Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38276914

RESUMEN

Despite their ubiquitous use, information regarding the presence of quaternary ammonium compounds (QACs) in various microenvironments remains scarce and only a small subset of QACs has been monitored using targeted chemical analysis. In this study, a total of 111 dust samples were collected from homes and various public settings in South China during the COVID-19 pandemic and were analyzed for traditional and emerging QACs using high-resolution mass spectrometry. The total traditional QAC concentrations in residential dust (∑traditional QAC, sum of 18 traditional QACs) ranged from 13.8 to 150 µg/g with a median concentration of 42.2 µg/g. Twenty-eight emerging QACs were identified in these samples, and the composition of ∑emerging QAC (sum of emerging QACs) to ∑QAC (sum of traditional and emerging QACs) ranged from 19 to 42% across various microenvironments, indicating the widespread existence of emerging QACs in indoor environments. Additionally, dust samples from cinemas exhibited higher ∑QAC concentrations compared to homes (medians 65.9 µg/g vs 58.3 µg/g, respectively), indicating heavier emission sources of QACs in these places. Interestingly, significantly higher ∑QAC concentrations were observed in dust from the rooms with carpets than those without (medians 65.6 µg/g vs 32.6 µg/g, p < 0.05, respectively). Overall, this study sheds light on the ubiquitous occurrence of QACs in indoor environments in South China.

2.
BMC Biol ; 21(1): 200, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749565

RESUMEN

BACKGROUND: Lepidoptera (butterflies and moths) is one of the most geographically widespread insect orders in the world, and its species play important and diverse ecological and applied roles. Climate change is one of the biggest challenges to biodiversity this century, and lepidopterans are vulnerable to climate change. Temperature-dependent gene expression differences are of relevance under the ongoing climate crisis. However, little is known about how climate affects gene expression in lepidopterans and the ecological consequences of this, particularly with respect to genes with biased expression in one of the sexes. The common yellow butterfly, Eurema hecabe (Family Pieridae), is one of the most geographically widespread lepidopterans that can be found in Asia, Africa, and Australia. Nevertheless, what temperature-dependent effects there may be and whether the effects differ between the sexes remain largely unexplored. RESULTS: Here, we generated high-quality genomic resources for E. hecabe along with transcriptomes from eight developmental stages. Male and female butterflies were subjected to varying temperatures to assess sex-specific gene expression responses through mRNA and microRNA transcriptomics. We find that there are more temperature-dependent sex-biased genes in females than males, including genes that are involved in a range of biologically important functions, highlighting potential ecological impacts of increased temperatures. Further, by considering available butterfly data on sex-biased gene expression in a comparative genomic framework, we find that the pattern of sex-biased gene expression identified in E. hecabe is highly species-specific, rather than conserved across butterfly species, suggesting that sex-biased gene expression responses to climate change are complex in butterflies. CONCLUSIONS: Our study lays the foundation for further understanding of differential responses to environmental stress in a widespread lepidopteran model and demonstrates the potential complexity of sex-specific responses of lepidopterans to climate change.


Asunto(s)
Mariposas Diurnas , Femenino , Masculino , Animales , Mariposas Diurnas/genética , Temperatura , Genómica , Australia , Biodiversidad
3.
Nucleic Acids Res ; 49(16): 9174-9193, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417622

RESUMEN

To investigate how exogenous DNA concatemerizes to form episomal artificial chromosomes (ACs), acquire equal segregation ability and maintain stable holocentromeres, we injected DNA sequences with different features, including sequences that are repetitive or complex, and sequences with different AT-contents, into the gonad of Caenorhabditis elegans to form ACs in embryos, and monitored AC mitotic segregation. We demonstrated that AT-poor sequences (26% AT-content) delayed the acquisition of segregation competency of newly formed ACs. We also co-injected fragmented Saccharomyces cerevisiae genomic DNA, differentially expressed fluorescent markers and ubiquitously expressed selectable marker to construct a less repetitive, more complex AC. We sequenced the whole genome of a strain which propagates this AC through multiple generations, and de novo assembled the AC sequences. We discovered CENP-AHCP-3 domains/peaks are distributed along the AC, as in endogenous chromosomes, suggesting a holocentric architecture. We found that CENP-AHCP-3 binds to the unexpressed marker genes and many fragmented yeast sequences, but is excluded in the yeast extremely high-AT-content centromeric and mitochondrial DNA (> 83% AT-content) on the AC. We identified A-rich motifs in CENP-AHCP-3 domains/peaks on the AC and on endogenous chromosomes, which have some similarity with each other and similarity to some non-germline transcription factor binding sites.


Asunto(s)
Segregación Cromosómica , Cromosomas Artificiales/genética , Mitosis , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Centrómero/genética , Centrómero/metabolismo , Secuencia Rica en GC , Proteínas de Choque Térmico/metabolismo , Unión Proteica , Saccharomyces cerevisiae
4.
BMC Genomics ; 23(1): 65, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057741

RESUMEN

BACKGROUND: Soybean is a major legume crop with high nutritional and environmental values suitable for sustainable agriculture. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are important regulators of gene functions in eukaryotes. However, the interactions between these two types of ncRNAs in the context of plant physiology, especially in response to salinity stress, are poorly understood. RESULTS: Here, we challenged a cultivated soybean accession (C08) and a wild one (W05) with salt treatment and obtained their small RNA transcriptomes at six time points from both root and leaf tissues. In addition to thoroughly analyzing the differentially expressed miRNAs, we also documented the first case of miRNA arm-switching (miR166m), the swapping of dominant miRNA arm expression, in soybean in different tissues. Two arms of miR166m target different genes related to salinity stress (chloroplastic beta-amylase 1 targeted by miR166m-5p and calcium-dependent protein kinase 1 targeted by miR166m-3p), suggesting arm-switching of miR166m play roles in soybean in response to salinity stress. Furthermore, two pairs of miRNA:lncRNA interacting partners (miR166i-5p and lncRNA Gmax_MSTRG.35921.1; and miR394a-3p and lncRNA Gmax_MSTRG.18616.1) were also discovered in reaction to salinity stress. CONCLUSIONS: This study demonstrates how ncRNA involves in salinity stress responses in soybean by miRNA arm switching and miRNA:lncRNA interactions. The behaviors of ncRNAs revealed in this study will shed new light on molecular regulatory mechanisms of stress responses in plants, and hence provide potential new strategies for crop improvement.


Asunto(s)
Glycine max , MicroARNs , ARN Largo no Codificante , MicroARNs/genética , ARN Largo no Codificante/genética , ARN de Planta/genética , Estrés Salino , Glycine max/genética , Transcriptoma
5.
Fungal Genet Biol ; 146: 103485, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33253902

RESUMEN

The homokaryotic Coprinopsis cinerea strain A43mut B43mut pab1-1 #326 is a widely used experimental model for developmental studies in mushroom-forming fungi. It can grow on defined artificial media and complete the whole lifecycle within two weeks. The mutations in mating type factors A and B result in the special feature of clamp formation and fruiting without mating. This feature allows investigations and manipulations with a homokaryotic genetic background. Current genome assembly of strain #326 was based on short-read sequencing data and was highly fragmented, leading to the bias in gene annotation and downstream analyses. Here, we report a chromosome-level genome assembly of strain #326. Oxford Nanopore Technology (ONT) MinION sequencing was used to get long reads. Illumina short reads was used to polish the sequences. A combined assembly yield 13 chromosomes and a mitochondrial genome as individual scaffolds. The assembly has 15,250 annotated genes with a high synteny with the C. cinerea strain Okayama-7 #130. This assembly has great improvement on contiguity and annotations. It is a suitable reference for further genomic studies, especially for the genetic, genomic and transcriptomic analyses in ONT long reads. Single nucleotide variants and structural variants in six mutagenized and cisplatin-screened mutants could be identified and validated. A 66 bp deletion in Ras GTPase-activating protein (RasGAP) was found in all mutants. To make a better use of ONT sequencing platform, we modified a high-molecular-weight genomic DNA isolation protocol based on magnetic beads for filamentous fungi. This study showed the use of MinION to construct a fungal reference genome and to perform downstream studies in an individual laboratory. An experimental workflow was proposed, from DNA isolation and whole genome sequencing, to genome assembly and variant calling. Our results provided solutions and parameters for fungal genomic analysis on MinION sequencing platform.


Asunto(s)
Agaricales/genética , Cromosomas Fúngicos/genética , Genes del Tipo Sexual de los Hongos/genética , Genoma Fúngico/genética , Variación Genética , Genoma Mitocondrial/genética , Anotación de Secuencia Molecular , Mutación/genética , Secuenciación Completa del Genoma , Proteínas Activadoras de ras GTPasa/genética
6.
Fungal Genet Biol ; 143: 103432, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32681999

RESUMEN

The balance and interplay between sexual and asexual reproduction is one of the most intriguing mysteries in the study of fungi. The choice of developmental strategy reflects the ability of fungi to adapt to the changing environment. However, the evolution of developmental paths and the metabolic regulation during differentiation and morphogenesis are poorly understood. Here, an analysis was performed of carbohydrate metabolism and gene expression regulation during the early differentiation process from the vegetative mycelium, to the differentiated structures, fruiting body, oidia and sclerotia, of a homokaryotic fruiting Coprinopsis cinerea strain A43mutB43mut pab1-1 #326. Changes during morphogenesis and the evolution of developmental strategies were followed. Conversion between glucose and glycogen and between glucose and beta-glucan were the main carbon flows in the differentiation processes. Genes related to carbohydrate transport and metabolism were significantly differentially expressed among paths. Sclerotia displayed a set of specifically up-regulated genes that were enriched in the carbon metabolism and energy production and conversion processes. Evolutionary transcriptomic analysis of four developmental paths showed that all transcriptomes were under the purifying selection, and the more stressful the environment, the younger the transcriptome age. Oidiation has the lowest value of transcriptome age index (TAI) and transcriptome divergence index (TDI), while the fruiting process has the highest of both indexes. These findings provide new insights into the regulations of carbon metabolism and gene expressions during the early stages of fungal developmental paths differentiation, and improve our understanding of the evolutionary process of life history and reproductive strategy in fungi.


Asunto(s)
Agaricales/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/genética , Transcriptoma/genética , Agaricales/genética , Diferenciación Celular/genética , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/genética , Micelio/genética , Micelio/crecimiento & desarrollo
7.
Fungal Genet Biol ; 142: 103416, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32522620

RESUMEN

Coprinopsis cinerea is a model mushroom-forming basidiomycete which produces basidiospores during sexual reproduction. This fungus is widely used to study fruiting body formation and development. Molecular mechanisms controlling its growth from vegetative mycelium to multicellular mature fruiting body have been studied extensively. However, little is known about the underlying biological processes during germ tube outgrowth or the transition from basidiospores to multinucleate hyphae. To better understand sexual spore germination in fungi, here we examined the time-dependent cellular events at resting, germinating and fully germinated basidiospores of C. cinerea by genome-wide transcriptional and post-transcriptional analyses and by carbohydrate composition analysis. Our results revealed a high demand of protein degradation, and biosynthesis of various compounds at the early stage of basidiospore gemination and dynamic changes of carbohydrate metabolism throughout the germination process. Seven microRNA-like RNAs (milRNAs) were identified in the resting basidiospores of C. cinerea, six of which were basidiospore-specific. Glycogen and trehalose were shown to be the carbon sources supporting the initiation of germ tube outgrowth. One basidiospore-specific milRNA, cci-milR-37, was found to be a potential regulator of glycogen metabolic pathways related to vegetative hyphal growth. Our results demonstrated the mRNA and miRNA-mediated regulation on energy production, protein and carbohydrate metabolisms at the early developmental stages of germ tube to form totipotent hyphae. To our knowledge, this is the first study to show the roles of miRNAs in mushroom basidiospore germination and out-growth.


Asunto(s)
Agaricales/genética , Genoma Fúngico/genética , MicroARNs/genética , ARN Mensajero/genética , Agaricales/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica/genética , Células Germinativas/crecimiento & desarrollo
8.
J Environ Sci (China) ; 77: 198-209, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30573083

RESUMEN

Graphene quantum dots (GQDs) possess great potential in various applications due to their superior physicochemical properties and wide array of available surface modifications. However, the toxicity of GQDs has not been systematically assessed, thus hindered their further development; especially, the risk of surface modifications of GQDs is largely unknown. In this study, we employed a lung carcinoma A549 cells as the model to investigate the cytotoxicity and autophagy induction of three types GQDs, including cGQDs (COOH-GQDs), hGQDs (OH-GQDs), and aGQDs (NH2-GQDs). The results showed hGQDs was the most toxic, as significant cell death was induced at the concentration of 100 µg/mL, determining by WST-1 assay as well as Annexin-V-FITC/PI apoptosis analysis, whereas cGQDs and aGQDs were non-cytotoxic within the measured concentration. Autophagy detection was performed by TEM examination, LC3 fluorescence tracking, and Western-blot. Both aGQDs and hGQDs induced cellular autophagy to various degrees except for cGQDs. Further analysis on autophagy pathways indicated all GQDs significantly activated p-p38MAPK; p-ERK1/2 was inhibited by aGQDs and hGQDs but activated by cGQDs. p-JNK was inhibited by aGQDs and cGQDs, while activated by hGQDs. Simultaneously, Akt was activated by hGQDs but inhibited by aGQDs. Inhibition of autophagy by 3-MA significantly increased the cytotoxicity of GQDs, suggesting that autophagy played a protective role against the toxicity of GQDs. In conclusion, cGQDs showed excellent biocompatibility and may be considered for biological applications. Autophagy induction may be included in the health risk assessment of GQDs as it reflects the stress status which may eventually lead to diseases.


Asunto(s)
Autofagia/efectos de los fármacos , Citotoxinas/química , Citotoxinas/toxicidad , Grafito/química , Puntos Cuánticos/química , Puntos Cuánticos/toxicidad , Células A549 , Apoptosis/efectos de los fármacos , Humanos , Relación Estructura-Actividad , Propiedades de Superficie
9.
Arch Toxicol ; 92(10): 3131-3147, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30022264

RESUMEN

Wide application of perfluoroalkyl acids (PFAAs) has raised great concerns on their side-effects on human health. PFAAs have been shown to accumulate mainly in the liver and cause hepatotoxicity. However, PFAAs can also deposit in lung tissues through air-borne particles and cause serious pulmonary toxicity. But the underlying mechanisms are still largely unknown. Autophagy is a type of programmed cell death parallel to necrosis and apoptosis, and may be involved in the lung toxicity of PFAAs. In this study, lung cancer cells, A549, were employed as the model to investigate the effects of three PFAAs with different carbon chain lengths on cell autophagy. Through Western blot analysis on LC3-I/II ratio of cells exposed to non-cytotoxic concentration (200 µM) and cytotoxic concentration (350 µM), we found concentration-dependent increase of autophagosomes in cells, which was further confirmed by TEM examination on ultra-thin section of cells and fluorescence imaging on autophagosomes in live cells. The abundance of p62 increased with the PFAAs concentration indicating the blockage of autophagy flux. Furthermore, we identified the mitochondrial autophagy (mitophagy) and endoplasmic reticulum autophagy (ER-phagy) morphologically as the major types of autophagy, suggesting the disruption on mitochondria and ERs. These organelle damages were confirmed by the overgeneration of ROS, hyperpolarization of mitochondrial membrane potential, as well as the up-regulation of ER-stress-related proteins, ATF4 and p-IRE1. Further analysis on the signaling pathways showed that PFAAs activated the MAPK pathways and inhibited the PI3K/Akt pathway, with potencies following the order of PFDA > PFNA > PFOA. Anti-oxidant (NAC) treatment did not rescue cells from death, indicating that oxidative stress is not the reason of cytotoxicity. Inhibition of autophagy by Atg5 siRNA and chloroquine even increased the toxicity of PFAAs, suggesting that PFAAs-autophagy was induced as the secondary effects of organelle damages and played a protective role during cell death.


Asunto(s)
Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fluorocarburos/toxicidad , Mitocondrias/efectos de los fármacos , Células A549 , Autofagia/fisiología , Caprilatos/química , Caprilatos/toxicidad , Supervivencia Celular/efectos de los fármacos , Ácidos Decanoicos/química , Ácidos Decanoicos/toxicidad , Ácidos Grasos , Fluorocarburos/química , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
10.
Sensors (Basel) ; 18(11)2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30366399

RESUMEN

Due to the rapid installation of a massive number of fixed and mobile sensors, monitoring machines are intentionally or unintentionally involved in the production of a large amount of geospatial data. Environmental sensors and related software applications are rapidly altering human lifestyles and even impacting ecological and human health. However, there are rarely specific geospatial sensor web (GSW) applications for certain ecological public health questions. In this paper, we propose an ontology-driven approach for integrating intelligence to manage human and ecological health risks in the GSW. We design a Human and Ecological health Risks Ontology (HERO) based on a semantic sensor network ontology template. We also illustrate a web-based prototype, the Human and Ecological Health Risk Management System (HaEHMS), which helps health experts and decision makers to estimate human and ecological health risks. We demonstrate this intelligent system through a case study of automatic prediction of air quality and related health risk.


Asunto(s)
Monitoreo del Ambiente/métodos , Sistemas de Información Geográfica , Ecología , Humanos , Inteligencia , Programas Informáticos
11.
J Fungi (Basel) ; 10(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38392812

RESUMEN

Lithium chloride (LiCl) has been used in signalling and molecular studies of animals, plants, and yeast. However, information on its roles in basidiomycetous fungi is still limited. In this study, we used RNA-Seq to study the effects of LiCl on Coprinopsis cinerea. LiCl enhanced mycelial growth and inhibited fruiting body formation in C. cinerea. RNA-Seq of the LiCl-treated C. cinerea resulted in a total of 14,128 genes. There were 1199 differentially expressed genes (DEGs) between the LiCl-treated samples and control samples in the mycelium stage (the first time point), and 1391 DEGs were detected when the control samples were forming hyphal knots while the treated samples were still in the mycelium (the second time point). Pathway enrichment analysis of the DEGs revealed a significant association between enhanced mycelium growth in the LiCl-treated C. cinerea and metabolic pathways. In addition, the DEGs involved in cellular process pathways, including "cell cycle-yeast" and "meiosis-yeast", were identified in suppressed C. cinerea fruiting body formation by LiCl under favourable environmental conditions. As LiCl can predominantly inhibit the activity of glycogen synthase kinase3 (GSK3), our findings suggest that LiCl affects the expression of genes involved in fruiting body initiation and cellular processes by inhibiting GSK3 activity which is essential for fruiting body formation.

12.
Sci Total Environ ; 857(Pt 2): 159335, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36228792

RESUMEN

Microplastics, tiny plastic fragments from 1 µm to 5 mm, are widespread globally, even in remote environments. Due to their small sizes, they are easily ingested by organisms and contaminate the food chain. Recently, the biodegradation of some recalcitrant plastics by larva of Tenebrio molitor L. (mealworm) has been reported. However, the effects of microplastic feeding on them are limited. In our study, we selected rigid micro-polystyrene (MPS) as the model plastic to investigate the influences of particle size and larval age on plastic consumption and degradation, and the effects of microplastic feeding on the survival and development of mealworms at different larval ages. The smaller the microplastic fragment was, the more plastics the mealworms consumed, though there was a limit on particle size. Mealworms of three-month-old had the highest consumption rate. Both depolymerization and modification on the functional groups were only observed in frass excreted by three-month old mealworms. Additionally, mealworms cofed with wheat bran and MPS of this age had comparable mortality, larval growing curve and pupation distribution as the control group with wheat bran. Our results demonstrated that mealworms in this larval stage had the greatest resistance to high doses of microplastic feeding. We suggested that microplastic waste could be provided to three-month old mealworms as half replacement of bran diet to result in the greatest plastic consumption and degradation.


Asunto(s)
Tenebrio , Animales , Tenebrio/metabolismo , Poliestirenos/metabolismo , Larva/metabolismo , Plásticos/metabolismo , Tamaño de la Partícula , Microplásticos , Fibras de la Dieta
13.
J Fungi (Basel) ; 9(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37755023

RESUMEN

Coprinopsis cinerea is one of the model species used in fungal developmental studies. This mushroom-forming Basidiomycetes fungus has several developmental destinies in response to changing environments, with dynamic developmental regulations of the organism. Although the gene expression in C. cinerea development has already been profiled broadly, previous studies have only focused on a specific stage or process of fungal development. A comprehensive perspective across different developmental paths is lacking, and a global view on the dynamic transcriptional regulations in the life cycle and the developmental paths is far from complete. In addition, knowledge on co- and post-transcriptional modifications in this fungus remains rare. In this study, we investigated the transcriptional changes and modifications in C. cinerea during the processes of spore germination, vegetative growth, oidiation, sclerotia formation, and fruiting body formation by inducing different developmental paths of the organism and profiling the transcriptomes using the high-throughput sequencing method. Transition in the identity and abundance of expressed genes drive the physiological and morphological alterations of the organism, including metabolism and multicellularity construction. Moreover, stage- and tissue-specific alternative splicing and RNA editing took place and functioned in C. cinerea. These modifications were negatively correlated to the conservation features of genes and could provide extra plasticity to the transcriptome during fungal development. We suggest that C. cinerea applies different molecular strategies in its developmental regulation, including shifts in expressed gene sets, diversifications of genetic information, and reversible diversifications of RNA molecules. Such features would increase the fungal adaptability in the rapidly changing environment, especially in the transition of developmental programs and the maintenance and balance of genetic and transcriptomic divergence. The multi-layer regulatory network of gene expression serves as the molecular basis of the functioning of developmental regulation.

14.
Sci Total Environ ; 854: 158585, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36089014

RESUMEN

Human are exposed to microplastics (MP) via inhalation or ingestion daily and inevitably. The liver is an important target organ of MP. Bisphenol A (BPA) is one of commonly used plasticizers. It is added in plastics, but also generally detected in the biological samples of human beings. However, the combined toxic effect of MP and BPA on human liver is unclear. In this study, a novel 3D in vitro model, the liver organoid (LO) derived from human-pluripotent stem cells, has been utilized to explore the 1 µm polystyrene (PS)-induced hepatotoxicity with BPA individually and jointly. Conclusively, all the changes in the cytotoxicity, cellular and molecular makers regarding the energy supplement, hepatic injury, oxidative stress, inflammatory response, disruption in the lipid accumulation, as well as epigenetics regulation induced by BPA or PS on the LOs individually were comparable to previous study. The BPA levels in the culture medium were declined by the added PS. The combined adverse effect of PS and BPA on the LOs was identified to be synergistic upon deteriorated hepatotoxicity and interfered the gene panels related to multiple processes of lipid metabolism, together with the proteins of HNF4A, CD36, ACC1, CPT1A, CYP2E1, ERα and ERß. Specifically, PS didn't change the ERα or ERß individually, but when the LOs were co-exposed to PS and BPA, the ERα further elevated significantly and synergistically. Our findings highlight the metabolic-related health risk due to co-exposure to MP and BPA, even at low-doses equivalent to human internal exposure level. Based on these findings, the potential adverse outcome pathway related to PS and BPA singly and jointly were proposed, predicting two possible outcomes to be hepatic steatosis. Moreover, the ERα and HNF4A were proposed to be potential candidate markers to investigate the "vector-like effect" of PS in the present of BPA.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Células Madre Embrionarias Humanas , Humanos , Microplásticos/metabolismo , Poliestirenos/metabolismo , Plásticos/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Hígado/metabolismo , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/metabolismo , Receptores de Estrógenos/metabolismo , Organoides , Lípidos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
15.
Plant Genome ; 16(4): e20316, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36890704

RESUMEN

The growth and development of plants are the result of the interplay between the internal developmental programming and plant-environment interactions. Gene expression regulations in plants are made up of multi-level networks. In the past few years, many studies were carried out on co- and post-transcriptional RNA modifications, which, together with the RNA community, are collectively known as the "epitranscriptome." The epitranscriptomic machineries were identified and their functional impacts characterized in a broad range of physiological processes in diverse plant species. There is mounting evidence to suggest that the epitranscriptome provides an additional layer in the gene regulatory network for plant development and stress responses. In the present review, we summarized the epitranscriptomic modifications found so far in plants, including chemical modifications, RNA editing, and transcript isoforms. The various approaches to RNA modification detection were described, with special emphasis on the recent development and application potential of third-generation sequencing. The roles of epitranscriptomic changes in gene regulation during plant-environment interactions were discussed in case studies. This review aims to highlight the importance of epitranscriptomics in the study of gene regulatory networks in plants and to encourage multi-omics investigations using the recent technical advancements.


Asunto(s)
Regulación de la Expresión Génica , Transcriptoma , ARN/química , Procesamiento Postranscripcional del ARN , Redes Reguladoras de Genes
16.
ScientificWorldJournal ; 2012: 169724, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22619613

RESUMEN

Current literature suggests that grassland degradation occurs in areas with poor soil conditions or noticeable environmental changes and is often a result of overgrazing or human disturbances. However, these views are questioned in our analyses. Based on the analysis of satellite vegetation maps from 1984, 1998, and 2004 for the Xilin River Basin, Inner Mongolia, China, and binary logistic regression (BLR) analysis, we observe the following: (1) grassland degradation is positively correlated with the growth density of climax communities; (2) our findings do not support a common notion that a decrease of biological productivity is a direct indicator of grassland degradation; (3) a causal relationship between grazing intensity and grassland degradation was not found; (4) degradation severity increased steadily towards roads but showed different trends near human settlements. This study found complex relationships between vegetation degradation and various microhabitat conditions, for example, elevation, slope, aspect, and proximity to water.


Asunto(s)
Ecosistema , Poaceae , China
17.
Environ Int ; 162: 107151, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35228011

RESUMEN

Microplastics (MPs) are ubiquitous in the environment, including the atmosphere. Yet, the size detection limit in measuring airborne MPs undermines the determination of the human MP exposure level through inhalation and also restricts the understanding of airborne MPs pollution behavior. To comprehensively and accurately assess the MPs pollution features in air, we demonstrate a qualitative and quantitively method using Raman microscopy to characterize the suspended atmospheric MPs. Our methodology has achieved detailed characterization of MPs down to 1 µm and ensured all the MPs to be counted regardless of their transparency. Further, a case study of indoor and outdoor samples from eight sampling sites were conducted in Shanghai, China. Inhalable MPs prevails in all samples with higher concentrations occur indoors. Indoor MPs varied strongly in composition compare to outdoor. Ventilation played an important role in lowering indoor MPs concentrations, and MPs in better ventilated indoors displayed similar distribution patterns as outdoors. MPs detected were mainly Polyethylene, Polyester, Phenolic Resin and Polyvinyl chloride. 77% of the Polyethylene detected were transparent films, suggesting the fragmentation from PE film products, such as plastic bags and cling films. Our work confirmed the widespread existences of inhalable MPs in air and provides solid foundations for future studies to understand the realistic MPs exposure conditions through inhalation.


Asunto(s)
Contaminación del Aire Interior , Microplásticos , Contaminación del Aire Interior/análisis , China , Monitoreo del Ambiente/métodos , Humanos , Límite de Detección , Plásticos , Polietilenos
18.
Comput Urban Sci ; 2(1): 11, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669158

RESUMEN

Schools across the United States and around the world canceled in-person classes beginning in March 2020 to contain the spread of the COVID-19 virus, a public health emergency. Many empirical pieces of research have demonstrated that educational institutions aid students' overall growth and studies have stressed the importance of prioritizing in-person learning to cultivate social values through education. Two years into the COVID-19 pandemic, policymakers and school administrators have been making plans to reopen schools. However, few scientific studies had been done to support planning classroom seating while complying with the social distancing policy. To ensure a safe return to campus, we designed a 'community-safe' method for classroom management that incorporates social distancing and computes seating capacity. In this paper, we present custom GIS tools developed for two types of classroom settings - classrooms with fixed seating and classrooms with movable seating. The fixed model tool is based on an optimized backtracking algorithm. Our flexible model tool can consider various classroom dimensions, fixtures, and a safe social distance. The tool is built on a python script that can be executed to calculate revised seating capacity to maintain a safe social distance for any defined space. We present a real-world implementation of the system at Eastern Michigan University, United States, where it was used to support campus reopening planning in 2020. Our proposed GIS-based technique could be applicable for seating planning in other indoor and outdoor settings. Supplementary Information: The online version contains supplementary material available at 10.1007/s43762-022-00040-3.

19.
Chemosphere ; 287(Pt 1): 132063, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34523442

RESUMEN

Plastic waste has been considered a serious global environmental problem for decades. Despite the high recalcitrance of synthetic plastics, the biodegradation of polyethylene (PE), polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC) by some insect larvae has been reported; however, the mechanism of degradation remains largely unknown. We investigated the effects of plastics on the growth of mealworms (larvae of Tenebrio molitor) and their role in PS and PE degradation. Mealworms were capable of ingesting high-impact polystyrene (HIPS), expanded polystyrene (EPS) and low-density polyethylene (LDPE) but not linear low-density polyethylene (LLDPE) or polypropylene (PP). Plastic consumption was negatively dependent on plastic crystallinity. Transcriptome analysis and KEGG mapping revealed that mealworms act as downstream decomposers in plastic depolymerization and that fatty acid degradation pathways may play important roles in the digestion of plastic degradation intermediates produced by gut bacteria. In addition, PS and PE degradation was achieved via the diffusion of extracellular depolymerases, which probably acted on the distal backbone and produce shorter linear chains that containing ≤16 C atoms instead of branched chains. Additionally, the intermediates of PS degradation are expected to be further decomposed by mealworms as xenobiotics. This study provided a preliminary understanding of plastic degradation mechanism by mealworms.


Asunto(s)
Tenebrio , Animales , Larva , Plásticos , Poliestirenos , Transcriptoma
20.
Sci Total Environ ; 806(Pt 1): 150328, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34571217

RESUMEN

Microplastic particles (MP) has been detected in the environment widespread. Human beings are inevitably exposed to MP via multiple routines. However, the hazard identifications, as direct evidence of exposure and health risk, have not been fully characterized in human beings. Many studies suggest the liver is a potential target organ, but currently no study regarding the MP on human liver has been reported. In this study, we used a novel in vitro 3D model, the liver organoids (LOs) generated from human pluripotent stem cells, as an alternative model to the human liver, to explore the adverse biological effect of 1 µm polystyrene-MP (PS-MP) microbeads applying a non-static exposure approach. When the LOs were exposed to 0.25, 2.5 and 25 µg/mL PS-MP (the lowest one was relevant to the environmental concentrations, calculated to be 102 ± 7 items/mL). The potential mechanisms of PS-MP induced hepatotoxicity and lipotoxicity, in aspects of cytotoxicity, levels of key molecular markers, ATP production, alteration in lipid metabolism, ROS generation, oxidative stress and inflammation response, were determined. Specifically, it has been firstly observed that PS-MP could increase the expression of hepatic HNF4A and CYP2E1. Based on these findings, the potential adverse outcome pathways (AOPs) relevant to PS-MP were proposed, and the potential risks of PS-MP on liver steatosis, fibrosis and cancer were implicated. The combined application of novel LOs model and AOPs framework provides a new insight into the risk assessment of MP. Further studies are anticipated to validate the hepatotoxic molecular mechanism of PS-MP based on HNF4A or CYP2E1, and to investigate the MP-induced physical damage and its relationship to hepatic adverse effect for human beings. CAPSULE: Microplastics cause hepatotoxicity and disrupt lipid metabolism in the human pluripotent stem cells-derived liver organoids, providing evidence for human implication.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Contaminantes Químicos del Agua , Humanos , Metabolismo de los Lípidos , Microplásticos , Organoides/química , Plásticos/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA