Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci China Life Sci ; 66(8): 1858-1868, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37129766

RESUMEN

Hypomyelination leukodystrophies constitute a group of heritable white matter disorders exhibiting defective myelin development. Initially identified as a lysosomal protein, the TMEM106B D252N mutant has recently been associated with hypomyelination. However, how lysosomal TMEM106B facilitates myelination and how the D252N mutation disrupts that process are poorly understood. We used superresolution Hessian structured illumination microscopy (Hessian-SIM) and spinning disc-confocal structured illumination microscopy (SD-SIM) to find that the wild-type TMEM106B protein is targeted to the plasma membrane, filopodia, and lysosomes in human oligodendrocytes. The D252N mutation reduces the size of lysosomes in oligodendrocytes and compromises lysosome changes upon starvation stress. Most importantly, we detected reductions in the length and number of filopodia in cells expressing the D252N mutant. PLP1 is the most abundant myelin protein that almost entirely colocalizes with TMEM106B, and coexpressing PLP1 with the D252N mutant readily rescues the lysosome and filopodia phenotypes of cells. Therefore, interactions between TMEM106B and PLP1 on the plasma membrane are essential for filopodia formation and myelination in oligodendrocytes, which may be sustained by the delivery of these proteins from lysosomes via exocytosis.


Asunto(s)
Proteínas del Tejido Nervioso , Seudópodos , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Seudópodos/metabolismo , Oligodendroglía/metabolismo , Vaina de Mielina/metabolismo , Mutación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
Nat Commun ; 14(1): 3089, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248215

RESUMEN

Despite the prevalence of superresolution (SR) microscopy, quantitative live-cell SR imaging that maintains the completeness of delicate structures and the linearity of fluorescence signals remains an uncharted territory. Structured illumination microscopy (SIM) is the ideal tool for live-cell SR imaging. However, it suffers from an out-of-focus background that leads to reconstruction artifacts. Previous post hoc background suppression methods are prone to human bias, fail at densely labeled structures, and are nonlinear. Here, we propose a physical model-based Background Filtering method for living cell SR imaging combined with the 2D-SIM reconstruction procedure (BF-SIM). BF-SIM helps preserve intricate and weak structures down to sub-70 nm resolution while maintaining signal linearity, which allows for the discovery of dynamic actin structures that, to the best of our knowledge, have not been previously monitored.


Asunto(s)
Iluminación , Microscopía , Humanos , Microscopía/métodos , Actinas , Algoritmos
3.
Cell Stem Cell ; 29(4): 545-558.e13, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35395187

RESUMEN

Zebrafish and mammalian neonates possess robust cardiac regeneration via the induction of endogenous cardiomyocyte (CM) proliferation, but adult mammalian hearts have very limited regenerative potential. Developing small molecules for inducing adult mammalian heart regeneration has had limited success. We report a chemical cocktail of five small molecules (5SM) that promote adult CM proliferation and heart regeneration. A high-content chemical screen, along with an algorithm-aided prediction of small-molecule interactions, identified 5SM that efficiently induced CM cell cycle re-entry and cytokinesis. Intraperitoneal delivery of 5SM reversed the loss of heart function, induced CM proliferation, and decreased cardiac fibrosis after rat myocardial infarction. Mechanistically, 5SM potentially targets α1 adrenergic receptor, JAK1, DYRKs, PTEN, and MCT1 and is connected to lactate-LacRS2 signaling, leading to CM metabolic switching toward glycolysis/biosynthesis and CM de-differentiation before entering the cell-cycle. Our work sheds lights on the understanding CM regenerative mechanisms and opens therapeutic avenues for repairing the heart.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Animales , Proliferación Celular , Corazón , Mamíferos , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal , Pez Cebra
4.
Nat Biotechnol ; 40(4): 606-617, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34782739

RESUMEN

A main determinant of the spatial resolution of live-cell super-resolution (SR) microscopes is the maximum photon flux that can be collected. To further increase the effective resolution for a given photon flux, we take advantage of a priori knowledge about the sparsity and continuity of biological structures to develop a deconvolution algorithm that increases the resolution of SR microscopes nearly twofold. Our method, sparse structured illumination microscopy (Sparse-SIM), achieves ~60-nm resolution at a frame rate of up to 564 Hz, allowing it to resolve intricate structures, including small vesicular fusion pores, ring-shaped nuclear pores formed by nucleoporins and relative movements of inner and outer mitochondrial membranes in live cells. Sparse deconvolution can also be used to increase the three-dimensional resolution of spinning-disc confocal-based SIM, even at low signal-to-noise ratios, which allows four-color, three-dimensional live-cell SR imaging at ~90-nm resolution. Overall, sparse deconvolution will be useful to increase the spatiotemporal resolution of live-cell fluorescence microscopy.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos
5.
Neuroscience ; 476: 60-71, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34506833

RESUMEN

Among the hypomyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) is a representative disorder. The disease is caused by different types of PLP1 mutations, among which PLP1 duplication accounts for ∼70% of the mutations. Previous studies have shown that PLP1 duplications lead to PLP1 retention in the endoplasmic reticulum (ER); in parallel, recent studies have demonstrated that PLP1 duplication can also lead to mitochondrial dysfunction. As such, the respective roles and interactions of the ER and mitochondria in the pathogenesis of PLP1 duplication are not clear. In both PLP1 patients' and healthy fibroblasts, we measured mitochondrial respiration with a Seahorse XF Extracellular Analyzer and examined the interactions between the ER and mitochondria with super-resolution microscopy (spinning-disc pinhole-based structured illumination microscopy, SD-SIM). For the first time, we demonstrated that PLP1 duplication mutants had closer ER-mitochondrion interfaces mediated through structural and morphological changes in both the ER and mitochondria-associated membranes (MAMs). These changes in both the ER and mitochondria then led to mitochondrial dysfunction, as reported previously. This work highlights the roles of MAMs in bridging PLP1 expression in the ER and pathogenic dysfunction in mitochondria, providing novel insight into the pathogenicity of mitochondrial dysfunction resulting from PLP1 duplication. These findings suggest that interactions between the ER and mitochondria may underlie pathogenic mechanisms of hypomyelinating leukodystrophies diseases at the organelle level.


Asunto(s)
Proteína Proteolipídica de la Mielina , Enfermedad de Pelizaeus-Merzbacher , Retículo Endoplásmico , Humanos , Mitocondrias , Mutación , Proteína Proteolipídica de la Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Virulencia
6.
Sci China Life Sci ; 63(10): 1543-1551, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32279282

RESUMEN

Despite the wide application of super-resolution (SR) microscopy in biological studies of cells, the technology is rarely used to monitor functional changes in live cells. By combining fast spinning disc-confocal structured illumination microscopy (SD-SIM) with loading of cytosolic fluorescent Ca2+ indicators, we have developed an SR method for visualization of regional Ca2+ dynamics and related cellular organelle morphology and dynamics, termed SR calcium lantern imaging. In COS-7 cells stimulated with ATP, we have identified various calcium macrodomains characterized by different types of Ca2+ release from endoplasmic reticulum (ER) stores. Finally, we demonstrated various roles of mitochondria in mediating calcium signals from different sources; while mitochondria can globally potentiate the Ca2+ entry associated with store release, mitochondria also locally control Ca2+ release from the neighboring ER stores and assist in their refilling processes.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Mitocondrias/metabolismo , Imagen Óptica/métodos , Animales , Células COS , Chlorocebus aethiops , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Colorantes Fluorescentes/metabolismo
7.
Front Genet ; 11: 36, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117450

RESUMEN

Alport syndrome is a hereditary progressive chronic kidney disease caused by mutations in type IV collagen genes COL4A3/4/5. X-linked Alport syndrome (XLAS) is caused by mutations in the COL4A5 gene and is the most common form of Alport syndrome. A strong correlation between the type of COL4A5 mutation and the age developing end-stage renal disease in male patients has been found. Mutation to the α (IV) chain causes retention of the protein to the endoplasmic reticulum lumen, which causes endoplasmic reticulum stress (ERS) and subsequent exertion of deleterious intracellular effects through the activation of ERS. The exact time point that mutant type IV collagen α chain exerts its deleterious effects remains elusive. In this study, we explored the relationship between the COL4A5 genotype and cell type in ERS activation. We obtained skin fibroblasts from Alport syndrome patients with different COL4A5 mutation categories [i.e., a missense mutation (c.4298G > T, p.Gly1433Val) in exon 47, a splicing mutation (c.1949-1G > A) in intron 25 and an insertion (c.573_c.574insG, p. Pro193Alafs*23) in exon 10], and then reprogrammed these fibroblasts into induced pluripotent stem cells (iPSCs). Interestingly, no significant dysregulation of ERS pathway markers was observed for the three COL4A5 mutant iPSCs; however, significant activation of ERS in COL4A5 mutant fibroblasts was observed. In addition, we found that the activation levels of some ERS markers in fibroblasts varied among the three COL4A5 mutation types. Mutant COL4A5 proteins were demonstrated to have different effects on cells at different stages of ontogenesis, providing a theoretical basis for choosing the timing of intervention. The observed differences in activation of ERS by the COL4A5 mutant fibroblasts may contribute to the intracellular molecular mechanisms that describe the correlation between genotype and clinical features in XLAS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA