Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38040491

RESUMEN

Pancreatic cancer is a globally recognized highly aggressive malignancy, posing a significant threat to human health and characterized by pronounced heterogeneity. In recent years, researchers have uncovered that the development and progression of cancer are often attributed to the accumulation of somatic mutations within cells. However, cancer somatic mutation data exhibit characteristics such as high dimensionality and sparsity, which pose new challenges in utilizing these data effectively. In this study, we propagated the discrete somatic mutation data of pancreatic cancer through a network propagation model based on protein-protein interaction networks. This resulted in smoothed somatic mutation profile data that incorporate protein network information. Based on this smoothed mutation profile data, we obtained the activity levels of different metabolic pathways in pancreatic cancer patients. Subsequently, using the activity levels of various metabolic pathways in cancer patients, we employed a deep clustering algorithm to establish biologically and clinically relevant metabolic subtypes of pancreatic cancer. Our study holds scientific significance in classifying pancreatic cancer based on somatic mutation data and may provide a crucial theoretical basis for the diagnosis and immunotherapy of pancreatic cancer patients.


Asunto(s)
Genómica , Neoplasias Pancreáticas , Humanos , Pronóstico , Genómica/métodos , Neoplasias Pancreáticas/genética , Mutación , Análisis por Conglomerados
2.
Methods ; 230: 32-43, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39079653

RESUMEN

Transcription factors are a specialized group of proteins that play important roles in regulating gene expression in human. These proteins control the transcription and translation of genes by binding to specific sites on DNA, thereby regulating key biological processes such as cell differentiation, proliferation, immune response, and neural development. Moreover, transcription factors are also involved in apoptosis and the pathogenesis of various diseases. By investigating transcription factors, researchers can uncover the mechanisms of gene regulation in organisms and develop more effective methods for preventing and treating human diseases. In the present study, the Virtual Inference of Protein-activity by Enriched Regulon algorithm was utilized to calculate the protein activity of transcription factors, and the metabolic-related protein activity were used for classifying bladder cancer patients into different subtype. To identify chemotherapy drugs with clinical benefits, the differences in prognosis and drug sensitivity between two distinct subtypes of bladder cancer patients were investigated. Simultaneously, the master regulators that display varying levels of transcription factor activity between two different bladder cancer subtypes were explored. Additionally, the potential transcriptional regulatory mechanisms and targets of these factors were investigated, thereby generating novel insights into bladder cancer research at the transcriptional regulation level.

3.
Methods ; 229: 156-162, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019099

RESUMEN

Diabetes stands as one of the most prevalent chronic diseases globally. The conventional methods for diagnosing diabetes are frequently overlooked until individuals manifest noticeable symptoms of the condition. This study aimed to address this gap by collecting comprehensive datasets, including 1000 instances of blood routine data from diabetes patients and an equivalent dataset from healthy individuals. To differentiate diabetes patients from their healthy counterparts, a computational framework was established, encompassing eXtreme Gradient Boosting (XGBoost), random forest, support vector machine, and elastic net algorithms. Notably, the XGBoost model emerged as the most effective, exhibiting superior predictive results with an area under the receiver operating characteristic curve (AUC) of 99.90% in the training set and 98.51% in the testing set. Moreover, the model showcased commendable performance during external validation, achieving an overall accuracy of 81.54%. The probability generated by the model serves as a risk score for diabetes susceptibility. Further interpretability was achieved through the utilization of the Shapley additive explanations (SHAP) algorithm, identifying pivotal indicators such as mean corpuscular hemoglobin concentration (MCHC), lymphocyte ratio (LY%), standard deviation of red blood cell distribution width (RDW-SD), and mean corpuscular hemoglobin (MCH). This enhances our understanding of the predictive mechanisms underlying diabetes. To facilitate the application in clinical and real-life settings, a nomogram was created based on the logistic regression algorithm, which can provide a preliminary assessment of the likelihood of an individual having diabetes. Overall, this research contributes valuable insights into the predictive modeling of diabetes, offering potential applications in clinical practice for more effective and timely diagnoses.


Asunto(s)
Diabetes Mellitus , Aprendizaje Automático , Humanos , Diabetes Mellitus/sangre , Diabetes Mellitus/diagnóstico , Femenino , Masculino , Máquina de Vectores de Soporte , Algoritmos , Curva ROC , Persona de Mediana Edad , Índices de Eritrocitos , Adulto
4.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33302293

RESUMEN

Breast cancer is one of the most common types of cancers and the leading cause of death from malignancy among women worldwide. Tumor-infiltrating lymphocytes are a source of important prognostic biomarkers for breast cancer patients. In this study, based on the tumor-infiltrating lymphocytes in the tumor immune microenvironment, a risk score prognostic model was developed in the training cohort for risk stratification and prognosis prediction in breast cancer patients. The prognostic value of this risk score prognostic model was also verified in the two testing cohorts and the TCGA pan cancer cohort. Nomograms were also established in the training and testing cohorts to validate the clinical use of this model. Relationships between the risk score, intrinsic molecular subtypes, immune checkpoints, tumor-infiltrating immune cell abundances and the response to chemotherapy and immunotherapy were also evaluated. Based on these results, we can conclude that this risk score model could serve as a robust prognostic biomarker, provide therapeutic benefits for the development of novel chemotherapy and immunotherapy, and may be helpful for clinical decision making in breast cancer patients.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Modelos Inmunológicos , Microambiente Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Valor Predictivo de las Pruebas , Pronóstico , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
5.
Comput Biol Med ; 153: 106432, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36608460

RESUMEN

As one of the most common gynecologic malignant tumors, ovarian cancer is usually diagnosed at an advanced and incurable stage because of its early asymptomatic onset. Increasing research into tumor biology has demonstrated that abnormal cellular metabolism precedes tumorigenesis, therefore it has become an area of active research in academia. Cellular metabolism is of great significance in cancer diagnostic and prognostic studies. In this study, we integrated The Cancer Genome Atlas dataset with multiple Gene Expression Omnibus ovarian cancer datasets, identified 17 metabolic pathways with prognostic values using the random forest algorithm, constructed a metabolic risk scoring model based on metabolic pathway enrichment scores, and classified patients with ovarian cancer into two subtypes. Then, we systematically investigated the differences between different subtypes in terms of prognosis, differential gene expression, immune signature enrichment, Hallmark signature enrichment, and somatic mutations. As well, we successfully predicted differences in sensitivity to immunotherapy and chemotherapy drugs in patients with different metabolic risk subtypes. Moreover, we identified 5 drug targets associated with high metabolic risk and low metabolic risk ovarian cancer phenotypes through the weighted correlation network analysis and investigated their roles in the genesis of ovarian cancer. Finally, we developed an XGBoost classifier for predicting metabolic risk types in patients with ovarian cancer, producing a good predictive effect. In light of the above study, the research findings will provide valuable information for prognostic prediction and personalized medical treatment of patients with ovarian cancer.


Asunto(s)
Neoplasias Ováricas , Bosques Aleatorios , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Carcinogénesis , Sistemas de Liberación de Medicamentos , Inmunoterapia
6.
Comput Methods Programs Biomed ; 242: 107808, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37716222

RESUMEN

BACKGROUND AND OBJECTIVE: Breast cancer is among of the most malignant tumor that occurs in women and is one of the leading causes of death from gynecologic malignancy worldwide. The high degree of heterogeneity that characterizes breast cancer makes it challenging to devise effective therapeutic strategies. Accumulating evidence highlights the crucial role of stratifying breast cancer patients into clinically significant subtypes to achieve better prognoses and treatments. The structural deep clustering network is a graph convolutional network-based clustering algorithm that integrates structural information and has achieved state-of-the-art performance in various applications. METHODS: In this study, we employed structural deep clustering network to integrate somatic mutation profiles for stratifying 2526 breast cancer patients from the Memorial Sloan Kettering Cancer Center into two clinically differentiable subtypes. RESULTS: Breast cancer patients in cluster 1 exhibited better prognosis than breast cancer patients in cluster 2, and the difference between them was statistically significant. The immunogenomic landscape further demonstrated that cluster 1 was associated with remarkable infiltration of the tumor infiltrating lymphocytes. The clustering subtype could be used to evaluate the therapeutic benefit of immunotherapy and chemotherapy in breast cancer patients. Furthermore, our approach effectively classified patients from eight different cancer types, demonstrating its generalizability. CONCLUSIONS: Our study represents a step towards a generic methodology for classifying cancer patients using only somatic mutation data and structural deep clustering network approaches. Employing structural deep clustering network to identify breast cancer subtypes is promising and can inform the development of more accurate and personalized therapies.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Algoritmos , Pronóstico , Análisis por Conglomerados , Mutación
7.
Heliyon ; 9(5): e16147, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37215759

RESUMEN

Transcription factors are protein molecules that act as regulators of gene expression. Aberrant protein activity of transcription factors can have a significant impact on tumor progression and metastasis in tumor patients. In this study, 868 immune-related transcription factors were identified from the transcription factor activity profile of 1823 ovarian cancer patients. The prognosis-related transcription factors were identified through univariate Cox analysis and random survival tree analysis, and two distinct clustering subtypes were subsequently derived based on these transcription factors. We assessed the clinical significance and genomics landscape of the two clustering subtypes and found statistically significant differences in prognosis, response to immunotherapy, and chemotherapy among ovarian cancer patients with different subtypes. Multi-scale Embedded Gene Co-expression Network Analysis was used to identify differential gene modules between the two clustering subtypes, which allowed us to conduct further analysis of biological pathways that exhibited significant differences between them. Finally, a ceRNA network was constructed to analyze lncRNA-miRNA-mRNA regulatory pairs with differential expression levels between two clustering subtypes. We expected that our study may provide some useful references for stratifying and treating patients with ovarian cancer.

8.
Brief Funct Genomics ; 22(4): 351-365, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37103222

RESUMEN

The expression and activity of transcription factors, which directly mediate gene transcription, are strictly regulated to control numerous normal cellular processes. In cancer, transcription factor activity is often dysregulated, resulting in abnormal expression of genes related to tumorigenesis and development. The carcinogenicity of transcription factors can be reduced through targeted therapy. However, most studies on the pathogenic and drug-resistant mechanisms of ovarian cancer have focused on the expression and signaling pathways of individual transcription factors. To improve the prognosis and treatment of patients with ovarian cancer, multiple transcription factors should be evaluated simultaneously to determine the effects of their protein activity on drug therapies. In this study, the transcription factor activity of ovarian cancer samples was inferred from virtual inference of protein activity by enriched regulon algorithm using mRNA expression data. Patients were clustered according to their transcription factor protein activities to investigate the association of transcription factor activities of different subtypes with prognosis and drug sensitivity for filtering subtype-specific drugs. Meanwhile, master regulator analysis was utilized to identify master regulators of differential protein activity between clustering subtypes, thereby identifying transcription factors associated with prognosis and assessing their potential as therapeutic targets. Master regulator risk scores were then constructed for guiding patients' clinical treatment, providing new insights into the treatment of ovarian cancer at the level of transcriptional regulation.


Asunto(s)
Regulación de la Expresión Génica , Neoplasias Ováricas , Humanos , Femenino , Pronóstico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genómica , Regulación Neoplásica de la Expresión Génica
9.
Biochim Biophys Acta Gene Regul Mech ; 1865(6): 194838, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35690313

RESUMEN

Transcription factors directly bind to DNA and regulate the expression of the gene, causing epigenetic modification of the DNA. They often mediate epigenetic parameters of transcriptional and posttranscriptional mechanisms, and their expression activities can be used to characterize genomic aberrations in cancer cell. In this study, the activity profile of transcription factors inferred by VIPER algorithm. The autoencoder model was applied for compressing the transcription factor activity profile for obtaining more useful transformed features for stratifying patients into two different breast cancer subtypes. The deep learning-based subtypes exhibited superior prognostic value and yielded better risk-stratification than the transcription factor activity-based method. Importantly, according to transformed features, a deep neural network was constructed to predict the subtypes, and achieved the accuracy of 94.98% and area under the ROC curve of 0.9663, respectively. The proposed subtypes were found to be significantly associated with immune infiltration, tumor immunogenicity and so on. Furthermore, the ceRNA network was constructed for the breast cancer subtypes. Besides, 11 master regulators were found to be associated with patients in cluster 1. Given the robustness performance of our deep learning model over multiple breast cancer cohorts, we expected this model may be useful in the area of prognosis prediction and lead some possibility for personalized medicine in breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Algoritmos , Neoplasias de la Mama/metabolismo , Femenino , Genómica , Humanos , Factores de Transcripción/genética
10.
Brief Funct Genomics ; 21(2): 128-141, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-34755827

RESUMEN

Breast cancer is a kind of malignant tumor that occurs in breast tissue, which is the most common cancer in women. Cellular metabolism is a critical determinant of the viability and function of cancer cells in tumor microenvironment. In this study, based on the gene expression profile of metabolism-related genes, the prognostic value of 20 metabolic pathways in patients with breast cancer was identified. A universal risk stratification signature that relies on 20 metabolic pathways was established and validated in training cohort, two testing cohorts and The Cancer Genome Atlas pan cancer cohort. Then, the relationship between metabolic risk score subtype, prognosis, immune infiltration level, cancer genotypes and their impact on therapeutic benefit were characterized. Results demonstrated that the patients with the low metabolic risk score subtype displayed good prognosis, high level of immune infiltration and exhibited a favorable response to neoadjuvant chemotherapy and immunotherapy. Taken together, the work presented in this study may deepen the understanding of metabolic hallmarks of breast cancer, and may provide some valuable information for personalized therapies in patients with breast cancer.


Asunto(s)
Neoplasias de la Mama , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Factores de Riesgo , Microambiente Tumoral/genética
11.
Brief Funct Genomics ; 21(3): 188-201, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35348574

RESUMEN

Triple-negative breast cancer (TNBC) is the breast cancer subtype with the highest fatality rate, and it seriously threatens women's health. Recent studies found that the level of immune cell infiltration in TNBC was associated with tumor progression and prognosis. However, due to practical constraints, most of these TNBC immune infiltration studies only used a small number of patient samples and a few immune cell types. Therefore, it is necessary to integrate more TNBC patient samples and immune cell types to comprehensively study immune infiltration in TNBC to contribute to the prognosis and treatment of patients. In this study, 12 TNBC datasets were integrated and an extensive collection of 182 gene sets with immune-related signatures were included to comprehensively investigate tumor immune microenvironment of TNBC. A single sample gene set enrichment analysis was performed to calculate the infiltration score of each immune-related signature in each patient, and an immune-related risk scoring model for TNBC was constructed to accurately assess patient prognosis. Significant differences were found in immunogenomic landscape between different immune risk subtypes. In addition, the immunotherapy response and chemotherapy drug sensitivity of patients with different immune risk subtypes were also analyzed. The results showed that there were significant differences in these characteristics. Finally, a prediction model for immune risk subtypes of TNBC patients was constructed to accurately predict patients with unknown subtypes. Based on the aforementioned findings, we believed that the immune-related risk score constructed in this study can assist in providing personalized medicine to TNBC patients.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Pronóstico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA