Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Immunol Cell Biol ; 101(3): 204-215, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36630591

RESUMEN

There is growing evidence that programmed death ligand-1 (PD-L1) has exciting therapeutic efficacy in hematological malignancy and partial solid tumors. However, many patients still face failure with the treatment of immune checkpoint blockade because of PD-L1 expression regulation during transcription and post-transcription processes, including N6-methyladenosine (m6A). Similar to the epigenetic regulation in DNA and histones, recent research has revealed the essential regulation of m6A modification in RNA nuclear export, metabolism and translation. Recent studies have shown that m6A-induced PD-L1 expression emerges as one of the main reasons for the immunological alteration in this process and contributes to the failure of T cell-induced anti-tumor immunity. The results of preclinical studies demonstrate the potential of m6A-targeted therapy in combination with immune checkpoint blockade. The comprehensive expression of m6A-related genes also provided the possibility to indicate the prognosis and to optimize the treatment for patients of various cancer types. In this review, we focus on the m6A modification in PD-L1 mRNA as well as the regulation of PD-L1 expression in cancer cells and summarize its clinical value in anti-PD-L1 cancer immune therapy.


Asunto(s)
Epigénesis Genética , Inhibidores de Puntos de Control Inmunológico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Histonas , Adenosina
2.
Proc Natl Acad Sci U S A ; 117(18): 9851-9856, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32327606

RESUMEN

Toward the goal of increasing the throughput of high-resolution mass characterization of intact antibodies, we developed a RapidFire-mass spectrometry (MS) assay using electrospray ionization. We achieved unprecedented screening throughput as fast as 15 s/sample, which is an order of magnitude improvement over conventional liquid chromatography (LC)-MS approaches. The screening enabled intact mass determination as accurate as 7 ppm with baseline resolution at the glycoform level for intact antibodies. We utilized this assay to characterize and perform relative quantitation of antibody species from 248 samples of 62 different cell line clones at four time points in 2 h using RapidFire-time-of-flight MS screening. The screening enabled selection of clones with the highest purity of bispecific antibody production and the results significantly correlated with conventional LC-MS results. In addition, analyzing antibodies from a complex plasma sample using affinity-RapidFire-MS was also demonstrated and qualified. In summary, the platform affords high-throughput analyses of antibodies, including bispecific antibodies and potential mispaired side products, in cell culture media, or other complex matrices.


Asunto(s)
Anticuerpos Biespecíficos/sangre , Anticuerpos/sangre , Ensayos Analíticos de Alto Rendimiento/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Anticuerpos/aislamiento & purificación , Anticuerpos Biespecíficos/aislamiento & purificación , Línea Celular , Cromatografía Liquida/métodos , Humanos
3.
Cancer Immunol Immunother ; 71(10): 2313-2323, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35246703

RESUMEN

As the main immune checkpoint, PD-L1-PD-1 interaction plays a critical role in the dysregulation of effector T cells, which contributes to the failure of Chimeric Antigen Receptor T-cell (CAR-T) and other immunotherapies. Presently, most research focuses on the extracellular function of PD-L1. Membrane PD-L1 can interact with its receptor PD-1 and decrease T cell-induced cancer immunity. However, the function of PD-L1 in cancer cells is still unclear. Recent studies have shown the separated clinical significance of PD-L1 expression in various cancer types, showing the complexity of PD-L1 in cancer cell regulation. As a novel regulatory pathway, the nuclear translocation of PD-L1 in cancer cells receives more attention. Results of these preclinical studies demonstrated that nuclear PD-L1 has an essential role in cancer development and other immune checkpoint molecules transcription. Herein, we summarized the mechanisms involved in PD-L1 nuclear transportation and identify the key regulatory factors in this process. Furthermore, we also summarize the function of nuclear PD-L1 in cancer immunity. These findings suggested the novel PD-L1 regulation in cancer development, which showed that nuclear PD-L1 is a potential therapeutic target in future cancer therapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/metabolismo , Humanos , Inmunoterapia , Receptor de Muerte Celular Programada 1 , Linfocitos T
4.
Cancer Cell Int ; 21(1): 295, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098945

RESUMEN

As the essential sexual hormone, estrogen and its receptor has been proved to participate in the regulation of autoimmunity diseases and anti-tumor immunity. The adjustment of tumor immunity is related to the interaction between cancer cells, immune cells and tumor microenvironment, all of which is considered as the potential target in estrogen-induced immune system regulation. However, the specific mechanism of estrogen-induced immunity is poorly understood. Typically, estrogen causes the nuclear localization of estrogen/estrogen receptor complex and alternates the transcription pattern of target genes, leading to the reprogramming of tumor cells and differentiation of immune cells. However, the estrogen-induced non-canonical signal pathway activation is also crucial to the rapid function of estrogen, such as NF-κB, MAPK-ERK, and ß-catenin pathway activation, which has not been totally illuminated. So, the investigation of estrogen modulatory mechanisms in these two manners is vital for the tumor immunity and can provide the potential for endocrine hormone targeted cancer immunotherapy. Here, this review summarized the estrogen-induced canonical and non-canonical signal transduction pathway and aimed to focus on the relationship among estrogen and cancer immunity as well as immune-related tumor microenvironment regulation. Results from these preclinical researches elucidated that the estrogen-target therapy has the application prospect of cancer immunotherapy, which requires the further translational research of these treatment strategies.

5.
Mol Pharm ; 15(10): 4529-4537, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118239

RESUMEN

A critical part of the clinical development path for a therapeutic antibody involves evaluating the physical and chemical stability of candidate molecules throughout the manufacturing process. In particular, the risks of chemical liabilities that can impact antigen binding, such as deamidation, oxidation, and isomerization in the antibody CDR sequences, need to be controlled through formulation development or eliminated by replacing the amino acid motif displaying the chemical instability. Commonly, the antibody CDR sequence contains multiple sequence motifs (potential hotspots) for chemical instability. However, only a subset of these motifs results in actual chemical modification, and thus, experimental assessment of the extent of instability is necessary to identify positions for potential sequence engineering. Ideally, this information should be available prior to antibody humanization at the stage of parental rodent antibody identification. Early knowledge of liabilities allows for ranking of clones or the mitigation of liabilities by concurrent engineering with the antibody humanization process instead of time-consuming sequential activities. However, concurrent engineering of chemical liabilities and humanization requires translatability of the chemical modifications from the rodent parental antibody to the humanized. We experimentally compared the stability of all sequence motifs by mass spectrometric peptide mapping between the rodent parental antibody and the final humanized antibody and observed a linear correlation. These results have enabled a streamlined developability assessment process for therapeutic antibodies from lead discovery to clinical development.


Asunto(s)
Anticuerpos/inmunología , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Desaminación , Concentración de Iones de Hidrógeno , Isomerismo , Metionina/química , Ratones , Oxidación-Reducción , Espectrometría de Masas en Tándem , Triptófano/química
6.
J Chromatogr A ; 1730: 465117, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38972252

RESUMEN

Bispecific antibodies expressed and assembled from a single upstream culture require the correct balance and pairing of four different heavy and light chains (HC and LC). The increased potential for chain-mispaired species challenges the downstream purification of this new format. While clearance of HC-mispaired species, including homodimers and half-antibodies, has been assessed, removal of LC mispairs requires a more stringent approach. Here, we report two case studies in which separation is achieved, as well as the structural basis of these separations: (A) In the first case, a main species with a positively charged patch in the correctly formed variable fragment (Fv) is disrupted when paired with the wrong LC. This LC-mispaired variant binds more weakly to a cation exchange resin and can be washed off in a chromatography step. (B) A second molecule whose LC mispair introduces a negative-charge patch and hydrophobic patch in close proximity, presenting increased binding to a multimodal anion exchange resin. This LC-mispaired variant can be retained on the column under conditions in which the bispecific is recovered. In both case studies, the molecular structural analysis by protein surface properties models correlated well with the chromatography experiments. The comprehensive interpretation of experimental and computational results has provided a better understanding of strategies and potential applications for predicting the downstream purification of complex molecules.

7.
Cell Death Discov ; 10(1): 127, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467635

RESUMEN

Osteosarcoma (OS) is considered a sex steroid hormone-dependent bone tumor. The development and progression of OS are regulated by 17ß-estradiol (E2). However, the detailed mechanisms of E2-modulated OS progression remained to be elucidated. Here, we found that E2-activated mammalian target of rapamycin (mTOR) signaling promoted N6-methyladenosine (m6A) modification through regulating WTAP. Inhibition of mTOR complex 1 (mTORC1) reversed E2-activated WTAP expression. Meanwhile, inhibition of mTORC1 suppressed OS cell proliferation and migration. Deficiency of TSC2 activated mTORC1 signaling and enhanced OS cell proliferation and migration, while abrogated by Rapamycin. Interestingly, mTOMC1 promoted mRNA stability of ubiquitin-specific protease 7 (USP7) through m6A modification. Loss of USP7 suppressed the proliferation, migration, and ASC specks, while promoted apoptosis of OS cells. USP7 interacted with NLRP3 and deubiquitinated NLRP3 through K48-ubiquitination. USP7 was upregulated and positive correlation with NLRP3 in OS patients with high level of E2. Loss of USP7 suppressed the progression of OS via inhibiting NLRP3 inflammasome signaling pathway. Our results demonstrated that E2-activtated mTORC1 promoted USP7 stability, which promoted OS cell proliferation and migration via upregulating NLRP3 expression and enhancing NLRP3 inflammasome signaling pathway. These results discover a novel mechanism of E2 regulating OS progression and provide a promising therapeutic target for OS progression.

8.
ACS Nano ; 16(7): 10327-10340, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35737477

RESUMEN

Pyroptosis has been reported to improve the immunosuppressive tumor microenvironment and may be a strategy to enhance osteosarcoma treatment. The extent to which modulation of mitochondria could induce tumor pyroptosis to enhance immunotherapy has not been characterized. We synthesized a mitochondria-targeting polymer micelle (OPDEA-PDCA), in which poly[2-(N-oxide-N,N-diethylamino)ethyl methacrylate] (OPDEA) was used to target mitochondria and the conjugated dichloroacetate (DCA) was used to inhibit pyruvate dehydrogenase kinase 1 (PDHK1). This conjugate induced pyroptosis through initiation of mitochondrial oxidative stress. We found that OPDEA-PDCA targeted mitochondria and induced mitochondrial oxidative stress through the inhibition of PDHK1, resulting in immunogenic pyroptosis in osteosarcoma cell lines. Moreover, we showed that OPDEA-PDCA could induce secretion of soluble programmed cell death-ligand 1 (PD-L1) molecule. Therefore, combined therapy with OPDEA-PDCA and an anti-PD-L1 monoclonal antibody significantly suppressed proliferation of osteosarcoma with prolonged T cell activation. This study provided a strategy to initiate pyroptosis through targeted modulation of mitochondria, which may promote enhanced antitumor efficacy in combination with immunotherapy.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Micelas , Piroptosis , Polímeros/farmacología , Polímeros/metabolismo , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Inmunoterapia , Mitocondrias/metabolismo , Microambiente Tumoral , Neoplasias Óseas/patología , Línea Celular Tumoral
9.
Oncoimmunology ; 11(1): 2024941, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35036076

RESUMEN

The poor progress of immunotherapy on osteosarcoma patients requires deeper delineation of immune tolerance mechanisms in the osteosarcoma microenvironment and a new therapeutic strategy. Clearance of apoptotic cells by phagocytes, a process termed "efferocytosis," is ubiquitous in tumors and mediates the suppression of innate immune inflammatory response. Considering the massive infiltrated macrophages in osteosarcoma, efferocytosis probably serves as a potential target, but is rarely studied in osteosarcoma. Here, we verified M2 polarization and PD-L1 expression of macrophages following efferocytosis. Pharmacological inhibition and genetic knockdown were used to explore the underlying pathway. Moreover, tumor progression and immune landscape were evaluated following inhibition of efferocytosis in osteosarcoma model. Our study indicated that efferocytosis promoted PD-L1 expression and M2 polarization of macrophages. Ëfferocytosis was mediated by MerTK receptor in osteosarcoma and regulated the phenotypes of macrophages through the p38/STAT3 pathway. By establishing the murine osteosarcoma model, we emphasized that inhibition of MerTK suppressed tumor growth and enhanced the T cell cytotoxic function by increasing the infiltration of CD8+ T cells and decreasing their exhaustion. Our findings demonstrate that MerTK-mediated efferocytosis promotes osteosarcoma progression by enhancing M2 polarization of macrophages and PD-L1-induced immune tolerance, which were regulated through the p38/STAT3 pathway.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Antígeno B7-H1/genética , Neoplasias Óseas/genética , Linfocitos T CD8-positivos , Humanos , Tolerancia Inmunológica , Ratones , Osteosarcoma/genética , Microambiente Tumoral , Tirosina Quinasa c-Mer
10.
Genes (Basel) ; 12(11)2021 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-34828292

RESUMEN

This study aims to investigate the differentiation trajectory of osteosarcoma cells and to construct molecular subtypes with their respective characteristics and generate a multi-gene signature for predicting prognosis. Integrated single-cell RNA-sequencing (scRNA-seq) data, bulk RNA-seq data and microarray data from osteosarcoma samples were used for analysis. Via scRNA-seq data, time-related as well as differentiation-related genes were recognized as osteosarcoma tumor stem cell-related genes (OSCGs). In Gene Expression Omnibus (GEO) cohort, osteosarcoma patients were classified into two subtypes based on prognostic OSCGs and it was found that molecular typing successfully predicted overall survival, tumor microenvironment and immune infiltration status. Further, available drugs for influencing osteosarcoma via prognostic OSCGs were revealed. A 3-OSCG-based prognostic risk score signature was generated and by combining other clinic-pathological independent prognostic factor, stage at diagnosis, a nomogram was established to predict individual survival probability. In external independent TARGET cohort, the molecular types, the 3-gene signature as well as nomogram were validated. In conclusion, osteosarcoma cell differentiation occupies a crucial position in many facets, such as tumor prognosis and microenvironment, suggesting promising therapeutic targets for this disease.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Óseas/clasificación , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Osteosarcoma/clasificación , Neoplasias Óseas/genética , Neoplasias Óseas/mortalidad , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Humanos , Células Madre Neoplásicas/química , Células Madre Neoplásicas/clasificación , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteosarcoma/genética , Osteosarcoma/mortalidad , Pronóstico , RNA-Seq , Análisis de la Célula Individual , Análisis de Supervivencia , Microambiente Tumoral
11.
Front Oncol ; 11: 722916, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386431

RESUMEN

Tumor microenvironment (TME) formation is a major cause of immunosuppression. The TME consists of a considerable number of macrophages and stromal cells that have been identified in multiple tumor types. CCL2 is the strongest chemoattractant involved in macrophage recruitment and a powerful initiator of inflammation. Evidence indicates that CCL2 can attract other host cells in the TME and direct their differentiation in cooperation with other cytokines. Overall, CCL2 has an unfavorable effect on prognosis in tumor patients because of the accumulation of immunosuppressive cell subtypes. However, there is also evidence demonstrating that CCL2 enhances the anti-tumor capability of specific cell types such as inflammatory monocytes and neutrophils. The inflammation state of the tumor seems to have a bi-lateral role in tumor progression. Here, we review works focusing on the interactions between cancer cells and host cells, and on the biological role of CCL2 in these processes.

12.
Drug Deliv ; 28(1): 2548-2561, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34854786

RESUMEN

Effective and accurate delivery of drugs to tissue with spinal cord injury (SCI) is the key to rehabilitating neurological deficits. Sustained-release microspheres (MS) have excellent degradability and can aid in the long-term release of drugs. However, the burst release phenomenon can cause unexpected side effects. Herein, we developed and optimized an injectable poly(lactic-co-glycolic acid) (PLGA) MS loaded with melatonin(Mel), which were mixed further with Laponite hydrogels (Lap/MS@Mel, a micro-gel compound) in order to reduce the burst release of MS. Thus, these MS were able to achieve stable and prolonged Mel release, as well as synergistic Lap hydrogel in order to repair neural function in SCI by in situ injection. In clinical practice, patients with SCI have complicated conditions and significant inter-individual differences, which means that a single route of administration does not meet actual clinical needs. Thus, the nanospheres are synthesized and subsequently coated with platelet membrane (PM) in order to form PM/MS@Mel (nano-PM compound) for sustained and precision-targeted delivery of Mel intravenously in the SCI. Notably, optimized microsphere delivery systems have improved Mel regulation polarization of spinal microglial/macrophages, which can reduce loss of biomaterials due to macrophage-induced immune response during implantation of spinal cord tissue. These two new delivery systems that are based on MS provide references for the clinical treatment of SCI, according to different requirements.


Asunto(s)
Portadores de Fármacos/química , Melatonina/administración & dosificación , Melatonina/farmacología , Microesferas , Animales , Química Farmacéutica , Modelos Animales de Enfermedad , Liberación de Fármacos , Hidrogeles/química , Nanosferas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal
13.
Curr Stem Cell Res Ther ; 15(4): 321-331, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31441733

RESUMEN

Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/trasplante , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre , Diferenciación Celular/fisiología , Humanos , Medicina Regenerativa/métodos , Trasplante de Células Madre/métodos
14.
J Zhejiang Univ Sci B ; 20(3): 205-218, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30829009

RESUMEN

Spinal cord injury (SCI), which is much in the public eye, is still a refractory disease compromising the well-being of both patients and society. In spite of there being many methods dealing with the lesion, there is still a deficiency in comprehensive strategies covering all facets of this damage. Further, we should also mention the structure called the corticospinal tract (CST) which plays a crucial role in the motor responses of organisms, and it will be the focal point of our attention. In this review, we discuss a variety of strategies targeting different dimensions following SCI and some treatments that are especially efficacious to the CST are emphasized. Over recent decades, researchers have developed many effective tactics involving five approaches: (1) tackle more extensive regions; (2) provide a regenerative microenvironment; (3) provide a glial microenvironment; (4) transplantation; and (5) other auxiliary methods, for instance, rehabilitation training and electrical stimulation. We review the basic knowledge on this disease and correlative treatments. In addition, some well-formulated perspectives and hypotheses have been delineated. We emphasize that such a multifaceted problem needs combinatorial approaches, and we analyze some discrepancies in past studies. Finally, for the future, we present numerous brand-new latent tactics which have great promise for curbing SCI.


Asunto(s)
Tractos Piramidales/patología , Medicina Regenerativa/métodos , Traumatismos de la Médula Espinal/terapia , Animales , Astrocitos/citología , Axones/fisiología , Trasplante de Células , Modelos Animales de Enfermedad , Estimulación Eléctrica , Humanos , Microglía/citología , Neuronas Motoras/citología , Regeneración Nerviosa , Neuroglía/citología , Plasticidad Neuronal , Neuronas/citología , Oligodendroglía/citología , Recuperación de la Función
15.
Stem Cell Res Ther ; 10(1): 344, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31753016

RESUMEN

With the increasing incidence of cartilage-related diseases such as osteoarthritis (OA) and intervertebral disc degeneration (IDD), heavier financial and social burdens need to be faced. Unfortunately, there is no satisfactory clinical method to target the pathophysiology of cartilage-related diseases. Many gene expressions, signaling pathways, and biomechanical dysregulations were involved in cartilage development, degeneration, and regeneration. However, the underlying mechanism was not clearly understood. Recently, lots of long non-coding RNAs (lncRNAs) were identified in the biological processes, including cartilage development, degeneration, and regeneration. It is clear that lncRNAs were important in regulating gene expression and maintaining chondrocyte phenotypes and homeostasis. In this review, we summarize the recent researches studying lncRNAs' expression and function in cartilage development, degeneration, and regeneration and illustrate the potential mechanism of how they act in the pathologic process. With continued efforts, regulating lncRNA expression in the cartilage regeneration may be a promising biological treatment approach.


Asunto(s)
Cartílago , Regulación de la Expresión Génica , Degeneración del Disco Intervertebral , Osteoartritis , ARN Largo no Codificante/biosíntesis , Regeneración , Animales , Cartílago/embriología , Cartílago/metabolismo , Cartílago/patología , Humanos , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Osteoartritis/metabolismo , Osteoartritis/patología
16.
Curr Stem Cell Res Ther ; 14(1): 57-64, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30227822

RESUMEN

Low back pain (LBP) is one of the world's most common musculoskeletal diseases and is frequently associated with intervertebral disc degeneration (IDD). While the main cause of IDD is commonly attributed to a reduced number of nucleus pulposus (NP) cells, current treatment strategies (both surgical and more conservative) fail to replenish NP cells or reverse the pathology. Cell replacement therapies are an attractive alternative for treating IDD. However, injecting intervertebral disc (IVD) cells, chondrocytes, or mesenchymal stem cells into various animal models of IDD indicate that transplanted cells generally fail to survive and engraft into the avascular IVD niche. Whereas pluripotent stem cells (PSCs), including induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), hold great potential for revolutionizing regenerative medicine, current protocols for differentiating these cells into NP-like cells are inadequate. Nucleus pulposus progenitor cells (NPPCs), which are derived from the embryonic notochord, can not only survive within the harsh hypoxic environment of the IVD, but they also efficiently differentiate into NP-like cells. Here we provide an overview of the latest progress in repairing degenerated IVDs using PSCs and NPPCs. We also discuss the molecular pathways by which PSCs differentiate into NPPCs in vitro and in vivo and propose a new, in vivo IDD therapy.


Asunto(s)
Diferenciación Celular , Disco Intervertebral/fisiología , Núcleo Pulposo/fisiología , Células Madre Pluripotentes/fisiología , Regeneración , Medicina Regenerativa , Animales , Biomarcadores/metabolismo , Transdiferenciación Celular/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Degeneración del Disco Intervertebral/fisiopatología , Degeneración del Disco Intervertebral/terapia , Dolor de la Región Lumbar/fisiopatología , Dolor de la Región Lumbar/terapia
17.
Acta Biomater ; 86: 300-311, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30660009

RESUMEN

Low back pain is often caused by intervertebral disc degeneration, which is characterized by nucleus pulposus (NP) and extracellular matrix (ECM) degeneration. Human adipose-derived stem cells (hADSCs) induced by growth and differentiation factor-5 (GDF5) can differentiate into an NP-like phenotype. Although stem cell-based therapy with prolonged exposure to growth factors is regarded as a promising treatment, the efficacy of this approach in attenuating the disc degeneration process is limited by the short lifespan of growth factors. In our study, a unique growth factor delivery vehicle composed of heparin and the synthetic polycation poly(ethylene argininylaspartate diglyceride) (PEAD) was used to sustain GDF5 release. The results showed that sustained release of GDF5 by the PEAD:heparin delivery system promoted hADSC differentiation to an NP-like phenotype in vitro. After injection of the PEAD:heparin:GDF5 delivery platform and hADSCs into intervertebral spaces of coccygeal (Co) vertebrae Co7/Co8 and Co8/Co9 of the rat, the disc height, water content, and structure of the NPs decreased more slowly than other treatment groups. This new strategy may be used as an alternative treatment for attenuating intervertebral disc degeneration with hADSCs without the need for gene therapy. STATEMENT OF SIGNIFICANCE: Low back pain is often caused by intervertebral disc degeneration, which is characterized by nucleus pulposus (NP) and extracellular matrix (ECM) degeneration. Human adipose-derived stem cells (hADSCs) induced by growth and differentiation factor-5 (GDF-5) can differentiate into an NP-like phenotype. Although stem cell-based therapy with prolonged exposure to growth factor is regarded as a promising treatment, the efficacy of this approach in the disc regeneration process is limited by the short life of growth factors. In our study, a unique growth factor delivery vehicle comprised of heparin and the synthetic polycation poly(ethylene argininylaspartate diglyceride) (PEAD) was used to sustain the release of GDF-5. Numerous groups have explored IDD regeneration methods in vitro and in vivo. Our study differs in that GDF5 was incorporated into a vehicle through charge attraction and exhibited a sustained release profile. Moreover, GDF-5 seeded coacervate combined with hADSC injection could be a minimally invasive approach for tissue engineering that is suitable for clinical application. We investigated the stimulatory effects of our GDF-5 seeded coacervate on the differentiation of ADSCs in vitro and the reparative effect of the delivery system on degenerated NP in vivo.


Asunto(s)
Factor 5 de Diferenciación de Crecimiento/uso terapéutico , Degeneración del Disco Intervertebral/tratamiento farmacológico , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colágeno Tipo II/metabolismo , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/uso terapéutico , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Factor 5 de Diferenciación de Crecimiento/farmacología , Humanos , Disco Intervertebral/diagnóstico por imagen , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/diagnóstico por imagen , Degeneración del Disco Intervertebral/patología , Imagen por Resonancia Magnética , Núcleo Pulposo/patología , Péptidos/síntesis química , Péptidos/química , Fenotipo , Poliésteres/síntesis química , Poliésteres/química , Ratas Sprague-Dawley , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA