Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 662
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(2): 472-487.e20, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146164

RESUMEN

The dorsal raphe (DR) constitutes a major serotonergic input to the forebrain and modulates diverse functions and brain states, including mood, anxiety, and sensory and motor functions. Most functional studies to date have treated DR serotonin neurons as a single population. Using viral-genetic methods, we found that subcortical- and cortical-projecting serotonin neurons have distinct cell-body distributions within the DR and differentially co-express a vesicular glutamate transporter. Further, amygdala- and frontal-cortex-projecting DR serotonin neurons have largely complementary whole-brain collateralization patterns, receive biased inputs from presynaptic partners, and exhibit opposite responses to aversive stimuli. Gain- and loss-of-function experiments suggest that amygdala-projecting DR serotonin neurons promote anxiety-like behavior, whereas frontal-cortex-projecting neurons promote active coping in the face of challenge. These results provide compelling evidence that the DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioral functions.


Asunto(s)
Núcleo Dorsal del Rafe/anatomía & histología , Núcleo Dorsal del Rafe/fisiología , Serotonina/fisiología , Adaptación Psicológica/fisiología , Amígdala del Cerebelo/fisiología , Animales , Ansiedad/fisiopatología , Encéfalo/fisiología , Núcleo Dorsal del Rafe/metabolismo , Femenino , Lóbulo Frontal/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Serotonina/metabolismo
2.
Nature ; 603(7901): 470-476, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236988

RESUMEN

Alzheimer's disease has a higher incidence in older women, with a spike in cognitive decline that tracks with visceral adiposity, dysregulated energy homeostasis and bone loss during the menopausal transition1,2. Inhibiting the action of follicle-stimulating hormone (FSH) reduces body fat, enhances thermogenesis, increases bone mass and lowers serum cholesterol in mice3-7. Here we show that FSH acts directly on hippocampal and cortical neurons to accelerate amyloid-ß and Tau deposition and impair cognition in mice displaying features of Alzheimer's disease. Blocking FSH action in these mice abrogates the Alzheimer's disease-like phenotype by inhibiting the neuronal C/EBPß-δ-secretase pathway. These data not only suggest a causal role for rising serum FSH levels in the exaggerated Alzheimer's disease pathophysiology during menopause, but also reveal an opportunity for treating Alzheimer's disease, obesity, osteoporosis and dyslipidaemia with a single FSH-blocking agent.


Asunto(s)
Enfermedad de Alzheimer , Hormona Folículo Estimulante , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Densidad Ósea , Cognición , Femenino , Hormona Folículo Estimulante/metabolismo , Humanos , Ratones , Termogénesis
3.
PLoS Biol ; 22(1): e3002470, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206965

RESUMEN

The bridging integrator 1 (BIN1) gene is an important risk locus for late-onset Alzheimer's disease (AD). BIN1 protein has been reported to mediate tau pathology, but the underlying molecular mechanisms remain elusive. Here, we show that neuronal BIN1 is cleaved by the cysteine protease legumain at residues N277 and N288. The legumain-generated BIN1 (1-277) fragment is detected in brain tissues from AD patients and tau P301S transgenic mice. This fragment interacts with tau and accelerates its aggregation. Furthermore, the BIN1 (1-277) fragment promotes the propagation of tau aggregates by enhancing clathrin-mediated endocytosis (CME). Overexpression of the BIN1 (1-277) fragment in tau P301S mice facilitates the propagation of tau pathology, inducing cognitive deficits, while overexpression of mutant BIN1 that blocks its cleavage by legumain halts tau propagation. Furthermore, blocking the cleavage of endogenous BIN1 using the CRISPR/Cas9 gene-editing tool ameliorates tau pathology and behavioral deficits. Our results demonstrate that the legumain-mediated cleavage of BIN1 plays a key role in the progression of tau pathology. Inhibition of legumain-mediated BIN1 cleavage may be a promising therapeutic strategy for treating AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Clatrina/metabolismo , Endocitosis , Ratones Transgénicos , Proteínas tau/genética , Proteínas tau/metabolismo
4.
FASEB J ; 38(2): e23422, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38206179

RESUMEN

Renal fibrosis is a common pathological feature of chronic kidney diseases (CKD), poses a significant burden in the aging population, and is a major cause of end-stage renal disease (ESRD). In this study, we investigated the role of G protein-coupled receptor kinases (GRKs) 5 in the pathogenesis of renal fibrosis. GRK5 is a serine/threonine kinase that regulates G protein-coupled receptor (GPCR) signaling. GRK5 has been shown to play a role in various diseases including cardiac disorders and cancer. However, the role of GRK5 in renal fibrosis remains largely unknown. Our finding revealed that GRK5 was significantly overexpressed in renal fibrosis. Specifically, GRK5 was transferred into the nucleus via its nuclear localization sequence to regulate histone deacetylases (HDAC) 5 expression under renal fibrosis. GRK5 acted as an upstream regulator of HDAC5/Smad3 signaling pathway. HDAC5 regulated and prevented the transcriptional activity of myocyte enhancer factor 2A (MEF2A) to repress the transcription of Smad7 which leading to the activation of Smad3. These findings first revealed that GRK5 may be a potential therapeutic target for the treatment of renal fibrosis. Inhibition of GRK5 activity may be a promising strategy to attenuate the progression of renal fibrosis.


Asunto(s)
Quinasa 5 del Receptor Acoplado a Proteína-G , Insuficiencia Renal Crónica , Transducción de Señal , Humanos , Fibrosis , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Histona Desacetilasas/genética , Receptores Acoplados a Proteínas G
5.
Biochem Biophys Res Commun ; 692: 149338, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38043156

RESUMEN

Resveratrol is involved in regulating ferroptosis, but its role in Endometriosis (EMS) is not clear. In this study, we aim to investigate the effect of ferroptosis and resveratrol intervention in the pathogenesis of EMS cyst. Cell proliferation, migration, and oxidative stress level were analyzed. The interaction of miR-21-3p and p53 was analyzed by dual luciferase assay. The interaction between p53 and SLC7A11 were analyzed by chromatin immunoprecipitation (CHIP). The miR-21-3p, GPX4, ACSL4, FTH1, p53, SLC7A11, Ptgs2 and Chac1 expression were analyzed by RT-qPCR or Western blot. The Fe3+ deposition and miR-21-3p, GPX4, FTH1 and SLC7A11 expressions were increased, and ACSL4, p53, Ptgs2 and Chac1 expression were decreased in EMS patients. Resveratrol inhibited migration, induced Ptgs2 and Chac1 expression in EESCs. Overexpression of miR-21-3p inhibited p53, Ptgs2 and Chac1 expression, and promoted SLC7A11 expression, which was reversed by resveratrol. miR-21-3p bound to p53, which interacted with SLC7A11. Resveratrol promoted Ptgs2 and Chac1 expression in the sh-p53 EESCs. Resveratrol reduced miR-21-3p and SLC7A11 expressions, and increased p53, Ptgs2 and Chac1 expressions, and Fe3+ deposition in the lesion tissues of EMS mice, which were reversed by miR-21-3p mimics. Resveratrol activated p53/SLC7A11 pathway by down-regulating miR-21-3p to promote ferroptosis and prevent the development of EMS.


Asunto(s)
Endometriosis , Ferroptosis , MicroARNs , Femenino , Humanos , Animales , Ratones , Ciclooxigenasa 2/genética , Endometriosis/genética , Resveratrol/farmacología , Proteína p53 Supresora de Tumor/genética , Transducción de Señal , MicroARNs/genética , Sistema de Transporte de Aminoácidos y+/genética
6.
Planta ; 259(5): 98, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522041

RESUMEN

MAIN CONCLUSION: A stable genetic transformation system for Erigeron breviscapus was developed. We cloned the EbYUC2 gene and genetically transformed it into Arabidopsis thaliana and E. breviscapus. The leaf number, YUC2 gene expression, and the endogenous auxin content in transgenic plants were significantly increased. Erigeron breviscapus is a prescription drug for the clinical treatment of cardiovascular and cerebrovascular diseases. The rosette leaves have the highest content of the major active compound scutellarin and are an important component in the yield of E. breviscapus. However, little is known about the genes related to the leaf number and flowering time of E. breviscapus. In our previous study, we identified three candidate genes related to the leaf number and flowering of E. breviscapus by combining resequencing data and genome-wide association study (GWAS). However, their specific functions remain to be characterized. In this study, we cloned and transformed the previously identified full-length EbYUC2 gene into Arabidopsis thaliana, developed the first stable genetic transformation system for E. breviscapus, and obtained the transgenic plants overexpressing EbYUC2. Compared with wild-type plants, the transgenic plants showed a significant increase in the number of leaves, which was correlated with the increased expression of EbYUC2. Consistently, the endogenous auxin content, particularly indole-3-acetic acid, in transgenic plants was also significantly increased. These results suggest that EbYUC2 may control the leaf number by regulating auxin biosynthesis, thereby laying a foundation for revealing the molecular mechanism governing the leaf number and flowering time of E. breviscapus.


Asunto(s)
Arabidopsis , Erigeron , Erigeron/genética , Arabidopsis/genética , Estudio de Asociación del Genoma Completo , Ácidos Indolacéticos , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Transformación Genética
7.
J Transl Med ; 22(1): 436, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720350

RESUMEN

BACKGROUND: Subarachnoid hemorrhage (SAH) represents a form of cerebrovascular event characterized by a notable mortality and morbidity rate. Fibroblast growth factor 21 (FGF21), a versatile hormone predominantly synthesized by the hepatic tissue, has emerged as a promising neuroprotective agent. Nevertheless, the precise impacts and underlying mechanisms of FGF21 in the context of SAH remain enigmatic. METHODS: To elucidate the role of FGF21 in inhibiting the microglial cGAS-STING pathway and providing protection against SAH-induced cerebral injury, a series of cellular and molecular techniques, including western blot analysis, real-time polymerase chain reaction, immunohistochemistry, RNA sequencing, and behavioral assays, were employed. RESULTS: Administration of recombinant fibroblast growth factor 21 (rFGF21) effectively mitigated neural apoptosis, improved cerebral edema, and attenuated neurological impairments post-SAH. Transcriptomic analysis revealed that SAH triggered the upregulation of numerous genes linked to innate immunity, particularly those involved in the type I interferon (IFN-I) pathway and microglial function, which were notably suppressed upon adjunctive rFGF21 treatment. Mechanistically, rFGF21 intervention facilitated mitophagy in an AMP-activated protein kinase (AMPK)-dependent manner, thereby preventing mitochondrial DNA (mtDNA) release into the cytoplasm and dampening the activation of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Conditional knockout of STING in microglia markedly ameliorated the inflammatory response and mitigated secondary brain injuries post-SAH. CONCLUSION: Our results present the initial evidence that FGF21 confers a protective effect against neuroinflammation-associated brain damage subsequent to SAH. Mechanistically, we have elucidated a novel pathway by which FGF21 exerts this neuroprotection through inhibition of the cGAS-STING signaling cascade.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Proteínas de la Membrana , Ratones Endogámicos C57BL , Mitofagia , Enfermedades Neuroinflamatorias , Nucleotidiltransferasas , Transducción de Señal , Hemorragia Subaracnoidea , Animales , Proteínas de la Membrana/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Mitofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Nucleotidiltransferasas/metabolismo , Masculino , Ratones , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Microglía/metabolismo , Microglía/patología , Microglía/efectos de los fármacos , Apoptosis/efectos de los fármacos
8.
Opt Express ; 32(11): 19910-19923, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859113

RESUMEN

Dielectric nanostructures exhibit low-loss electrical and magnetic resonance, making them ideal for quantum information processing. In this study, the periodic double-groove silicon nanodisk (DGSND) is used to support the anapole state. Based on the distribution properties of the electromagnetic field in anapole states, the anapoles are manipulated by cutting the dielectric metamaterial. Quantum dots (QDs) are used to stimulate the anapole and control the amplification of the photoluminescence signal within the QDs. By opening symmetrical holes in the long axis of the nanodisk in the dielectric metamaterial, the current distribution of Mie resonance can be adjusted. As a result, the toroidal dipole moment is altered, leading to an enhanced electric field (E-field) and Purcell factor. When the dielectric metamaterial is deposited on the Ag substrate separated by the silicon dioxide (SiO2) layer, the structure exhibits ultra-narrow perfect absorption with even higher E-field and Purcell factor enhancement compared to silicon (Si) nanodisks.

9.
Stem Cells ; 41(12): 1171-1184, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37659098

RESUMEN

Acute-on-chronic liver failure (ACLF) is a severe disease with a high mortality. Macrophage-related inflammation plays a crucial role in ACLF development. Mesenchymal stem cells (MSCs) treatment was demonstrated to be beneficial in ACLF in our previous study; however, the underlying mechanisms remain unknown. Therefore, mouse bone marrow-derived MSCs were used to treat an ACLF mouse model or cocultured with RAW264.7/J774A.1 macrophages that were stimulated with LPS. Histological and serological parameters and survival were analyzed to evaluate efficacy. We detected changes of Mer tyrosine kinase (Mertk), JAK1/STAT6, inflammatory cytokines, and markers of macrophage polarization in vitro and in vivo. In ACLF mice, MSCs improved liver function and 48-h survival of ACLF mice and alleviated inflammatory injury by promoting M2 macrophage polarization and elevated Mertk expression levels in macrophages. This is significant, as Mertk regulates M2 macrophage polarization via the JAK1/STAT6 signaling pathway.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Células Madre Mesenquimatosas , Ratones , Animales , Insuficiencia Hepática Crónica Agudizada/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Células Madre Mesenquimatosas/metabolismo , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/metabolismo
10.
BMC Cancer ; 24(1): 510, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654281

RESUMEN

BACKGROUND: To develop a deep learning(DL) model utilizing ultrasound images, and evaluate its efficacy in distinguishing between benign and malignant parotid tumors (PTs), as well as its practicality in assisting clinicians with accurate diagnosis. METHODS: A total of 2211 ultrasound images of 980 pathologically confirmed PTs (Training set: n = 721; Validation set: n = 82; Internal-test set: n = 89; External-test set: n = 88) from 907 patients were retrospectively included in this study. The optimal model was selected and the diagnostic performance evaluation is conducted by utilizing the area under curve (AUC) of the receiver-operating characteristic(ROC) based on five different DL networks constructed at varying depths. Furthermore, a comparison of different seniority radiologists was made in the presence of the optimal auxiliary diagnosis model. Additionally, the diagnostic confusion matrix of the optimal model was calculated, and an analysis and summary of misjudged cases' characteristics were conducted. RESULTS: The Resnet18 demonstrated superior diagnostic performance, with an AUC value of 0.947, accuracy of 88.5%, sensitivity of 78.2%, and specificity of 92.7% in internal-test set, and with an AUC value of 0.925, accuracy of 89.8%, sensitivity of 83.3%, and specificity of 90.6% in external-test set. The PTs were subjectively assessed twice by six radiologists, both with and without the assisted of the model. With the assisted of the model, both junior and senior radiologists demonstrated enhanced diagnostic performance. In the internal-test set, there was an increase in AUC values by 0.062 and 0.082 for junior radiologists respectively, while senior radiologists experienced an improvement of 0.066 and 0.106 in their respective AUC values. CONCLUSIONS: The DL model based on ultrasound images demonstrates exceptional capability in distinguishing between benign and malignant PTs, thereby assisting radiologists of varying expertise levels to achieve heightened diagnostic performance, and serve as a noninvasive imaging adjunct diagnostic method for clinical purposes.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Parótida , Ultrasonografía , Humanos , Estudios Retrospectivos , Ultrasonografía/métodos , Neoplasias de la Parótida/diagnóstico por imagen , Neoplasias de la Parótida/patología , Neoplasias de la Parótida/diagnóstico , Masculino , Persona de Mediana Edad , Femenino , Adulto , Anciano , Adulto Joven , Curva ROC , Diagnóstico Diferencial , Adolescente , Anciano de 80 o más Años , Sensibilidad y Especificidad , Niño
11.
Acta Pharmacol Sin ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760541

RESUMEN

Senescence, an intricate and inevitable biological process, characterized by the gradual loss of homeostasis and declining organ functions. The pathological features of cellular senescence, including cell cycle arrest, metabolic disruptions, and the emergence of senescence-associated secretory phenotypes (SASP), collectively contribute to the intricate and multifaceted nature of senescence. Beyond its classical interaction with p53, murine double minute gene 2 (MDM2), traditionally known as an E3 ubiquitin ligase involved in protein degradation, plays a pivotal role in cellular processes governing senescence. Histone deacetylase (HDAC), a class of histone deacetylases mainly expressed in the nucleus, has emerged as a critical contributor to renal tissues senescence. In this study we investigated the interplay between MDM2 and HDAC1 in renal senescence. We established a natural aging model in mice over a 2-year period that was verified by SA-ß-GAL staining and increased expression of senescence-associated markers such as p21, p16, and TNF-α in the kidneys. Furthermore, we showed that the expression of MDM2 was markedly increased, while HDAC1 expression underwent downregulation during renal senescence. This phenomenon was confirmed in H2O2-stimulated HK2 cells in vitro. Knockout of renal tubular MDM2 alleviated renal senescence in aged mice and in H2O2-stimulated HK2 cells. Moreover, we demonstrated that MDM2 promoted renal senescence by orchestrating the ubiquitination and subsequent degradation of HDAC1. These mechanisms synergistically accelerate the aging process in renal tissues, highlighting the intricate interplay between MDM2 and HDAC1, underpinning the age-related organ function decline.

12.
BMC Vet Res ; 20(1): 212, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764041

RESUMEN

BACKGROUND: Acinetobacter lwoffii (A.lwoffii) is a serious zoonotic pathogen that has been identified as a cause of infections such as meningitis, bacteremia and pneumonia. In recent years, the infection rate and detection rate of A.lwoffii is increasing, especially in the breeding industry. Due to the presence of biofilms, it is difficult to eradicate and has become a potential super drug-resistant bacteria. Therefore, eradication of preformed biofilm is an alternative therapeutic action to control A.lwoffii infection. The present study aimed to clarify that baicalin could eradicate A.lwoffii biofilm in dairy cows, and to explore the mechanism of baicalin eradicating A.lwoffii. RESULTS: The results showed that compared to the control group, the 4 MIC of baicalin significantly eradicated the preformed biofilm, and the effect was stable at this concentration, the number of viable bacteria in the biofilm was decreased by 0.67 Log10CFU/mL. The total fluorescence intensity of biofilm bacteria decreased significantly, with a reduction rate of 67.0%. There were 833 differentially expressed genes (367 up-regulated and 466 down-regulated), whose functions mainly focused on oxidative phosphorylation, biofilm regulation system and trehalose synthesis. Molecular docking analysis predicted 11 groups of target proteins that were well combined with baicalin, and the content of trehalose decreased significantly after the biofilm of A.lwoffii was treated with baicalin. CONCLUSIONS: The present study evaluated the antibiofilm potential of baicalin against A.lwoffii. Baicalin revealed strong antibiofilm potential against A.lwoffii. Baicalin induced biofilm eradication may be related to oxidative phosphorylation and TCSs. Moreover, the decrease of trehalose content may be related to biofilm eradication.


Asunto(s)
Acinetobacter , Antibacterianos , Biopelículas , Flavonoides , Leche , Biopelículas/efectos de los fármacos , Animales , Flavonoides/farmacología , Acinetobacter/efectos de los fármacos , Bovinos , Leche/microbiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Femenino , Infecciones por Acinetobacter/veterinaria , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología
13.
Aging Clin Exp Res ; 36(1): 35, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345775

RESUMEN

BACKGROUND: Body fat mass (FM) is associated with multiple organ damage. However, data regarding the relationship between various organ damage and FM are rare in the elderly. Therefore, we aim to perform an analysis on the relationship between organ damage and FM in a geriatric cohort. METHODS: 3331 participants were included in this analysis. Based on age, body height, body weight, waist circumference, and race, we calculated FM with the established formula. Organ damage, including arterial stiffening, lower extremity atherosclerosis, left ventricular hypertrophy (LVH), micro-albuminuria, and chronic kidney disease (CKD), were measured and calculated with standard methods. RESULTS: All organ damage parameters were significantly related to FM (all p < 0.001). In univariate logistics regression, the highest quartile of FM was tied to the increased risk of arterial stiffening, lower extremity atherosclerosis, LVH, micro-albuminuria, and CKD (all p < 0.05). After adjustment, participants with higher quantiles of FM had a significantly increased odd ratio (OR) for arterial stiffening [OR = 1.51, 95% confidence interval (CI): 1.15-1.99, p = 0.002] and LVH (OR = 1.99, 95% CI: 1.48-2.67, p < 0.001). Moreover, FM was linearly associated with arterial stiffening and LVH in total population and gender subgroups. Independent of confounders, FM was significantly correlated with arterial stiffening, lower extremity atherosclerosis, LVH and CKD in female, while was only related to LVH in male. CONCLUSIONS: Among various organ damage, elevated FM is significantly and independently associated with arterial stiffening and LVH in the elderly. Compared with men, women with increased FM are more likely to have multiple organ damage.


Asunto(s)
Aterosclerosis , Hipertensión , Insuficiencia Renal Crónica , Humanos , Masculino , Femenino , Anciano , Factores de Riesgo , Vida Independiente , Albuminuria/epidemiología , China/epidemiología
14.
Z Gastroenterol ; 62(2): 183-192, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37220789

RESUMEN

INTRODUCTION AND OBJECTIVES: Whether a combination of exercise and branched-chain amino acid (BCAA) supplementation was more beneficial than those given alone in sarcopenia related to liver cirrhosis (LC) is unknown. Widely used smartphone applications provide continuous and easily expandable management of chronic liver disease (CLD). This study is to investigate the effects of unsupervised walking exercise using WeChat combined with BCAA supplementation on skeletal muscle mass and strength in LC. MATERIALS AND METHODS: The 127 LC patients of Child-Pugh A/B were assigned to group A (BCAA supplements, n=42), group B (walking exercise, n=43) and group C (walking exercise plus BCAA supplements, n=42). Laboratory data, average daily steps, serum BCAA, skeletal muscle mass index (SMI) and grip strength were analyzed pre- and 3 months after interventions. RESULTS: Of the 124 patients who completed interventions, albumin and daily steps were significantly increased in all groups (p=0.0001). Post-intervention BCAA were significantly elevated in group A (A vs B, p=0.001) and C (C vs B, p=0.012;). While post-intervention daily steps in group B (B vs A, p=0.0001) and C (C vs A, p=0.0001) were higher. Grip strength (C vs A, p=0.020; C vs B, p=0.036) and SMI (C vs A, p=0.035; C vs B, p=0.012) were increased in group C. Prevalence of sarcopenia was significantly decreased in group C (p=0.015). CONCLUSIONS: A combination of unsupervised walking exercise using smartphone applications and BCAA supplementation might be an effective and safe treatment for cirrhosis patients with Child-Pugh A/B to improve skeletal muscle mass and strength or to prevent progress of sarcopenia.


Asunto(s)
Sarcopenia , Humanos , Sarcopenia/patología , Sarcopenia/prevención & control , Músculo Esquelético/patología , Estudios Prospectivos , Teléfono Inteligente , Aminoácidos de Cadena Ramificada/uso terapéutico , Aminoácidos de Cadena Ramificada/farmacología , Suplementos Dietéticos , Cirrosis Hepática/patología , Caminata
15.
Environ Toxicol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727079

RESUMEN

The discovery of ferroptosis has unveiled new perspectives for cervical cancer (CC) management. We elucidated the functional mechanism of hypoxia-like conditions in CC cell ferroptosis resistance. CC cells were subjected to normoxia or hypoxia-like conditions, followed by erastin treatment to induce ferroptosis. The assessment of cell viability/ferroptosis resistance was performed by MTT assay/Fe2+, MDA, and glutathione measurement by colorimetry. KDM4A/SUMO1/Ubc9/SENP1 protein levels were determined by Western blot. Interaction and binding sites between KDM4A and SUMO1 were analyzed and predicted by immunofluorescence/co-immunoprecipitation and GPS-SUMO 1.0 software, with the target relationship verified by mutation experiment. SLC7A11/GPX4/H3K9me3 protein levels, and H3K9me3 level in the SLC7A11 gene promoter region were determined by RT-qPCR and Western blot/chromatin immunoprecipitation. H3H9me3/SLC7A11/GPX4 level alterations, and ferroptosis resistance after KDM4A silencing or KDM4A K471 mutation were assessed. Hypoxia-like conditions increased CC cell ferroptosis resistance and KDM4A, SUMO1, and Ubc9 protein levels, while it decreased SENP1 protein level. KDM4A and SUMO1 were co-localized in the nucleus, and hypoxia-like conditions promoted their interaction. Specifically, the K471 locus of KDM4A was the main locus for SUMO1ylation. Hypoxia-like conditions up-regulated SLC7A11 and GPX4 expression levels and decreased H3K9me3 protein level and H3K9me3 abundance in the SLC7A11 promoter region. KDM4A silencing or K471 locus mutation resulted in weakened interaction between KDM4A and SUMO1, elevated H3K9me3 levels, decreased SLC7A11 expression, ultimately, a reduced CC cell ferroptosis resistance. CoCl2-stimulated hypoxia-like conditions enhanced SUMO1 modification of KDM4A at the K471 locus specifically, repressed H3K9me3 levels, and up-regulated SLC7A11/GPX4 to enhance CC cell ferroptosis resistance.

16.
Pediatr Surg Int ; 40(1): 33, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206388

RESUMEN

PURPOSE: To analyze the value of ultrasonography in predicting metachronous contralateral inguinal hernia (MCIH) and diagnosing contralateral persistent processus vaginalis (CPPV) in children with unilateral inguinal hernia, a prospective study was conducted. METHODS: All participants underwent a preoperative ultrasound on the contralateral groin. Patients in group A1 received operating procedure according to ultrasound results (patients with negative contralateral US results received hernia repair on the affected side), and patients in group A2 received operation according to laparoscopic results (patients received hernia repair and CPPV ligation). All patients were followed up 2 years and compared to a historical control (group B) who underwent open hernia repair only on the affected side regardless of contralateral US results. RESULTS: In groups A1 and A2, laparoscopic exploration revealed the presence of a CPPV in 490 cases. Ultrasound was found to be accurate in 104 out of the 490 cases with four false-positive and 386 false-negative results. This yielded an accuracy of 59.3%, a sensitivity of 21.2%, and a specificity of 99.2%. 10 patients in group A1, and 74 patients in group B developed MCIH. The accuracy, sensitivity, and specificity of the value of ultrasonography in predicting MCIH were 89.3%, 52.4%, and 92.5%, respectively. CONCLUSIONS: Preoperative ultrasonography of the contralateral groin is currently unable to accurately detect CPPV, but it appears to be a promising method in predicting MCIH by using rigorous diagnosing criteria.


Asunto(s)
Hernia Inguinal , Laparoscopía , Niño , Humanos , Hernia Inguinal/diagnóstico por imagen , Hernia Inguinal/cirugía , Estudios Prospectivos , Herniorrafia , Ultrasonografía
17.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474944

RESUMEN

In this paper, we introduce a novel panoptic segmentation method called the Mask-Pyramid Network. Existing Mask RCNN-based methods first generate a large number of box proposals and then filter them at each feature level, which requires a lot of computational resources, while most of the box proposals are suppressed and discarded in the Non-Maximum Suppression process. Additionally, for panoptic segmentation, it is a problem to properly fuse the semantic segmentation results with the Mask RCNN-produced instance segmentation results. To address these issues, we propose a new mask pyramid mechanism to distinguish objects and generate much fewer proposals by referring to existing segmented masks, so as to reduce computing resource consumption. The Mask-Pyramid Network generates object proposals and predicts masks from larger to smaller sizes. It records the pixel area occupied by the larger object masks, and then only generates proposals on the unoccupied areas. Each object mask is represented as a H × W × 1 logit, which fits well in format with the semantic segmentation logits. By applying SoftMax to the concatenated semantic and instance segmentation logits, it is easy and natural to fuse both segmentation results. We empirically demonstrate that the proposed Mask-Pyramid Network achieves comparable accuracy performance on the Cityscapes and COCO datasets. Furthermore, we demonstrate the computational efficiency of the proposed method and obtain competitive results.

18.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611886

RESUMEN

The research and development of alternatives to long-chain fluorocarbon surfactants are desperately needed because they are extremely toxic, difficult to break down, seriously harm the environment, and limit the use of conventional aqueous film-forming foam fire extinguishing agents. In this study, mixed surfactant systems containing the short-chain fluorocarbon surfactant perfluorohexanoic acid (PFHXA) and the hydrocarbon surfactant sodium dodecyl sulfate (SDS) were investigated by molecular dynamics simulation to investigate the microscopic properties at the air/water interface at different molar ratios. Some representative parameters, such as surface tension, degree of order, density distribution, radial distribution function, number of hydrogen bonds, and solvent-accessible surface area, were calculated. Molecular dynamics simulations show that compared with a single type of surfactant, mixtures of surfactants provide superior performance in improving the interfacial properties of the gas-liquid interface. A dense monolayer film is formed by the strong synergistic impact of the two surfactants. Compared to the pure SDS system, the addition of PFHXA caused SDS to be more vertically oriented at the air/water interface with a reduced tilt angle, and a more ordered structure of the mixed surfactants was observed. Hydrogen bonding between SDS headgroups and water molecules is enhanced with the increasing PFHXA. The surface activity is arranged in the following order: PFHXA/SDS = 1:1 > PFHXA/SDS = 3:1 > PFHXA/SDS = 1:3. These results indicate that a degree of synergistic relationship exists between PFHXA and SDS at the air/water interface.

19.
J Biol Chem ; 298(3): 101611, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065966

RESUMEN

Z-DNA-binding protein 1 (ZBP1) is an innate sensor of influenza A virus (IAV) that participates in IAV-induced programmed cell death. Nevertheless, little is known about the upstream signaling pathways regulating ZBP1. We found that a member of the tripartite motif (TRIM) family, TRIM34, interacted with ZBP1 to promote its K63-linked polyubiquitination. Using a series of genetic approaches, we provide in vitro and in vivo evidence indicating that IAV triggered cell death and inflammatory responses via dependent on TRIM34/ZBP1 interaction. TRIM34 and ZBP1 expression and interaction protected mice from death during IAV infection owing to reduced inflammatory responses and epithelial damage. Additionally, analysis of clinical samples revealed that TRIM34 associates with ZBP1 and mediates ZBP1 polyubiquitination in vivo. Higher levels of proinflammatory cytokines correlated with higher levels of ZBP1 in IAV-infected patients. Taken together, we conclude that TRIM34 serves as a critical regulator of IAV-induced programmed cell death by mediating the K63-linked polyubiquitination of ZBP1.


Asunto(s)
Proteínas Portadoras , Virus de la Influenza A , Proteínas de Unión al ARN , Animales , Apoptosis , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , Ratones , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ubiquitinación
20.
Plant J ; 112(6): 1364-1376, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36305873

RESUMEN

Lateral organ boundaries domain (LBD) proteins are plant-specific transcription factors. Class-I LBD genes have been widely demonstrated to play pivotal roles in organ development; however, knowledge on class-II genes remains limited. Here, we report that ZmLBD5, a class-II LBD gene, is involved in the regulation of maize (Zea mays) growth and the drought response by affecting gibberellin (GA) and abscisic acid (ABA) synthesis. ZmLBD5 is mainly involved in regulation of the TPS-KS-GA2ox gene module, which is comprised of key enzyme-encoding genes involved in GA and ABA biosynthesis. ABA insufficiency increases stomatal density and aperture in overexpression plants and causes a drought-sensitive phenotype by promoting water transpiration. Increased GA1 levels promotes seedling growth in overexpression plants. Accordingly, CRISPR/Cas9 knockout lbd5 seedlings are dwarf but drought-tolerant. Moreover, lbd5 has a higher grain yield under drought stress conditions and shows no penalty in well-watered conditions compared to the wild type. On the whole, ZmLBD5 is a negative regulator of maize drought tolerance, and it is a potentially useful target for drought resistance breeding.


Asunto(s)
Ácido Abscísico , Resistencia a la Sequía , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente/metabolismo , Fitomejoramiento , Agua/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA