Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 72(2): 316-327.e5, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340023

RESUMEN

Primary cilia are required for Smoothened to transduce vertebrate Hedgehog signals, but how Smoothened accumulates in cilia and is activated is incompletely understood. Here, we identify cilia-associated oxysterols that promote Smoothened accumulation in cilia and activate the Hedgehog pathway. Our data reveal that cilia-associated oxysterols bind to two distinct Smoothened domains to modulate Smoothened accumulation in cilia and tune the intensity of Hedgehog pathway activation. We find that the oxysterol synthase HSD11ß2 participates in the production of Smoothened-activating oxysterols and promotes Hedgehog pathway activity. Inhibiting oxysterol biosynthesis impedes oncogenic Hedgehog pathway activation and attenuates the growth of Hedgehog pathway-associated medulloblastoma, suggesting that targeted inhibition of Smoothened-activating oxysterol production may be therapeutically useful for patients with Hedgehog-associated cancers.


Asunto(s)
Cilios/efectos de los fármacos , Cilios/metabolismo , Oxiesteroles/farmacología , Animales , Línea Celular , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Células 3T3 NIH , Transducción de Señal/efectos de los fármacos
2.
J Infect Dis ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578967

RESUMEN

Enterococci have evolved resistance mechanisms to protect their cell envelopes against bacteriocins and host cationic antimicrobial peptides (CAMPs) produced in the gastrointestinal environment. Activation of the membrane stress response has also been tied to resistance to the lipopeptide antibiotic daptomycin. However, the actual effectors mediating resistance have not been elucidated. Here, we show that the MadRS (formerly YxdJK) membrane antimicrobial peptide defense system controls a network of genes, including a previously uncharacterized three gene operon (madEFG) that protects the E. faecalis cell envelope from antimicrobial peptides. Constitutive activation of the system confers protection against CAMPs and daptomycin in the absence of a functional LiaFSR system and leads to persistence of cardiac microlesions in vivo. Moreover, changes in the lipid cell membrane environment alter CAMP susceptibility and expression of the MadRS system. Thus, we provide a framework supporting a multilayered envelope defense mechanism for resistance and survival coupled to virulence.

3.
J Transl Med ; 22(1): 65, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229122

RESUMEN

BACKGROUND: Accurate clinical structural variant (SV) calling is essential for cancer target identification and diagnosis but has been historically challenging due to the lack of ground truth for clinical specimens. Meanwhile, reduced clinical-testing cost is the key to the widespread clinical utility. METHODS: We analyzed massive data from tumor samples of 476 patients and developed a computational framework for accurate and cost-effective detection of clinically-relevant SVs. In addition, standard materials and classical experiments including immunohistochemistry and/or fluorescence in situ hybridization were used to validate the developed computational framework. RESULTS: We systematically evaluated the common algorithms for SV detection and established an expert-reviewed SV call set of 1,303 tumor-specific SVs with high-evidence levels. Moreover, we developed a random-forest-based decision model to improve the true positive of SVs. To independently validate the tailored 'two-step' strategy, we utilized standard materials and classical experiments. The accuracy of the model was over 90% (92-99.78%) for all types of data. CONCLUSION: Our study provides a valuable resource and an actionable guide to improve cancer-specific SV detection accuracy and clinical applicability.


Asunto(s)
Genómica , Neoplasias , Humanos , Benchmarking , Análisis Costo-Beneficio , Hibridación Fluorescente in Situ , Neoplasias/diagnóstico , Neoplasias/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento
4.
Drug Metab Dispos ; 52(4): 312-321, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38307853

RESUMEN

Humans are chronically exposed to benzalkonium chlorides (BACs) from environmental sources. The U.S. Food and Drug Administration (FDA) has recently called for additional BAC safety data, as these compounds are cytotoxic and have great potential for biochemical interactions. Biodistribution studies revealed that BACs extensively distribute to many tissues and accumulate at high levels, especially in the kidneys, but the underlying mechanisms are unclear. In this study, we characterized the interactions of BACs of varying alkyl chain length (C8 to C14) with the human organic cation transporters (hOCT1-3) and multidrug and toxin extrusion proteins (hMATE1/2K) with the goal to identify transporters that could be involved in BAC disposition. Using transporter-expressing cell lines, we showed that all BACs are inhibitors of hOCT1-3 and hMATE1/2K (IC50 ranging 0.83-25.8 µM). Further, the short-chain BACs (C8 and C10) were identified as substrates of these transporters. Interestingly, although BAC C8 displayed typical Michaelis-Menten kinetics, C10 demonstrated a more complex substrate-inhibition profile. Transwell studies with transfected Madin-Darby canine kidney cells revealed that intracellular accumulation of basally applied BAC C8 and C10 was substantially higher (8.2- and 3.7-fold, respectively) in hOCT2/hMATE1 double-transfected cells in comparison with vector-transfected cells, supporting a role of these transporters in mediating renal accumulation of these compounds in vivo. Together, our results suggest that BACs interact with hOCT1-3 and hMATE1/2K as both inhibitors and substrates and that these transporters may play important roles in tissue-specific accumulation and potential toxicity of short-chain BACs. Our findings have important implications for understanding human exposure and susceptibility to BACs due to environmental exposure. SIGNIFICANCE STATEMENT: Humans are systemically exposed to benzalkonium chlorides (BACs). These compounds broadly distribute through tissues, and their safety has been questioned by the FDA. Our results demonstrate that hOCT2 and hMATE1 contribute to the renal accumulation of BAC C8 and C10 and that hOCT1 and hOCT3 may be involved in the tissue distribution of these compounds. These findings can improve our understanding of BAC disposition and toxicology in humans, as their accumulation could lead to biochemical interactions and deleterious effects.


Asunto(s)
Compuestos de Benzalconio , Proteínas de Transporte de Catión Orgánico , Animales , Perros , Humanos , Proteínas de Transporte de Catión Orgánico/metabolismo , Distribución Tisular , Línea Celular , Células de Riñón Canino Madin Darby , Transportador 2 de Cátion Orgánico/metabolismo
5.
Environ Sci Technol ; 58(14): 6236-6249, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38534032

RESUMEN

The COVID-19 pandemic has led to significantly increased human exposure to the widely used disinfectants quaternary ammonium compounds (QACs). Xenobiotic metabolism serves a critical role in the clearance of environmental molecules, yet limited data are available on the routes of QAC metabolism or metabolite levels in humans. To address this gap and to advance QAC biomonitoring capabilities, we analyzed 19 commonly used QACs and their phase I metabolites by liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS). In vitro generation of QAC metabolites by human liver microsomes produced a series of oxidized metabolites, with metabolism generally occurring on the alkyl chain group, as supported by MS/MS fragmentation. Discernible trends were observed in the gas-phase IM behavior of QAC metabolites, which, despite their increased mass, displayed smaller collision cross-section (CCS) values than those of their respective parent compounds. We then constructed a multidimensional reference SQLite database consisting of m/z, CCS, retention time (rt), and MS/MS spectra for 19 parent QACs and 81 QAC metabolites. Using this database, we confidently identified 13 parent QACs and 35 metabolites in de-identified human fecal samples. This is the first study to integrate in vitro metabolite biosynthesis with LC-IM-MS/MS for the simultaneous monitoring of parent QACs and their metabolites in humans.


Asunto(s)
Desinfectantes , Compuestos de Amonio Cuaternario , Humanos , Compuestos de Amonio Cuaternario/análisis , Compuestos de Amonio Cuaternario/química , Espectrometría de Masas en Tándem/métodos , Pandemias , Cromatografía Liquida , Hígado
6.
Bioorg Chem ; 150: 107570, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38941695

RESUMEN

Axially chiral compounds are well known in medicinal chemistry of natural products, but their absolute configurations and bioactivities are rarely reported and studied. In this study, eleven undescribed axially chiral dihydrophenanthrene dimers, as well as twenty-five known dihydrophenanthrenes, were isolated from the entire plant of Pholidota yunnanensis. Their structures were elucidated by comprehensive spectroscopic analysis. A method for determining the absolute configurations of enantiomers was developed based on the rotational barriers and calculated ECD spectra. Additionally, the activities of all isolated compounds were assessed in LPS-induced BV-2 microglial cells. Most dihydrophenanthrenes exhibited significant NO inhibitory activities, and compound 7 showed the most potent inhibitory effect with an IC50 value of 1.5 µM, compared to the positive control minocycline. The immunofluorescence and western blot results revealed that compound 7 suppressed the expression of Iba-1, iNOS and COX-2 in LPS-stimulated BV-2 microglial cells.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38595136

RESUMEN

OBJECTIVE: Conventional imaging protocols, including sagittal T1-weighted imaging (T1WI) and water-only T2-weighted imaging (T2WI), are time consuming when screening for spinal metastases with vertebral compression fractures (VCFs). In this study, we aimed to assess the accuracy of using only the Dixon T2-weighted sequence in the diagnosis of spinal metastases with VCFs to determine its suitability as a simplified protocol for this task. METHODS: This retrospective study included 27 patients diagnosed with spinal metastases and VCFs. Qualitative analysis was performed separately by two musculoskeletal radiologists, who independently performed diagnostic evaluations of each vertebra using both conventional and simplified protocols. McNemar's test was then used to compare the differences in diagnostic results, and Cohen's kappa coefficient was used to assess interobserver and interprotocol agreement. Diagnostic performance values for both protocols, including sensitivity, specificity, and area under the curve, were then determined based on the reference standard. Quantitative image analysis was performed randomly for 30 metastases on T1WI and fat-only T2WI to measure the signal intensity, signal-to-noise ratio, and contrast-to-noise ratio. RESULTS: The diagnosis of VCFs by both radiologists was in full agreement with the reference standard. The classification of spinal metastases and diagnostic performance values determined by both radiologists were not significantly different between the two protocols (all P > 0.05), and the consistency between observers and protocols was excellent (κ = 0.973-0.991). The contrast-to-noise ratio of fat-only T2WI was significantly higher than that of T1WI (P < 0.001). CONCLUSIONS: The Dixon T2-weighted sequence alone performed well in diagnosing spinal metastases with VCFs, performing no worse than the conventional protocol (T1WI and water-only T2WI). This suggests that the Dixon T2-weighted sequence alone can serve as a simplified protocol for the diagnosis of spinal metastases with VCFs, thereby avoiding the need for more intricate scanning procedures.

8.
Phytother Res ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973314

RESUMEN

Tamarixetin, a natural dietary flavone, exhibits remarkable potential for the treatment of ischemic stroke. The present article aimed to explore the impact of tamarixetin on ischemic stroke and elucidate the underlying mechanisms. Effects of tamarixetin on ischemic stroke were evaluated in rats using the middle cerebral artery occlusion and reperfusion (MCAO/R) model, by assessing the neurological deficit scores, brain water content, brain infraction, and neuronal damage. The levels of proinflammatory cytokines, NLRP3 inflammasome activation, reactive oxygen species (ROS) production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression were measured in MCAO/R rats and lipopolysaccharide-stimulated cells. Tamarixetin administration improved the neurological dysfunction and neuronal loss in MCAO/R rats. In addition, tamarixetin reduced microglial hyperactivation and proinflammatory cytokines expression in vivo and in vitro. Tamarixetin attenuated NF-κB p65 phosphorylation and promoter activity, reduced NLRP3 expression and caspase-1 cleavage, and downregulated IL-1ß and IL-18 secretions to suppress NLRP3 inflammasome activation. The levels of superoxide anion, hydrogen peroxide, and ROS were also suppressed by tamarixetin. The downregulation of NADP+ and NADPH levels, and gp91phox expression indicated the ameliorative effects of tamarixetin on NADPH oxidase activation. In the gp91phox knockdown cells treated with lipopolysaccharide, the effects of tamarixetin on NADPH oxidase activation, ROS generation, and NLRP3 inflammasome activation were diminished. Moreover, tamarixetin protects neurons against microglial hyperactivation in vitro. Our findings support the potential of tamarixetin as a therapeutic agent for ischemic stroke, and its mechanism of action involves the inhibition of NADPH oxidase-NLRP3 inflammasome signaling.

9.
Environ Sci Technol ; 57(20): 7645-7665, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37157132

RESUMEN

Quaternary ammonium compounds (QACs), a large class of chemicals that includes high production volume substances, have been used for decades as antimicrobials, preservatives, and antistatic agents and for other functions in cleaning, disinfecting, personal care products, and durable consumer goods. QAC use has accelerated in response to the COVID-19 pandemic and the banning of 19 antimicrobials from several personal care products by the US Food and Drug Administration in 2016. Studies conducted before and after the onset of the pandemic indicate increased human exposure to QACs. Environmental releases of these chemicals have also increased. Emerging information on adverse environmental and human health impacts of QACs is motivating a reconsideration of the risks and benefits across the life cycle of their production, use, and disposal. This work presents a critical review of the literature and scientific perspective developed by a multidisciplinary, multi-institutional team of authors from academia, governmental, and nonprofit organizations. The review evaluates currently available information on the ecological and human health profile of QACs and identifies multiple areas of potential concern. Adverse ecological effects include acute and chronic toxicity to susceptible aquatic organisms, with concentrations of some QACs approaching levels of concern. Suspected or known adverse health outcomes include dermal and respiratory effects, developmental and reproductive toxicity, disruption of metabolic function such as lipid homeostasis, and impairment of mitochondrial function. QACs' role in antimicrobial resistance has also been demonstrated. In the US regulatory system, how a QAC is managed depends on how it is used, for example in pesticides or personal care products. This can result in the same QACs receiving different degrees of scrutiny depending on the use and the agency regulating it. Further, the US Environmental Protection Agency's current method of grouping QACs based on structure, first proposed in 1988, is insufficient to address the wide range of QAC chemistries, potential toxicities, and exposure scenarios. Consequently, exposures to common mixtures of QACs and from multiple sources remain largely unassessed. Some restrictions on the use of QACs have been implemented in the US and elsewhere, primarily focused on personal care products. Assessing the risks posed by QACs is hampered by their vast structural diversity and a lack of quantitative data on exposure and toxicity for the majority of these compounds. This review identifies important data gaps and provides research and policy recommendations for preserving the utility of QAC chemistries while also seeking to limit adverse environmental and human health effects.


Asunto(s)
COVID-19 , Desinfectantes , Humanos , Compuestos de Amonio Cuaternario/química , Pandemias , Antibacterianos
10.
Anal Bioanal Chem ; 415(25): 6191-6199, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37535099

RESUMEN

Antimicrobial resistance is a major threat to human health as resistant pathogens spread globally, and the development of new antimicrobials is slow. Since many antimicrobials function by targeting cell wall and membrane components, high-throughput lipidomics for bacterial phenotyping is of high interest for researchers to unveil lipid-mediated pathways when dealing with a large number of lab-selected or clinical strains. However, current practice for lipidomic analysis requires the cultivation of bacteria on a large scale, which does not replicate the growth conditions for high-throughput bioassays that are normally carried out in 96-well plates, such as susceptibility tests, growth curve measurements, and biofilm quantitation. Analysis of bacteria grown under the same condition as other bioassays would better inform the differences in susceptibility and other biological metrics. In this work, a high-throughput method for cultivation and lipidomic analysis of antimicrobial-resistant bacteria was developed for standard 96-well plates exemplified by methicillin-resistant Staphylococcus aureus (MRSA). By combining a 30-mm liquid chromatography (LC) column with ion mobility (IM) separation, elution time could be dramatically shortened to 3.6 min for a single LC run without losing major lipid features. Peak capacity was largely rescued by the addition of the IM dimension. Through multi-linear calibration, the deviation of retention time can be limited to within 5%, making database-based automatic lipid identification feasible. This high-throughput method was further validated by characterizing the lipidomic phenotypes of antimicrobial-resistant mutants derived from the MRSA strain, W308, grown in a 96-well plate.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Lipidómica , Fenotipo , Espectrometría de Masas/métodos , Lípidos/análisis , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/microbiología
11.
Chem Biodivers ; 20(6): e202201172, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37144548

RESUMEN

Caragana microphylla Lam., is a perennial herb in the genus Caragana in the Fabaceae family. Two undescribed triterpenoid saponins (1-2), along with thirty-five known components (3-37) were obtained from the roots of C. microphylla Lam. These compounds were identified using physicochemical analyses and various spectroscopic methods. The anti-neuroinflammatory activities were evaluated by measuring the inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglial cells. Compared with positive control minocycline, compounds 10, 19, and 28 exhibited significant effects with IC50 values of 14.04, 19.35 and 10.20 µM, respectively.


Asunto(s)
Caragana , Fabaceae , Caragana/química , Microglía , Raíces de Plantas , Óxido Nítrico , Lipopolisacáridos/farmacología
12.
J Clin Pediatr Dent ; 47(4): 86-94, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37408351

RESUMEN

Iron deficiency anemia (IDA) is a common nutritional disease associated with early childhood caries. This study aimed to explore the role of iron levels in pathological changes of dental caries in childhood. Rats were divided into four groups based on their iron content: IDA, positive control (PC), high iron (HI), and negative control (NC). Except for the rats in the NC group, rats in the other groups were inoculated with Streptococcus mutans and fed cariogenic high-sugar fodder to induce caries. Three months later, the caries status of the molars was evaluated at both the smooth and sulcal surfaces according to Keyes scores. Scanning electron microscopy (SEM) was performed to reveal microstructural changes in caries. Energy-dispersive spectroscopy (EDS) was used to determine the elemental composition of the enamel and dentin. In addition, the histopathology of the salivary gland was detected using hematoxylin and eosin (HE) staining.The results showed that rats in the PC group exhibited obvious carious lesions. The carious score was significantly higher in the IDA group than in the PC group but was lower in the HI group. SEM revealed complete destruction of the enamel and damage to the middle dentin in the IDA group. In contrast, the molars in the HI group exhibited some degree of enamel demineralization, but the underlying dentin was almost intact. In addition, the elemental compositions of the enamel and dentin were similar among the four groups, and iron was detected only in the HI group. No differences were observed in the morphological structures of the salivary glands of rats from the different groups. In conclusion, ID enhanced the pathological damage of caries, whereas HI weakened it. Iron may participate in the pathological damage caused by childhood caries by affecting enamel mineralization.


Asunto(s)
Caries Dental , Preescolar , Ratas , Humanos , Animales , Caries Dental/patología , Esmalte Dental/patología , Streptococcus mutans , Diente Molar/patología , Hierro/análisis , Dentina/patología
13.
Clin Infect Dis ; 75(9): 1641-1644, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-35510938

RESUMEN

A patient with end-stage renal disease received 2 doses of dalbavancin for methicillin-resistant Staphylococcus aureus (MRSA) arteriovenous fistula infection and presented 5 weeks later with infective endocarditis secondary to vancomycin, daptomycin, and dalbavancin nonsusceptible MRSA. Resistance was associated with walK and scrA mutations, reduced long-chain lipid content, and reduced membrane fluidity.


Asunto(s)
Daptomicina , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Vancomicina/farmacología , Vancomicina/uso terapéutico , Daptomicina/farmacología , Daptomicina/uso terapéutico , Staphylococcus aureus , Staphylococcus aureus Resistente a Meticilina/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Teicoplanina/farmacología , Teicoplanina/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
14.
Antimicrob Agents Chemother ; 66(6): e0233321, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35543524

RESUMEN

Infections caused by vancomycin-resistant Enterococcus faecium (VREfm) are an important public health threat. VREfm isolates have become increasingly resistant to the front-line antibiotic daptomycin (DAP). As such, the use of DAP combination therapies with other antibiotics like fosfomycin (FOS) has received increased attention. Antibiotic combinations could extend the efficacy of currently available antibiotics and potentially delay the onset of further resistance. We investigated the potential for E. faecium HOU503, a clinical VREfm isolate that is DAP and FOS susceptible, to develop resistance to a DAP-FOS combination. Of particular interest was whether the genetic drivers for DAP-FOS resistance might be epistatic and, thus, potentially decrease the efficacy of a combinatorial approach in either inhibiting VREfm or in delaying the onset of resistance. We show that resistance to DAP-FOS could be achieved by independent mutations to proteins responsible for cell wall synthesis for FOS and in altering membrane dynamics for DAP. However, we did not observe genetic drivers that exhibited substantial cross-drug epistasis that could undermine the DAP-FOS combination. Of interest was that FOS resistance in HOU503 was largely mediated by changes in phosphoenolpyruvate (PEP) flux as a result of mutations in pyruvate kinase (pyk). Increasing PEP flux could be a readily accessible mechanism for FOS resistance in many pathogens. Importantly, we show that HOU503 was able to develop DAP resistance through a variety of biochemical mechanisms and was able to employ different adaptive strategies. Finally, we showed that the addition of FOS can prolong the efficacy of DAP and slow down DAP resistance in vitro.


Asunto(s)
Antibacterianos , Daptomicina , Farmacorresistencia Bacteriana , Enterococcus faecium , Fosfomicina , Antibacterianos/farmacología , Daptomicina/farmacología , Farmacorresistencia Bacteriana/genética , Enterococcus faecium/genética , Evolución Molecular , Fosfomicina/farmacología , Pruebas de Sensibilidad Microbiana , Enterococos Resistentes a la Vancomicina/genética
15.
Analyst ; 147(8): 1611-1621, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35293916

RESUMEN

Neurodevelopment is an intricately orchestrated program of cellular events that occurs with tight temporal and spatial regulation. While it is known that the development and proper functioning of the brain, which is the second most lipid rich organ behind adipose tissue, greatly rely on lipid metabolism and signaling, the temporal lipidomic changes that occur throughout the course of neurodevelopment have not been investigated. Smith-Lemli-Opitz syndrome is a metabolic disorder caused by genetic mutations in the DHCR7 gene, leading to defective 3ß-hydroxysterol-Δ7-reductase (DHCR7), the enzyme that catalyzes the last step of the Kandutsch-Russell pathway of cholesterol synthesis. Due to the close regulatory relationship between sterol and lipid homeostasis, we hypothesize that altered or dysregulated lipid metabolism beyond the primary defect of cholesterol biosynthesis is present in the pathophysiology of SLOS. Herein, we applied our HILIC-IM-MS method and LiPydomics Python package to streamline an untargeted lipidomics analysis of developing mouse brains in both wild-type and Dhcr7-KO mice, identifying lipids at Level 3 (lipid species level: lipid class/subclass and fatty acid sum composition). We compared relative lipid abundances throughout development, from embryonic day 12.5 to postnatal day 0 and determined differentially expressed brain lipids between wild-type and Dhcr7-KO mice at specific developmental time points, revealing lipid metabolic pathways that are affected in SLOS beyond the cholesterol biosynthesis pathway, such as glycerolipid, glycerophospholipid, and sphingolipid metabolism. Implications of the altered lipid metabolic pathways in SLOS pathophysiology are discussed.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Síndrome de Smith-Lemli-Opitz , Animales , Encéfalo/metabolismo , Colesterol/metabolismo , Lipidómica , Lípidos , Ratones , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/metabolismo
16.
Bioorg Chem ; 122: 105720, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35305482

RESUMEN

The ethyl acetate extract of the stems of Jatropha curcas (ESJ) exerted prominent anti-neuroinflammatory effect through inhibiting microglial overactivation, and reducing mRNA expression of inflammatory factors, including nitric oxide (NO), inducible nitric oxide synthase, and interleukin-1ß in the cortex and the formation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes in C57BL/6 mice. Phytochemical research afforded twenty-three major constituents, including five undescribed components (diterpenes 1-3, 7 and a triterpene 18) and a new natural product [a diterpene, (3S,5S,10R)-3-hydroxy-12-methoxy-13-methylpodopcarpa-8,11,13-trien-7-one (8)], by comprehensive analysis of spectroscopic data. Bioassay showed that ESJ (IC50: 6.49 µg/mL), diterpenes 1, 5, 12, 14, 15, 17, triterpenes 18, 19, preussomerin 22, and lactone 23 (IC50 values from 0.10 to 49.05 µM) inhibited NO production more strongly than the positive control in lipopolysaccharide-stimulated BV-2 cells. HPLC experiment further substantiated that 1, 5, 12, 14-15, 17-19, 22-23 are the characteristic constituents of ESJ, suggesting they might possess the potential for the treatment of neuroinflammation.


Asunto(s)
Jatropha , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamasomas/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Microglía
17.
Bioorg Chem ; 128: 106102, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35998519

RESUMEN

This is the first study to profile natural sesquiterpene coumarins (SCs) in Ferula bungeana, a medicinal plant of the genus Ferula in China. Eight undescribed sesquiterpene coumarins (1-8), along with six known ones (9-14) were obtained from the whole plant of F. bungeana. These unreported SCs (1-8) enriched the structural diversity of natural SCs, especially these with the hydroxy or carbonyl group at C-7' and a hydroperoxy group at C-7' or C-8'. Compounds (9-14) were reported for the first time from this plant. The in vitro anti-neuroinflammatory activity assay showed that compounds 2 and 9 showed stronger inhibitory effect on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglia, compared with positive control minocycline, and compounds 5 and 10 showed moderate inhibitory effects.


Asunto(s)
Ferula , Sesquiterpenos , Cumarinas/química , Cumarinas/farmacología , Ferula/química , Lipopolisacáridos/farmacología , Óxido Nítrico , Sesquiterpenos/química , Sesquiterpenos/farmacología
18.
J Antimicrob Chemother ; 76(2): 292-296, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33057715

RESUMEN

OBJECTIVES: Tedizolid is an oxazolidinone antimicrobial with activity against Gram-positive bacteria, including MRSA. Tedizolid resistance is uncommon and tedizolid's capacity to select for cross-resistance to other antimicrobials is incompletely understood. The objective of this study was to further explore the phenotypic and genetic basis of tedizolid resistance in MRSA. METHODS: We selected for tedizolid resistance in an MRSA laboratory strain, N315, by serial passage until an isolate with an MIC ≥1 log2 dilution above the breakpoint for resistance (≥2 mg/L) was recovered. This isolate was subjected to WGS and susceptibility to a panel of related and unrelated antimicrobials was tested in order to determine cross-resistance. Homology modelling was performed to evaluate the potential impact of the mutation on target protein function. RESULTS: After 10 days of serial passage we recovered a phenotypically stable mutant with a tedizolid MIC of 4 mg/L. WGS revealed only one single nucleotide variant (A1345G) in rpoB, corresponding to amino acid substitution D449N. MICs of linezolid, chloramphenicol, retapamulin and quinupristin/dalfopristin increased by ≥2 log2 dilutions, suggesting the emergence of the so-called 'PhLOPSa' resistance phenotype. Susceptibility to other drugs, including rifampicin, was largely unchanged. Homology models revealed that the mutated residue of RNA polymerase would be unlikely to directly affect oxazolidinone action. CONCLUSIONS: To the best of our knowledge, this is the first time that an rpoB mutation has been implicated in resistance to PhLOPSa antimicrobials. The mechanism of resistance remains unclear, but is likely indirect, involving σ-factor binding or other alterations in transcriptional regulation.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Oxazolidinonas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Mutación , Organofosfatos/farmacología , Oxazoles/farmacología , Pase Seriado , Tetrazoles
19.
Chem Res Toxicol ; 34(5): 1265-1274, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33472002

RESUMEN

We previously found that the widely used disinfectants, benzalkonium chlorides (BACs), alter cholesterol and lipid homeostasis in neuronal cell lines and in neonatal mouse brains. Here, we investigate the effects of BACs on neurospheres, an in vitro three-dimensional model of neurodevelopment. Neurospheres cultured from mouse embryonic neural progenitor cells (NPCs) were exposed to increasing concentrations (from 1 to 100 nM) of a short-chain BAC (BAC C12), a long-chain BAC (BAC C16), and AY9944 (a known DHCR7 inhibitor). We found that the sizes of neurospheres were decreased by both BACs but not by AY9944. Furthermore, we observed potent inhibition of cholesterol biosynthesis at the step of DHCR7 by BAC C12 but not by BAC C16, suggesting that cholesterol biosynthesis inhibition is not responsible for the observed reduction in neurosphere growth. By using immunostaining and cell cycle analysis, we found that both BACs induced apoptosis and decreased proliferation of NPCs. To explore the mechanisms underlying their effect on neurosphere growth, we carried out RNA sequencing on neurospheres exposed to each BAC at 50 nM for 24 h, which revealed the activation of the integrated stress response by both BACs. Overall, these results suggest that BACs affect neurodevelopment by inducing the integrated stress response in a manner independent of their effects on cholesterol biosynthesis.


Asunto(s)
Apoptosis/efectos de los fármacos , Compuestos de Benzalconio/farmacología , Desinfectantes/farmacología , Modelos Biológicos , Neuronas/efectos de los fármacos , Animales , Compuestos de Benzalconio/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Desinfectantes/química , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos
20.
J Org Chem ; 86(1): 153-168, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33269585

RESUMEN

The rate-determining step in free radical lipid peroxidation is the propagation of the peroxyl radical, where generally two types of reactions occur: (a) hydrogen-atom transfer (HAT) from a donor to the peroxyl radical; (b) peroxyl radical addition (PRA) to a "C═C" double bond. Peroxyl radical clocks have been used to determine the rate constants of HAT reactions (kH), but no radical clock is available to measure the rate constants of PRA reactions (kadd). In this work, we modified the analytical approach on the linoleate-based peroxyl radical clock to enable the simultaneous measurement of both kH and kadd. Compared to the original approach, this new approach involves the use of a strong reducing agent, LiAlH4, to completely reduce both HAT and PRA-derived products and the relative quantitation of total linoleate oxidation products with or without reduction. The new approach was then applied to measuring the kH and kadd values for several series of organic substrates, including para- and meta-substituted styrenes, substituted conjugated dienes, and cyclic alkenes. Furthermore, the kH and kadd values for a variety of biologically important lipids were determined for the first time, including conjugated fatty acids, sterols, coenzyme Q10, and lipophilic vitamins, such as vitamins D3 and A.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA