Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 341, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120730

RESUMEN

Cytomegalovirus (CMV) has successfully established a long-lasting latent infection in humans due to its ability to counteract the host antiviral innate immune response. During coevolution with the host, the virus has evolved various evasion techniques to evade the host's innate immune surveillance. At present, there is still no vaccine available for the prevention and treatment of CMV infection, and the interaction between CMV infection and host antiviral innate immunity is still not well understood. However, ongoing studies will offer new insights into how to treat and prevent CMV infection and its related diseases. Here, we update recent studies on how CMV evades antiviral innate immunity, with a focus on how CMV proteins target and disrupt critical adaptors of antiviral innate immune signaling pathways. This review also discusses some classic intrinsic cellular defences that are crucial to the fight against viral invasion. A comprehensive review of the evasion mechanisms of antiviral innate immunity by CMV will help investigators identify new therapeutic targets and develop vaccines against CMV infection.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Evasión Inmune , Inmunidad Innata , Humanos , Inmunidad Innata/inmunología , Citomegalovirus/inmunología , Evasión Inmune/inmunología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Transducción de Señal/inmunología , Interacciones Huésped-Patógeno/inmunología , Animales , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
2.
Small ; 20(11): e2307349, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38105349

RESUMEN

Co electroreduction of carbon dioxide and nitrate to synthesize urea provides an alternative strategy to high energy-consumption traditional methods. However, the complexity of the reaction mechanism and the high energy barrier of nitrate reduction result in a diminished production of urea. Herein, a convenient electrodeposition technique to prepare the FeOOH with low spin state iron that increases the yield rate of urea efficiently is employed. According to soft X-ray Absorption Spectroscopy and theoretical calculations, the unique configuration of low spin state iron as electron acceptors can effectively induce electron pair transfer from the occupied σ orbitals of intermediate * NO to empty d orbitals of iron. This σ→d donation mechanism leads to a reduction in the energy barrier associated with the rate-determining step (* NOOH→* NO + * OH), hence augmenting the urea generation. The low spin state iron presents a high urea yield rate of 512 µg h-1  cm-2 , representing approximately two times compared to the medium spin state iron. The key intermediates (* NH2 and * CO) in the formation of C─N bond are detected with in situ Fourier transform infrared spectroscopy. The coupling of * NH2 and * CO contributes to the formation of * CONH2 , which subsequently endures multi-step proton-coupled electron transfer to generate urea.

3.
Small ; 20(31): e2306410, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38456764

RESUMEN

Electrooxidation of biomass into fine chemicals coupled with energy-saving hydrogen production for a zero-carbon economy holds great promise. Advanced anode catalysts determine the cell voltage and electrocatalytic efficiency greatly, further the rational design and optimization of their active site coordination remains a challenge. Herein, a phosphorus-oxygen terminals-rich species (Ni2P-O-300) via an anion-assisted pyrolysis strategy is reported to induce strong electronic coupling and high valence state of active nickel sites over nickel phosphide. This ultimately facilitates the rapid yet in-situ formation of high-valence nickel with a high reaction activity under electrochemical conditions, and exhibits a low potential of 1.33 V vs. RHE at 10 mA cm-2, exceeding most of reported transition metal-based catalysts. Advanced spectroscopy, theoretical calculations, and experiments reveal that the functional P-O species can induce the favorable local bonding configurations for electronic coupling, promoting the electron transfer from Ni to P and the adsorption of benzyl alcohol (BA). Finally, the hydrogen production efficiency and kinetic constant of BA electrooxidation by Ni2P-O-300 are increased by 9- and 2.8- fold compared with the phosphorus-oxygen terminals-deficient catalysts (Ni2P-O-500). This provides an anion-assisted pyrolysis strategy to modulate the electronic environment of the Ni site, enabling a guideline for Ni-based energy/catalysis systems.

4.
Small ; : e2309286, 2024 Mar 07.
Artículo en Catalán | MEDLINE | ID: mdl-38453682

RESUMEN

As one of the key components of supercapacitors, electrolyte is intensively investigated to promote the fast development of the energy supply system under extremely cold conditions. However, high freezing point and sluggish ion transport kinetics for routine electrolytes hinder the application of supercapacitors at low temperatures. Resultantly, the liquid electrolyte should be oriented to reduce the freezing point, accompanied by other superior characteristics, such as large ionic conductivity, low viscosity and outstanding chemical stability. In this review, the intrinsically physical parameters and microscopic structure of low-temperature electrolytes are discussed thoroughly, then the previously reported strategies that are used to address the associated issues are summarized subsequently from the aspects of aqueous and non-aqueous electrolytes (organic electrolyte and ionic liquid electrolyte). In addition, some advanced spectroscopy techniques and theoretical simulation to better decouple the solvation structure of electrolytes and reveal the link between the key physical parameters and microscopic structure are briefly presented. Finally, the further improvement direction is put forward to provide a reference and guidance for the follow-up research.

5.
Biometals ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212870

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease in the older adults. The main pathological change in PD is the degenerative death of dopamine (DA) neurons in the midbrain substantia nigra, which causes a significant decrease in the DA content of the striatum. However, the exact etiology of this pathological change remains unclear. Genetic factors, environmental factors, aging, and oxidative stress may be involved in the degenerative death of dopaminergic neurons in PD. Pharmacological treatment using levodopa (L-DOPA) remains the main treatment for PD. Most patients with PD consuming L-DOPA for a long time usually develop levodopa-induced dyskinesia (LID) after 6.5 years of use, and LID seriously affects the quality of life and increases the risk of disability. Recently, studies have revealed that cerebral iron deposition may be involved in LID development and that iron deposition has neurotoxic effects and accelerates disease onset. However, the relationship between cerebral iron deposition and LID remains unclear. Herein, we reviewed the mechanisms by which iron deposition may be associated with LID development, which are mainly related to oxidative stress, neuroinflammation, and mitochondrial and lysosomal dysfunction. Using iron as an important target, the search and development of safe and effective brain iron scavengers, and thus the alleviation and treatment of LID, has a very important scientific and clinical value, as well as a good application prospect.

6.
Nano Lett ; 23(7): 2786-2791, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36926927

RESUMEN

The optically driven acoustic modes and nonlinear response of plasmonic nanoparticles are important in many applications, but are strongly resonant, which restricts their excitation to predefined wavelengths. Here, we demonstrate that multilayered spherical plasmonic hetero-nanoparticles, formed by alternating layers of gold and silica, provide a platform for a broadband nonlinear optical response from visible to near-infrared wavelengths. They also act as a tunable optomechanical system with mechanically decoupled layers in which different acoustic modes can be selectively switched on/off by tuning the excitation wavelength. These observations not only expand the knowledge about the internal structure of composite plasmonic nanoparticles but also allow for an additional degree of freedom for controlling their nonlinear optical and mechanical properties.

7.
J Am Chem Soc ; 145(25): 13828-13838, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37256927

RESUMEN

Localized "water-in-salt" (LWIS) electrolytes are promising candidates for the next generation of high-voltage aqueous electrolytes with low viscosity/salt beyond high-salt electrolytes. An effective yet high-function diluent mainly determines the properties of LWIS electrolytes, being a key issue. Herein, the donor number of solvents is identified to serve as a descriptor of interaction intensity between solvents and salts to screen the organic diluents having few impacts on the solvation microenvironment and intrinsic properties of the original high-salt electrolyte, further leading to the construction of a novel low-viscosity electrolyte with a low dosage of the LiNO3 salt and well-kept intrinsic Li+-NO3--H2O clusters. Nonsolvating diluents, especially acetonitrile (AN) that has never been reported previously, are presented with the capability of constructing a LWIS electrolyte with nonflammability, electrode-philic features, lower viscosity, decreased salt dosage, and a greatly enhanced ion diffusion coefficient by about 280 times. This strongly relies on a huge difference of about 5000 times in coordination and solubility between AN and H2O toward LiNO3 (0.05 vs 25 mol kgsolvent-1) and the moderate interaction between AN and H2O. Multi-spectroscopic techniques and molecular dynamics simulations uncover the solvation chemistry at the microscopic level and the interplay among cations, anions, and H2O without/with AN. The identified unique diluting and nonsolvating effects of AN reveal well-maintained cation-anion-H2O clusters and enhanced intermolecular hydrogen bonding between AN and H2O, further reinforcing the H2O stability and expanding the voltage window up to 3.28 V. This is a breakthrough that is far beyond high-viscosity/salt electrolytes for high-voltage and high-rate aqueous supercapacitors.

8.
Analyst ; 143(13): 3107-3113, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29868679

RESUMEN

Facile preparation of water soluble and fluorescent N-doped MoS2 quantum dots (N-MoS2 QDs) is described herein. N was introduced to reduce defects in the MoS2 surface. The obtained N-MoS2 QDs exhibited excellent fluorescence characteristics with good photostability and excellent stability even in 3 M NaCl solution and when stored in a refrigerator for one year. Additionally, the fluorescent N-MoS2 QDs were developed as a simple and practical nanosensor for the detection of GO through hydrophobic π-π interactions between N-MoS2 QDs and GO, where the excited state electron and energy transfer may occur from N-MoS2 QDs to GO along with fluorescence quenching of N-MoS2 QDs. These results reveal that the limit of detection (LOD) was as low as 4 ng mL-1, which was able to satisfy the needs of the determination of GO in environmental water samples. Importantly, the N-MoS2 QDs nanosensor exhibits excellent detection selectivity against other ions or molecules in the environment. In this study, the proposed sensor was successfully used for the determination of GO content in environmental water samples.

9.
Mikrochim Acta ; 185(12): 534, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30406418

RESUMEN

A competitive colorimetric assay has been established to detect chloramphenicol (CAP). It is based on the use of colloidal and electrostatically stabilized aptamer-modified gold nanoparticles (GNPs). The CAP aptamer is modified by a sequence of 5 adenosine groups to anchor it on the surface of GNPs. It can competitively capture two compounds, viz. D-(-)-threo-2-amino-1-(4-nitrophenyl)-1,3-propanediol (CAP-base, with a positive charge) and CAP (which is uncharged). The capture of the positively charged CAP-base triggers the aggregation of modified GNPs in salt-containing solution, and this causes a color change from red to purple. However, in the presence of CAP and CAP-base, the capture of the uncharged CAP weakens this color change by a competing process for capture. Thus, the concentration of CAP is associated with the degree of deaggregation of GNPs and can be quantified by the ratio of absorbances at 620 nm and 520 nm. The assay has a 22 nM limit of detection in acidic solution, and the response is linear in the range of 0.20 to 3.20 µM CAP concentration. This assay was successfully applied to the determination of CAP in spiked environmental water samples. Conceivably, this method has a wide scope in that it may be applied to a wide range of analytes if respective aptamers are available. Graphical abstract Schematic presentation of a competitive non-cross linking deaggregating method for detecting chloramphenicol. The surface charge of polyA-Apt@GNPs and its aggregation degree (purple) are determined by the charge of target. (CAP-base: precursor of CAP; PolyA-Apt@GNPs: 5'-polyA-modified DNA aptamer functionalized gold nanoparticles.).


Asunto(s)
Aptámeros de Nucleótidos/química , Cloranfenicol/análisis , Colorimetría/métodos , Oro/química , Nanopartículas del Metal/química , Poli A/química , Aptámeros de Nucleótidos/metabolismo , Modelos Moleculares , Conformación Molecular
10.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 39(2): 136-41, 2014 Feb.
Artículo en Zh | MEDLINE | ID: mdl-24608386

RESUMEN

OBJECTIVE: To improve the surgical outcome of pituitary adenomas by identifying and preserving the pituitary stalk and the gland during surgery. METHODS: From October 2010 to September 2012, the author from the Department of Neurosurgery of Xiangya Hospital, Central South University operated on 51 patients with pituitary adenoma. During the operations, we carefully identified the normal adenohypophysis, pituitary stalk, neurohypophysis and the abnormal tissues either by direct observation or by medical images, aiming to excise the tumor thoroughly, protect the pituitary function and reduce the postoperative complications. RESULTS: Totally 37 patients (72.5%, 37/51) had total resection of the tumor, 12 (23.5%, 12/51) had subtotal tumor resection and the other 2 had major removal. The gland and the pituitary stalk were well identified and reserved. Detection of hormone content proved that the operation had little effect on the free triiodothyronine (FT3) and adrenocorticotropic hormone (ACTH), while for free tetraiodothyronine (FT4) and thyroid stimulating hormone (TSH) and postoperative followup significant alleviation was found. There was no significant fluctuation for the testosterone in the men preoperatively and postoperatively (all the above results were obtained without hormone replacement therapy). The main postoperative complications were as follows: temporary diabetes insipidus in 5 patients (9.8%, 5/51); electrolyte disorder (the appearance of hyponatremia) in 17 (33.3%, 17/51); and cerebrospinal fluid rhinorrhea and postoperative intracranial infection in 1 (2%, 1/51). No one died during the perioperation period. CONCLUSION: Microscopic transsphenoidal surgery is effective for pituitary adenomas including tumors violating the cavernous sinus. Accurate identification of the pituitary stalk, the gland and the abnormal tissue during the microscopic transsphenoidal operation plays a critical role in preserving the pituitary function and promoting postoperative rehabilitation.


Asunto(s)
Adenoma/cirugía , Microcirugia , Procedimientos Neuroquirúrgicos/métodos , Hipófisis/cirugía , Neoplasias Hipofisarias/cirugía , Humanos , Masculino , Hormonas Hipofisarias/sangre , Complicaciones Posoperatorias , Resultado del Tratamiento
11.
ACS Appl Mater Interfaces ; 16(10): 12916-12923, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38436244

RESUMEN

Carbon materials with hierarchical porous structures hold great potential for redox electrolyte-enhanced supercapacitors. However, restricted by the intrinsic inert and nonpolar characteristics of carbon, the energy barrier of anchoring redox electrolytes on the pore walls is relatively high. As such, the redox process at the interface less occurs, and the rate of mass transfer is impaired, further leading to a poor electrochemical performance. Here, a ferricyanide anion-philic interface made of in situ inserted boron species into carbon rings is constructed for enhanced charge storage in supercapacitors. Profiting from the unique component-driven effects, the polar anchoring sites on the pore wall can be built to grasp the charged redox ferricyanide anion from the bulk electrolyte and promote the redox process; the dynamics process is fastened correspondingly. Especially, the boron atoms in BC2O and BCO2 units with higher positive natural bond orbital values in the carbon skeleton are pinpointed as intrinsic active sites to bind the negatively charged nitrogen atoms in the ferricyanide anion via electrostatic interaction, confirmed by density functional theoretical calculations. This will suppress the shuttle and diffusion effects of the ferricyanide anion from the surface of the electrode to the bulk electrolyte. Finally, the well-designed PC-3 with high content of BC2O and BCO2 units can reach 1099 F g-1 at 2 mV s-1, which is a more than 2-fold increase over boron-free units of carbon (428 F g-1). The work offers a novel version for designing high-performance carbon materials with unique yet reaction species-philic effects.

12.
ACS Nano ; 18(22): 14595-14604, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38758185

RESUMEN

Defect engineering and nitrogen doping being effective strategies for modulating the surface chemical state of the carbon matrix have been widely explored to promote the catalytic activity in the territory of electrochemical energy storage and conversion devices. However, the controllable synthesis of carbon material with high-density specific defects and high nitrogen doping is still full of challenges. Here, we first synthesize one-dimensional necklace-like nitrogen-doped carbon nanochains (N-CNCs) with abundant defects on carbon fiber paper (CFP) by chemical vapor deposition (CVD) method. The resultant nanostructures are a bunch of interconnected carbon spheres with a hollow structure at the internode and present the complete one-dimensional nanochain configuration. Specifically, the N-CNCs with a corrugated surface possesses high content of sp3 defects (31.2%) and nitrogen (23.6 at %). Combining finite element analysis and experimental results, it reveals that the robust shear field generated by etching gas releasing from thermal decomposition of melamine in situ modulates the CVD process via changing the size and force environment of the metal catalyst droplets for formation of N-CNCs. Benefiting from the high ratio of sp3/sp2 and nitrogen doped on the surface, the N-CNCs@CFP displays a superior electrocatalytic performance for CO2RR, delivering CO Faradaic efficiency of 95.9% and a current density of 23.2 mA cm-2 at -0.86 V vs RHE. This work provides promising synthesis strategy and some inspirations for construction of ultradense and specific defects coupling with nitrogen doping sites into carbon materials to achieve high-efficiency electrocatalysis applications.

13.
Zhongguo Gu Shang ; 37(6): 5995-604, 2024 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-38910383

RESUMEN

OBJECTIVE: To campare biomechanical effects of different postural compression techniques on three-dimensional model of lumbar disc herniation (LDH) by finite element analysis. METHODS: Lumbar CT image of a 48-year-old female patient with LDH (heighted 163 cm, weighted 53 kg) was collected. Mimics 20.0, Geomagic Studio, Solidwords and other software were used to establish three-dimensional finite element model of LDH on L4,5 segments. Compression techniques under horizontal position, 30° forward bending and 10° backward extension were simulated respectively. After applying the pressure, the effects of compression techniques under different positions on stress, strain and displacement of various tissues of intervertebral disc and nerve root were observed. RESULTS: L4, 5 segment finite element model was successfully established, and the model was validated. When compression manipulation was performed on the horizontal position, 30° flexion and 10° extension, the annular stress were 0.732, 5.929, 1.286 MPa, the nucleus pulposus stress were 0.190, 1.527, 0.295 MPa, and the annular strain were 0.097, 0.922 and 0.424, the strain sizes of nucleus pulposus were 0.153, 1.222 and 0.282, respectively. The overall displacement distance of intervertebral disc on Y direction were -3.707, -18.990, -4.171 mm, and displacement distance of nerve root on Y direction were +7.836, +5.341, +3.859 mm, respectively. The relative displacement distances of nerve root and intervertebral disc on Y direction were 11.543, 24.331 and 8.030 mm, respectively. CONCLUSION: Compression manipulation could make herniated intervertebral disc produce contraction and retraction trend, by increasing the distance between herniated intervertebral disc and nerve root, to reduce symptoms of nerve compression, to achieve purpose of treatment for patients with LDH, in which the compression manipulation is more effective when the forward flexion is 30°.


Asunto(s)
Análisis de Elementos Finitos , Desplazamiento del Disco Intervertebral , Vértebras Lumbares , Humanos , Desplazamiento del Disco Intervertebral/fisiopatología , Femenino , Persona de Mediana Edad , Vértebras Lumbares/fisiopatología , Postura , Fenómenos Biomecánicos , Imagenología Tridimensional
14.
J Neuropathol Exp Neurol ; 82(11): 911-920, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37742129

RESUMEN

Temozolomide (TMZ) is a commonly used chemotherapeutic agent for glioblastoma (GBM), but acquired drug resistance prevents its therapeutic efficacy. We investigated potential mechanisms underlying TMZ resistance and glycolysis in GBM cells through regulation by nuclear transcription factor Y subunit ß (NFYB) of the oncogene serine hydroxymethyltransferase 2 (SHMT2). GBM U251 cells were transfected with NFYB-, SHMT2-, and the potential NFYB target histone deacetylase 5 (HDAC5)-related vectors. Glucose uptake and lactate production were measured with detection kits. CCK-8/colony formation, scratch, Transwell, and flow cytometry assays were performed to detect cell proliferation, migration, invasion, and apoptosis, respectively. The binding of NFYB to the HDAC5 promoter and the regulation of NFYB on HDAC5 promoter activity were detected with chromatin immunoprecipitation and dual-luciferase reporter assays, respectively. NFYB and HDAC5 were poorly expressed and SHMT2 was expressed at high levels in GBM U251 cells. NFYB overexpression or SHMT2 knockdown decreased glucose uptake, lactate production, proliferation, migration, and invasion and increased apoptosis and TMZ sensitivity of the cells. NFYB activated HDAC5 to inhibit SHMT2 expression. SHMT2 overexpression nullified the inhibitory effects of NFYB overexpression on glycolysis and TMZ resistance. Thus, NFYB may reduce tumorigenicity and TMZ resistance of GBM through effects on the HDAC5/SHMT2 axis.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , MicroARNs , Humanos , Glioblastoma/genética , MicroARNs/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Temozolomida/farmacología , Temozolomida/uso terapéutico , Proliferación Celular , Lactatos/farmacología , Lactatos/uso terapéutico , Glucosa , Neoplasias Encefálicas/genética , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/farmacología , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/farmacología
15.
Adv Mater ; 35(14): e2209652, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36575967

RESUMEN

Carbon-hybridized hydroxides (CHHs) have been intensively investigated for uses in the energy conversion/storage fields. Nevertheless, the intrinsic structure-activity relationships between carbon and hydroxides within CHHs are still blurry, which hinders the fine modulation of CHHs in terms of practical applications to some degree. This review aims to figure out the intrinsic role of carbon materials in CHHs with a focus on the interface chemistry and the engineering strategy in-between two components. The fundamental effects of the carbon materials in enhancing the charge/mass transfer kinetics are first analyzed, particularly the extra electron pathways for fast charge transfer and the anchoring sites for boosting the mass transfer. Subsequently, the surface-guided/confined effects of carbon materials in CHHs to modify the morphology and tailor the hydroxides, and functional heterojunction for regulating the inner electronic structure are decoupled. The methods to efficiently construct a stable yet robust solid-solid heterointerface are summarized, including oxygen functional groups engrafting, topological defective sites construction and heteroatom incorporation to activate the inert carbon surface. The smart CHHs in some typical energy applications are demonstrated. Additionally, the methodologies that can reveal the hybridization electron configuration between two components are summed up. At last, the perspective and challenges faced by the CHHs for energy-related applications are outlined.

16.
Adv Mater ; 35(49): e2305871, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37541653

RESUMEN

The intrinsic poor processability of hydroxide originating from the structural property greatly hinders their practical applications. Here, a processable highly-concentrated nickel/cobalt double hydroxide ink is reported to meet the practical demand. The inner nanoflakes in ink possess a high width/thickness ratio (>100), which endows the highly-concentrated ink (60 mg mL-1 ) with liquid-like rheology properties. Further, the elliptical diffusive arc in small-angle X-ray scattering pattern and porous and ordered alignment morphology in cryogenic temperature scanning electron microscopy confirms the locally oriented arrangement of nanoflakes in the ink. Benefiting from this interior-ordered structure, the ink can be processed into meter-level film, continuous yarn, and rigid and free-standing aerogel, respectively. In particular, the films can be used as electrodes directly in aqueous zinc ion batteries and deliver a favorable capacity (382 mAh g-1 @ 200 mA g-1 ) as well as long cycle stability (capacity retention rate of 88% @ 1000 mA g-1 after 400 cycles). Moreover, the enlarged-batched fabrication with the introduction of efficient thermal conduction in a 10 L reactor is also carried out successfully. These results clarify the inner relationship between microstructure-rheology and mechanical engineering for hydroxides, thus paving the way to develop hydroxide-based products for future practical applications.

17.
Chem Commun (Camb) ; 59(22): 3261-3264, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36815681

RESUMEN

A quasi-homogenized miniemulsion system enabled by carbon quantum dot solid nanoparticles for biphasic catalysis is proposed, which breaks existing limits for an immiscibly biphasic system and overcomes issues for large-sized solid particle-stabilized emulsion droplets. The presented Pickering miniemulsion features pH-responsive behavior, finally triggering facile product separation and catalyst recycling in one reaction vessel.

18.
Front Surg ; 9: 1092140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36760665

RESUMEN

Background: Supratentorial hemangioblastoma is an extremely rare neoplasm. The aim of this study is to delineate the clinical features among cystic and solid supratentorial hemangioblastoma patients and evaluate the risk factors for progression-free survival (PFS). Methods: We conducted a literature search in PubMed for histopathologically identified supratentorial hemangioblastoma between 1947 and 2021 and extracted and collected the clinical features of patients treated at our own institute. The rate of PFS was determined using Kaplan-Meier analysis. Differences in categorical factors, such as the location of tumor and diagnosis of von Hippel-Lindau disease, were analyzed using the Pearson χ 2 test. A Cox regression analysis was performed to evaluate the association between various variates and survival outcomes. Results: A total of 237 cases of supratentorial hemangioblastoma were identified from 169 studies. A survival analysis found that patients with cystic tumors had a significantly better prognosis than those with solid tumors (log-rank, p = 0.0122). Cox regression analysis suggested that cystic hemangioblastoma (hazard ratio (HR): 0.186, 95% CI: 0.043-0.803, p < 0.05) and gross total resection (GTR) (HR: 0.126, 95% CI: 0.049-0.323, p < 0.001) were significant predictors of longer survival (PFS) for supratentorial hemangioblastoma. Following an analysis of 13 supratentorial hemangioblastoma cases from our institute, we validated that cystic tumor had improved prognosis than solid tumor (log-rank, p = 0.0096) and GTR was superior to subtotal resection (log-rank, p = 0.0029). Conclusions: Cystic hemangioblastoma vs. solid hemangioblastoma may be two tumoral statuses with different clinical features, and a specific treatment strategy should be considered.

19.
Front Mol Neurosci ; 15: 932939, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832395

RESUMEN

Exposure to a heroin-associated conditioned stimulus can reactivate drug reward memory, trigger drug cravings, and induce relapse in heroin addicts. The amygdala, a brain region related to emotions and motivation, is involved in processing rewarding stimulus. Recent evidence demonstrated that disrupting the reconsolidation of the heroin drug memories attenuated heroin seeking which was associated with the basolateral amygdala (BLA). Meanwhile, neural functions associated with learning and memory, like synaptic plasticity, are regulated by glycogen synthase kinase 3 beta (GSK-3ß). In addition, GSK-3ß regulated memory processes, like retrieval and reconsolidation of cocaine-induced memory. Here, we used a heroin intravenous self-administration (SA) paradigm to illustrate the potential role of GSK-3ß in the reconsolidation of drug memory. Therefore, we used SB216763 as a selective inhibitor of GSK-3ß. We found that injecting the selective inhibitor SB216763 into the BLA, but not the central amygdala (CeA), immediately after heroin-induced memory retrieval disrupted reconsolidation of heroin drug memory and significantly attenuated heroin-seeking behavior in subsequent drug-primed reinstatement, suggesting that GSK-3ß is critical for reconsolidation of heroin drug memories and inhibiting the activity of GSK-3ß in BLA disrupted heroin drug memory and reduced relapse. However, no retrieval or 6 h after retrieval, administration of SB216763 into the BLA did not alter heroin-seeking behavior in subsequent heroin-primed reinstatement, suggesting that GSK-3ß activity is retrieval-dependent and time-specific. More importantly, a long-term effect of SB216763 treatment was observed in a detectable decrease in heroin-seeking behavior, which lasted at least 28 days. All in all, this present study demonstrates that the activity of GSK-3ß in BLA is required for reconsolidation of heroin drug memory, and inhibiting GSK-3ß activity of BLA disrupts reconsolidation and attenuates heroin relapse.

20.
Nat Commun ; 13(1): 1409, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301288

RESUMEN

Layered double hydroxides (LDH) have been extensively investigated for charge storage, however, their development is hampered by the sluggish reaction dynamics. Herein, triggered by mismatching integration of Mn sites, we configured wrinkled Mn/NiCo-LDH with strains and defects, where promoted mass & charge transport behaviors were realized. The well-tailored Mn/NiCo-LDH displays a capacity up to 518 C g-1 (1 A g-1), a remarkable rate performance (78%@100 A g-1) and a long cycle life (without capacity decay after 10,000 cycles). We clarified that the moderate electron transfer between the released Mn species and Co2+ serves as the pre-step, while the compressive strain induces structural deformation with promoted reaction dynamics. Theoretical and operando investigations further demonstrate that the Mn sites boost ion adsorption/transport and electron transfer, and the Mn-induced effect remains active after multiple charge/discharge processes. This contribution provides some insights for controllable structure design and modulation toward high-efficient energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA