% CI, 1.45 to 2.68), and 3.15 (95% CI, 2.38 to 4.16), respectively. Bivalent BA.1 (both doses) and monovalent BA.1 (60 µg) were also noninferior to BNT162b2 (30 µg) with respect to seroresponse against BA.1; between-group differences ranged from 10.9 to 29.1 percentage points. Bivalent BA.1 (either dose) was noninferior to BNT162b2 (30 µg) with respect to neutralizing activity against the ancestral strain, with NT50 GMRs of 0.99 (95% CI, 0.82 to 1.20) and 1.30 (95% CI, 1.07 to 1.58), respectively. BA.4-BA.5 and BA.2.75 neutralizing titers were numerically higher with 30-µg bivalent BA.1 than with 30-µg BNT162b2. The safety profile of either dose of monovalent or bivalent BA.1 was similar to that of BNT162b2 (30 µg). Adverse events were more common in the 30-µg monovalent-BA.1 (8.5%) and 60-µg bivalent-BA.1 (10.4%) groups than in the other groups (3.6 to 6.6%). CONCLUSIONS: The candidate monovalent or bivalent omicron BA.1-adapted vaccines had a safety profile similar to that of BNT162b2 (30 µg), induced substantial neutralizing responses against ancestral and omicron BA.1 strains, and, to a lesser extent, neutralized BA.4, BA.5, and BA.2.75 strains. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04955626.).
Asunto(s)
Vacuna BNT162 , COVID-19 , SARS-CoV-2 , Vacunas Combinadas , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/efectos adversos , Vacuna BNT162/inmunología , Vacuna BNT162/uso terapéutico , COVID-19/genética , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vacunación , Vacunas Combinadas/uso terapéutico , Persona de Mediana EdadRESUMEN
BACKGROUND: Safe and effective vaccines against coronavirus disease 2019 (Covid-19) are urgently needed in young children. METHODS: We conducted a phase 1 dose-finding study and are conducting an ongoing phase 2-3 safety, immunogenicity, and efficacy trial of the BNT162b2 vaccine in healthy children 6 months to 11 years of age. We present results for children 6 months to less than 2 years of age and those 2 to 4 years of age through the data-cutoff dates (April 29, 2022, for safety and immunogenicity and June 17, 2022, for efficacy). In the phase 2-3 trial, participants were randomly assigned (in a 2:1 ratio) to receive two 3-µg doses of BNT162b2 or placebo. On the basis of preliminary immunogenicity results, a third 3-µg dose (≥8 weeks after dose 2) was administered starting in January 2022, which coincided with the emergence of the B.1.1.529 (omicron) variant. Immune responses at 1 month after doses 2 and 3 in children 6 months to less than 2 years of age and those 2 to 4 years of age were immunologically bridged to responses after dose 2 in persons 16 to 25 years of age who received 30 µg of BNT162b2 in the pivotal trial. RESULTS: During the phase 1 dose-finding study, two doses of BNT162b2 were administered 21 days apart to 16 children 6 months to less than 2 years of age (3-µg dose) and 48 children 2 to 4 years of age (3-µg or 10-µg dose). The 3-µg dose level was selected for the phase 2-3 trial; 1178 children 6 months to less than 2 years of age and 1835 children 2 to 4 years of age received BNT162b2, and 598 and 915, respectively, received placebo. Immunobridging success criteria for the geometric mean ratio and seroresponse at 1 month after dose 3 were met in both age groups. BNT162b2 reactogenicity events were mostly mild to moderate, with no grade 4 events. Low, similar incidences of fever were reported after receipt of BNT162b2 (7% among children 6 months to <2 years of age and 5% among those 2 to 4 years of age) and placebo (6 to 7% among children 6 months to <2 years of age and 4 to 5% among those 2 to 4 years of age). The observed overall vaccine efficacy against symptomatic Covid-19 in children 6 months to 4 years of age was 73.2% (95% confidence interval, 43.8 to 87.6) from 7 days after dose 3 (on the basis of 34 cases). CONCLUSIONS: A three-dose primary series of 3-µg BNT162b2 was safe, immunogenic, and efficacious in children 6 months to 4 years of age. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04816643.).
Asunto(s)
Vacuna BNT162 , COVID-19 , Adolescente , Niño , Preescolar , Humanos , Lactante , Adulto Joven , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/efectos adversos , Vacuna BNT162/inmunología , Vacuna BNT162/uso terapéutico , COVID-19/sangre , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Vacunas/efectos adversos , Vacunas/uso terapéutico , Inmunogenicidad Vacunal , Resultado del Tratamiento , Eficacia de las VacunasRESUMEN
The discovery of diagnostic and therapeutic biomarkers for complex diseases, especially cancer, has always been a central and long-term challenge in molecular association prediction research, offering promising avenues for advancing the understanding of complex diseases. To this end, researchers have developed various network-based prediction techniques targeting specific molecular associations. However, limitations imposed by reductionism and network representation learning have led existing studies to narrowly focus on high prediction efficiency within single association type, thereby glossing over the discovery of unknown types of associations. Additionally, effectively utilizing network structure to fit the interaction properties of regulatory networks and combining specific case biomarker validations remains an unresolved issue in cancer biomarker prediction methods. To overcome these limitations, we propose a multi-view learning framework, CeRVE, based on directed graph neural networks (DGNN) for predicting unknown type cancer biomarkers. CeRVE effectively extracts and integrates subgraph information through multi-view feature learning. Subsequently, CeRVE utilizes DGNN to simulate the entire regulatory network, propagating node attribute features and extracting various interaction relationships between molecules. Furthermore, CeRVE constructed a comparative analysis matrix of three cancers and adjacent normal tissues through The Cancer Genome Atlas and identified multiple types of potential cancer biomarkers through differential expression analysis of mRNA, microRNA, and long noncoding RNA. Computational testing of multiple types of biomarkers for 72 cancers demonstrates that CeRVE exhibits superior performance in cancer biomarker prediction, providing a powerful tool and insightful approach for AI-assisted disease biomarker discovery.
Asunto(s)
Biomarcadores de Tumor , Redes Reguladoras de Genes , Neoplasias , Redes Neurales de la Computación , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biología Computacional/métodos , Algoritmos , MicroARNs/genética , MicroARNs/metabolismoRESUMEN
Zika virus (ZIKV) belongs to the family Flaviviridae, and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurological disorders and replicates efficiently in reproductive tissues1-3. Here we show that the envelope protein (E) of ZIKV is polyubiquitinated by the E3 ubiquitin ligase TRIM7 through Lys63 (K63)-linked polyubiquitination. Accordingly, ZIKV replicates less efficiently in the brain and reproductive tissues of Trim7-/- mice. Ubiquitinated E is present on infectious virions of ZIKV when they are released from specific cell types, and enhances virus attachment and entry into cells. Specifically, K63-linked polyubiquitin chains directly interact with the TIM1 (also known as HAVCR1) receptor of host cells, which enhances virus entry in cells as well as in brain tissue in vivo. Recombinant ZIKV mutants that lack ubiquitination are attenuated in human cells and in wild-type mice, but not in live mosquitoes. Monoclonal antibodies against K63-linked polyubiquitin specifically neutralize ZIKV and reduce viraemia in mice. Our results demonstrate that the ubiquitination of ZIKV E is an important determinant of virus entry, tropism and pathogenesis.
Asunto(s)
Ubiquitinación , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Virus Zika/metabolismo , Virus Zika/patogenicidad , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Encéfalo/metabolismo , Línea Celular , Culicidae/citología , Culicidae/virología , Endosomas/metabolismo , Femenino , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Masculino , Fusión de Membrana , Ratones , Especificidad de Órganos , Poliubiquitina/inmunología , Poliubiquitina/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Tropismo Viral , Viremia/inmunología , Viremia/prevención & control , Viremia/virología , Replicación Viral , Virus Zika/química , Virus Zika/genética , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/virologíaRESUMEN
MOTIVATION: Identifying the relationships among long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and diseases is highly valuable for diagnosing, preventing, treating and prognosing diseases. The development of effective computational prediction methods can reduce experimental costs. While numerous methods have been proposed, they often to treat the prediction of lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs) and lncRNA-miRNA interactions (LMIs) as separate task. Models capable of predicting all three relationships simultaneously remain relatively scarce. Our aim is to perform multi-task predictions, which not only construct a unified framework, but also facilitate mutual complementarity of information among lncRNAs, miRNAs and diseases. RESULTS: In this work, we propose a novel unsupervised embedding method called graph contrastive learning for multi-task prediction (GCLMTP). Our approach aims to predict LDAs, MDAs and LMIs by simultaneously extracting embedding representations of lncRNAs, miRNAs and diseases. To achieve this, we first construct a triple-layer lncRNA-miRNA-disease heterogeneous graph (LMDHG) that integrates the complex relationships between these entities based on their similarities and correlations. Next, we employ an unsupervised embedding model based on graph contrastive learning to extract potential topological feature of lncRNAs, miRNAs and diseases from the LMDHG. The graph contrastive learning leverages graph convolutional network architectures to maximize the mutual information between patch representations and corresponding high-level summaries of the LMDHG. Subsequently, for the three prediction tasks, multiple classifiers are explored to predict LDA, MDA and LMI scores. Comprehensive experiments are conducted on two datasets (from older and newer versions of the database, respectively). The results show that GCLMTP outperforms other state-of-the-art methods for the disease-related lncRNA and miRNA prediction tasks. Additionally, case studies on two datasets further demonstrate the ability of GCLMTP to accurately discover new associations. To ensure reproducibility of this work, we have made the datasets and source code publicly available at https://github.com/sheng-n/GCLMTP.
Asunto(s)
MicroARNs , ARN Largo no Codificante , MicroARNs/genética , ARN Largo no Codificante/genética , Algoritmos , Reproducibilidad de los Resultados , Biología Computacional/métodosRESUMEN
While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral 'RG' motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2's continued adaptation to human infection.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/genética , Glucógeno Sintasa Quinasa 3 , Humanos , Mutación , Nucleocápside , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of Coronavirus Disease 2019 (COVID-19) have been hampered by the lack of robust mouse models. To overcome this barrier, we used a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARS-CoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Coupled with the incorporation of mutations found in variants of concern, CMA3p20 offers several advantages over other mouse-adapted SARS-CoV-2 strains. Using this model, we demonstrate that SARS-CoV-2-infected mice are protected from lethal challenge with the original Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), suggesting immunity from heterologous Coronavirus (CoV) strains. Together, the results highlight the use of this mouse model for further study of SARS-CoV-2 infection and disease.
Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Animales , COVID-19/patología , Vacunas contra la COVID-19/uso terapéutico , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Genética Inversa , Pase Seriado , Replicación ViralRESUMEN
BACKGROUND: With the development of biotechnology and the accumulation of theories, many studies have found that microRNAs (miRNAs) play an important role in various diseases. Uncovering the potential associations between miRNAs and diseases is helpful to better understand the pathogenesis of complex diseases. However, traditional biological experiments are expensive and time-consuming. Therefore, it is necessary to develop more efficient computational methods for exploring underlying disease-related miRNAs. RESULTS: In this paper, we present a new computational method based on positive point-wise mutual information (PPMI) and attention network to predict miRNA-disease associations (MDAs), called PATMDA. Firstly, we construct the heterogeneous MDA network and multiple similarity networks of miRNAs and diseases. Secondly, we respectively perform random walk with restart and PPMI on different similarity network views to get multi-order proximity features and then obtain high-order proximity representations of miRNAs and diseases by applying the convolutional neural network to fuse the learned proximity features. Then, we design an attention network with neural aggregation to integrate the representations of a node and its heterogeneous neighbor nodes according to the MDA network. Finally, an inner product decoder is adopted to calculate the relationship scores between miRNAs and diseases. CONCLUSIONS: PATMDA achieves superior performance over the six state-of-the-art methods with the area under the receiver operating characteristic curve of 0.933 and 0.946 on the HMDD v2.0 and HMDD v3.2 datasets, respectively. The case studies further demonstrate the validity of PATMDA for discovering novel disease-associated miRNAs.
Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , Algoritmos , Redes Neurales de la Computación , Curva ROC , Redes Reguladoras de Genes , Biología Computacional/métodos , Predisposición Genética a la EnfermedadRESUMEN
RNA vaccines have demonstrated efficacy against SARS-CoV-2 in humans, and the technology is being leveraged for rapid emergency response. In this report, we assessed immunogenicity and, for the first time, toxicity, biodistribution, and protective efficacy in preclinical models of a two-dose self-amplifying messenger RNA (SAM) vaccine, encoding a prefusion-stabilized spike antigen of SARS-CoV-2 Wuhan-Hu-1 strain and delivered by lipid nanoparticles (LNPs). In mice, one immunization with the SAM vaccine elicited a robust spike-specific antibody response, which was further boosted by a second immunization, and effectively neutralized the matched SARS-CoV-2 Wuhan strain as well as B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta) variants. High frequencies of spike-specific germinal center B, Th0/Th1 CD4, and CD8 T cell responses were observed in mice. Local tolerance, potential systemic toxicity, and biodistribution of the vaccine were characterized in rats. In hamsters, the vaccine candidate was well-tolerated, markedly reduced viral load in the upper and lower airways, and protected animals against disease in a dose-dependent manner, with no evidence of disease enhancement following SARS-CoV-2 challenge. Therefore, the SARS-CoV-2 SAM (LNP) vaccine candidate has a favorable safety profile, elicits robust protective immune responses against multiple SARS-CoV-2 variants, and has been advanced to phase 1 clinical evaluation (NCT04758962).