Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 238(3): 952-970, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36694296

RESUMEN

Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and carbon dynamics, which influence combustion and heat transfer into the plant and often dictate plant survival, provide the mechanistic linkage between fire behavior and effects. Our conceptual framework linking remotely sensed estimates of plant water and carbon to fine-scale models of fire behavior and effects could be a critical first step toward improving the fidelity of the coarse scale models that are now relied upon for global fire forecasting. This process-based approach will be essential to capturing the influence of physiological responses to drought and warming on live fuel conditions, strengthening the science needed to guide fire managers in an uncertain future.


Asunto(s)
Incendios , Incendios Forestales , Plantas , Fenómenos Fisiológicos de las Plantas , Agua , Carbono , Ecosistema
2.
New Phytol ; 235(5): 1767-1779, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35644021

RESUMEN

Increasing seawater exposure is killing coastal trees globally, with expectations of accelerating mortality with rising sea levels. However, the impact of concomitant changes in atmospheric CO2 concentration, temperature, and vapor pressure deficit (VPD) on seawater-induced tree mortality is uncertain. We examined the mechanisms of seawater-induced mortality under varying climate scenarios using a photosynthetic gain and hydraulic cost optimization model validated against observations in a mature stand of Sitka spruce (Picea sitchensis) trees in the Pacific Northwest, USA, that were dying from recent seawater exposure. The simulations matched well with observations of photosynthesis, transpiration, nonstructural carbohydrates concentrations, leaf water potential, the percentage loss of xylem conductivity, and stand-level mortality rates. The simulations suggest that seawater-induced mortality could decrease by c. 16.7% with increasing atmospheric CO2 levels due to reduced risk of carbon starvation. Conversely, rising VPD could increase mortality by c. 5.6% because of increasing risk of hydraulic failure. Across all scenarios, seawater-induced mortality was driven by hydraulic failure in the first 2 yr after seawater exposure began, with carbon starvation becoming more important in subsequent years. Changing CO2 and climate appear unlikely to have a significant impact on coastal tree mortality under rising sea levels.


Asunto(s)
Picea , Árboles , Carbono , Dióxido de Carbono/farmacología , Agua de Mar , Temperatura , Presión de Vapor , Agua
3.
Glob Chang Biol ; 28(2): 509-523, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34713535

RESUMEN

Quantifying the responses of forest disturbances to climate warming is critical to our understanding of carbon cycles and energy balances of the Earth system. The impact of warming on bark beetle outbreaks is complex as multiple drivers of these events may respond differently to warming. Using a novel model of bark beetle biology and host tree interactions, we assessed how contemporary warming affected western pine beetle (Dendroctonus brevicomis) populations and mortality of its host, ponderosa pine (Pinus ponderosa), during an extreme drought in the Sierra Nevada, California, United States. When compared with the field data, our model captured the western pine beetle flight timing and rates of ponderosa pine mortality observed during the drought. In assessing the influence of temperature on western pine beetles, we found that contemporary warming increased the development rate of the western pine beetle and decreased the overwinter mortality rate of western pine beetle larvae leading to increased population growth during periods of lowered tree defense. We attribute a 29.9% (95% CI: 29.4%-30.2%) increase in ponderosa pine mortality during drought directly to increases in western pine beetle voltinism (i.e., associated with increased development rates of western pine beetle) and, to a much lesser extent, reductions in overwintering mortality. These findings, along with other studies, suggest each degree (°C) increase in temperature may have increased the number of ponderosa pine killed by upwards of 35%-40% °C-1 if the effects of compromised tree defenses (15%-20%) and increased western pine beetle populations (20%) are additive. Due to the warming ability to considerably increase mortality through the mechanism of bark beetle populations, models need to consider climate's influence on both host tree stress and the bark beetle population dynamics when determining future levels of tree mortality.


Asunto(s)
Escarabajos , Pinus , Animales , Sequías , Pinus ponderosa , Corteza de la Planta , Árboles
4.
New Phytol ; 231(5): 1798-1813, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33993520

RESUMEN

Deep-water access is arguably the most effective, but under-studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep-water access may delay plant dehydration. Here, we tested the role of deep-water access in enabling survival within a diverse tropical forest community in Panama using a novel data-model approach. We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990-2015) to vapor pressure deficit, water potentials in the whole-soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water-access depths. Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981-2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress-related mortality risk through deep-water access. The role of deep-water access in mitigating mortality of hydraulically-vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.


Asunto(s)
Sequías , Árboles , Bosques , Hojas de la Planta , Agua , Abastecimiento de Agua , Xilema
5.
Emerg Infect Dis ; 26(7): 1470-1477, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32255761

RESUMEN

Severe acute respiratory syndrome coronavirus 2 is the causative agent of the ongoing coronavirus disease pandemic. Initial estimates of the early dynamics of the outbreak in Wuhan, China, suggested a doubling time of the number of infected persons of 6-7 days and a basic reproductive number (R0) of 2.2-2.7. We collected extensive individual case reports across China and estimated key epidemiologic parameters, including the incubation period (4.2 days). We then designed 2 mathematical modeling approaches to infer the outbreak dynamics in Wuhan by using high-resolution domestic travel and infection data. Results show that the doubling time early in the epidemic in Wuhan was 2.3-3.3 days. Assuming a serial interval of 6-9 days, we calculated a median R0 value of 5.7 (95% CI 3.8-8.9). We further show that active surveillance, contact tracing, quarantine, and early strong social distancing efforts are needed to stop transmission of the virus.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Número Básico de Reproducción , COVID-19 , China/epidemiología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Brotes de Enfermedades , Humanos , Modelos Teóricos , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , SARS-CoV-2 , Viaje
6.
New Phytol ; 225(1): 26-36, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494935

RESUMEN

Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality.


Asunto(s)
Carbono/metabolismo , Escarabajos/fisiología , Enfermedades de las Plantas/parasitología , Árboles/fisiología , Animales , Cambio Climático , Simulación por Computador , Sequías , Ecosistema , Bosques , Modelos Teóricos , Corteza de la Planta/inmunología , Corteza de la Planta/parasitología , Corteza de la Planta/fisiología , Árboles/inmunología , Árboles/parasitología
7.
Plant Cell Environ ; 42(5): 1705-1714, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30537216

RESUMEN

Nonstructural carbohydrates (NSCs) are essential for maintenance of plant metabolism and may be sensitive to short- and long-term climatic variation. NSC variation in moist tropical forests has rarely been studied, so regulation of NSCs in these systems is poorly understood. We measured foliar and branch NSC content in 23 tree species at three sites located across a large precipitation gradient in Panama during the 2015-2016 El Niño to examine how short- and long-term climatic variation impact carbohydrate dynamics. There was no significant difference in total NSCs as the drought progressed (leaf P = 0.32, branch P = 0.30) nor across the rainfall gradient (leaf P = 0.91, branch P = 0.96). Foliar soluble sugars decreased while starch increased over the duration of the dry period, suggesting greater partitioning of NSCs to storage than metabolism or transport as drought progressed. There was a large variation across species at all sites, but total foliar NSCs were positively correlated with leaf mass per area, whereas branch sugars were positively related to leaf temperature and negatively correlated with daily photosynthesis and wood density. The NSC homoeostasis across a wide range of conditions suggests that NSCs are an allocation priority in moist tropical forests.


Asunto(s)
Sequías , El Niño Oscilación del Sur , Almidón/metabolismo , Azúcares/metabolismo , Árboles/metabolismo , Carbohidratos/fisiología , Bosques , Panamá , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Estaciones del Año , Clima Tropical , Madera/metabolismo
8.
Oecologia ; 191(3): 519-530, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31541317

RESUMEN

Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates.


Asunto(s)
Transpiración de Plantas , Árboles , Sequías , Bosques , Presión de Vapor , Agua
9.
New Phytol ; 219(3): 851-869, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29451313

RESUMEN

Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.


Asunto(s)
Bosques , Humedad , Árboles/fisiología , Clima Tropical , Dióxido de Carbono/metabolismo , Modelos Teóricos
10.
Glob Chang Biol ; 24(11): 5259-5269, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29901246

RESUMEN

Wood decomposition is a major component of the global carbon cycle. Decomposition rates vary across climate gradients, which is thought to reflect the effects of temperature and moisture on the metabolic kinetics of decomposers. However, decomposition rates also vary with wood traits, which may reflect the influence of stoichiometry on decomposer metabolism as well as geometry relating the surface areas that decomposers colonize with the volumes they consume. In this paper, we combined metabolic and geometric scaling theories to formalize hypotheses regarding the drivers of wood decomposition rates, and assessed these hypotheses using a global compilation of data on climate, wood traits, and wood decomposition rates. Our results are consistent with predictions from both metabolic and geometric scaling theories. Approximately half of the global variation in decomposition rates was explained by wood traits (nitrogen content and diameter), whereas only a fifth was explained by climate variables (air temperature, precipitation, and relative humidity). These results indicate that global variation in wood decomposition rates is best explained by stoichiometric and geometric wood traits. Our findings suggest that inclusion of wood traits in global carbon cycle models can improve predictions of carbon fluxes from wood decomposition.


Asunto(s)
Ciclo del Carbono , Clima , Madera , Carbono/metabolismo , Nitrógeno/metabolismo , Temperatura , Madera/metabolismo
11.
Glob Chang Biol ; 24(8): 3620-3628, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29808947

RESUMEN

Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km2 , that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountain pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.


Asunto(s)
Escarabajos/fisiología , Alberta , Animales , Escarabajos/clasificación , Conducta Competitiva , Monitoreo del Ambiente , Hipertelorismo , Discapacidad Intelectual , Cifosis , Megalencefalia , Modelos Biológicos , Dinámica Poblacional , Estaciones del Año , Temperatura , Lengua/anomalías , Árboles
12.
Glob Chang Biol ; 24(1): 35-54, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28921829

RESUMEN

Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.


Asunto(s)
Planeta Tierra , Ecosistema , Modelos Biológicos , Plantas , Dinámica Poblacional , Incertidumbre
13.
New Phytol ; 215(4): 1425-1437, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27870067

RESUMEN

Our objective was to analyze and summarize data describing photosynthetic parameters and foliar nutrient concentrations from tropical forests in Panama to inform model representation of phosphorus (P) limitation of tropical forest productivity. Gas exchange and nutrient content data were collected from 144 observations of upper canopy leaves from at least 65 species at two forest sites in Panama, differing in species composition, rainfall and soil fertility. Photosynthetic parameters were derived from analysis of assimilation rate vs internal CO2 concentration curves (A/Ci ), and relationships with foliar nitrogen (N) and P content were developed. The relationships between area-based photosynthetic parameters and nutrients were of similar strength for N and P and robust across diverse species and site conditions. The strongest relationship expressed maximum electron transport rate (Jmax ) as a multivariate function of both N and P, and this relationship was improved with the inclusion of independent data on wood density. Models that estimate photosynthesis from foliar N would be improved only modestly by including additional data on foliar P, but doing so may increase the capability of models to predict future conditions in P-limited tropical forests, especially when combined with data on edaphic conditions and other environmental drivers.


Asunto(s)
Modelos Biológicos , Nitrógeno/análisis , Fósforo/análisis , Fotosíntesis , Hojas de la Planta/química , Clima Tropical , Madera/química , Dióxido de Carbono/metabolismo , Bosques , Panamá , Análisis de Regresión , Ribulosa-Bifosfato Carboxilasa/metabolismo , Especificidad de la Especie , Árboles/metabolismo
14.
Ecol Appl ; 25(8): 2349-65, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26910960

RESUMEN

Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (V(cm)) rate scaled to 25 degrees C (i.e., V(c),25; µmol CO2 x m(-2)x s(-1)) and maximum electron transport rate (J(max)) scaled to 25 degrees C (i.e., J25; µmol electron x m(-2) x s(-1)) at the global scale. Our results showed that the percentage of variation in observed V(c),25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2-2.5 times and 6-9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain -56% and -66% of the variation in V(c),25 and J25 at the global scale, respectively. Our analyses suggest that model projections of plant photosynthetic capacity and hence land-atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Fotosíntesis/fisiología , Plantas/metabolismo , Modelos Biológicos , Nitrógeno , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Incertidumbre
15.
New Phytol ; 200(2): 304-321, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24004027

RESUMEN

SUMMARY: Model-data comparisons of plant physiological processes provide an understanding of mechanisms underlying vegetation responses to climate. We simulated the physiology of a piñon pine-juniper woodland (Pinus edulis-Juniperus monosperma) that experienced mortality during a 5 yr precipitation-reduction experiment, allowing a framework with which to examine our knowledge of drought-induced tree mortality. We used six models designed for scales ranging from individual plants to a global level, all containing state-of-the-art representations of the internal hydraulic and carbohydrate dynamics of woody plants. Despite the large range of model structures, tuning, and parameterization employed, all simulations predicted hydraulic failure and carbon starvation processes co-occurring in dying trees of both species, with the time spent with severe hydraulic failure and carbon starvation, rather than absolute thresholds per se, being a better predictor of impending mortality. Model and empirical data suggest that limited carbon and water exchanges at stomatal, phloem, and below-ground interfaces were associated with mortality of both species. The model-data comparison suggests that the introduction of a mechanistic process into physiology-based models provides equal or improved predictive power over traditional process-model or empirical thresholds. Both biophysical and empirical modeling approaches are useful in understanding processes, particularly when the models fail, because they reveal mechanisms that are likely to underlie mortality. We suggest that for some ecosystems, integration of mechanistic pathogen models into current vegetation models, and evaluation against observations, could result in a breakthrough capability to simulate vegetation dynamics.


Asunto(s)
Carbono/metabolismo , Juniperus/fisiología , Modelos Biológicos , Pinus/fisiología , Transpiración de Plantas/fisiología , Agua/fisiología , Sequías , Juniperus/crecimiento & desarrollo , Floema/crecimiento & desarrollo , Floema/fisiología , Pinus/crecimiento & desarrollo , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/fisiología , Lluvia , Estrés Fisiológico , Temperatura , Árboles
16.
Environ Health Perspect ; 131(4): 47016, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37104243

RESUMEN

BACKGROUND: West Nile virus (WNV) is the leading cause of mosquito-borne disease in humans in the United States. Since the introduction of the disease in 1999, incidence levels have stabilized in many regions, allowing for analysis of climate conditions that shape the spatial structure of disease incidence. OBJECTIVES: Our goal was to identify the seasonal climate variables that influence the spatial extent and magnitude of WNV incidence in humans. METHODS: We developed a predictive model of contemporary mean annual WNV incidence using U.S. county-level case reports from 2005 to 2019 and seasonally averaged climate variables. We used a random forest model that had an out-of-sample model performance of R2=0.61. RESULTS: Our model accurately captured the V-shaped area of higher WNV incidence that extends from states on the Canadian border south through the middle of the Great Plains. It also captured a region of moderate WNV incidence in the southern Mississippi Valley. The highest levels of WNV incidence were in regions with dry and cold winters and wet and mild summers. The random forest model classified counties with average winter precipitation levels <23.3mm/month as having incidence levels over 11 times greater than those of counties that are wetter. Among the climate predictors, winter precipitation, fall precipitation, and winter temperature were the three most important predictive variables. DISCUSSION: We consider which aspects of the WNV transmission cycle climate conditions may benefit the most and argued that dry and cold winters are climate conditions optimal for the mosquito species key to amplifying WNV transmission. Our statistical model may be useful in projecting shifts in WNV risk in response to climate change. https://doi.org/10.1289/EHP10986.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Estados Unidos/epidemiología , Humanos , Fiebre del Nilo Occidental/epidemiología , Incidencia , Canadá , Frío
17.
New Phytol ; 214(3): 903-904, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28397361

Asunto(s)
Bosques , Clima Tropical
18.
Comput Stat Data Anal ; 55(1): 184-198, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24143037

RESUMEN

Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements.

19.
Nat Commun ; 12(1): 4866, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381045

RESUMEN

Plants invest a considerable amount of leaf nitrogen in the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO), forming a strong coupling of nitrogen and photosynthetic capacity. Variability in the nitrogen-photosynthesis relationship indicates different nitrogen use strategies of plants (i.e., the fraction nitrogen allocated to RuBisCO; fLNR), however, the reason for this remains unclear as widely different nitrogen use strategies are adopted in photosynthesis models. Here, we use a comprehensive database of in situ observations, a remote sensing product of leaf chlorophyll and ancillary climate and soil data, to examine the global distribution in fLNR using a random forest model. We find global fLNR is 18.2 ± 6.2%, with its variation largely driven by negative dependence on leaf mass per area and positive dependence on leaf phosphorus. Some climate and soil factors (i.e., light, atmospheric dryness, soil pH, and sand) have considerable positive influences on fLNR regionally. This study provides insight into the nitrogen-photosynthesis relationship of plants globally and an improved understanding of the global distribution of photosynthetic potential.


Asunto(s)
Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Clima , Ecosistema , Internacionalidad , Modelos Teóricos , Fósforo/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Suelo/química
20.
Science ; 368(6494)2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32467364

RESUMEN

Forest dynamics arise from the interplay of environmental drivers and disturbances with the demographic processes of recruitment, growth, and mortality, subsequently driving biomass and species composition. However, forest disturbances and subsequent recovery are shifting with global changes in climate and land use, altering these dynamics. Changes in environmental drivers, land use, and disturbance regimes are forcing forests toward younger, shorter stands. Rising carbon dioxide, acclimation, adaptation, and migration can influence these impacts. Recent developments in Earth system models support increasingly realistic simulations of vegetation dynamics. In parallel, emerging remote sensing datasets promise qualitatively new and more abundant data on the underlying processes and consequences for vegetation structure. When combined, these advances hold promise for improving the scientific understanding of changes in vegetation demographics and disturbances.


Asunto(s)
Aclimatación , Biomasa , Cambio Climático , Bosques , Árboles/crecimiento & desarrollo , Dióxido de Carbono/análisis , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA