Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(9): e2219952120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802416

RESUMEN

Social behavior starts with dynamic approach prior to the final consummation. The flexible processes ensure mutual feedback across social brains to transmit signals. However, how the brain responds to the initial social stimuli precisely to elicit timed behaviors remains elusive. Here, by using real-time calcium recording, we identify the abnormalities of EphB2 mutant with autism-associated Q858X mutation in processing long-range approach and accurate activity of prefrontal cortex (dmPFC). The EphB2-dependent dmPFC activation precedes the behavioral onset and is actively associated with subsequent social action with the partner. Furthermore, we find that partner dmPFC activity is responsive coordinately to the approaching WT mouse rather than Q858X mutant mouse, and the social defects caused by the mutation are rescued by synchro-optogenetic activation in dmPFC of paired social partners. These results thus reveal that EphB2 sustains neuronal activation in the dmPFC that is essential for the proactive modulation of social approach to initial social interaction.


Asunto(s)
Corteza Prefrontal , Receptor EphB2 , Conducta Social , Animales , Ratones , Encéfalo , Neuronas/fisiología , Corteza Prefrontal/fisiología , Receptor EphB2/genética , Receptor EphB2/fisiología
2.
Cell ; 139(4): 679-92, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19914164

RESUMEN

Signaling proteins driving the proliferation of stem and progenitor cells are often encoded by proto-oncogenes. EphB receptors represent a rare exception; they promote cell proliferation in the intestinal epithelium and function as tumor suppressors by controlling cell migration and inhibiting invasive growth. We show that cell migration and proliferation are controlled independently by the receptor EphB2. EphB2 regulated cell positioning is kinase-independent and mediated via phosphatidylinositol 3-kinase, whereas EphB2 tyrosine kinase activity regulates cell proliferation through an Abl-cyclin D1 pathway. Cyclin D1 regulation becomes uncoupled from EphB signaling during the progression from adenoma to colon carcinoma in humans, allowing continued proliferation with invasive growth. The dissociation of EphB2 signaling pathways enables the selective inhibition of the mitogenic effect without affecting the tumor suppressor function and identifies a pharmacological strategy to suppress adenoma growth.


Asunto(s)
Receptor EphB2/metabolismo , Transducción de Señal , Animales , Movimiento Celular , Proliferación Celular , Ciclina D1/metabolismo , Epitelio , Humanos , Intestino Delgado/citología , Intestino Delgado/metabolismo , Masculino , Ratones , Células Madre/citología
3.
Mol Psychiatry ; 27(10): 4077-4091, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35804093

RESUMEN

Fear extinction allows for adaptive control of learned fear responses but often fails, resulting in a renewal or spontaneous recovery of the extinguished fear, i.e., forgetting of the extinction memory readily occurs. Using an activity-dependent neuronal labeling strategy, we demonstrate that engram neurons for fear extinction memory are dynamically positioned in the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), and ventral hippocampus (vHPC), which constitute an engram construct in the term of directional engram synaptic connectivity from the BLA or vHPC to mPFC, but not that in the opposite direction, for retrieval of extinction memory. Fear renewal or spontaneous recovery switches the extinction engram construct from an accessible to inaccessible state, whereas additional extinction learning or optogenetic induction of long-term potentiation restores the directional engram connectivity and prevents the return of fear. Thus, the plasticity of engram construct underlies forgetting of extinction memory.


Asunto(s)
Complejo Nuclear Basolateral , Extinción Psicológica , Extinción Psicológica/fisiología , Miedo/fisiología , Corteza Prefrontal/fisiología , Condicionamiento Psicológico/fisiología , Complejo Nuclear Basolateral/fisiología
4.
Mol Psychiatry ; 26(8): 3956-3969, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31772302

RESUMEN

Social interaction and communication are evolutionary conserved behaviours that are developed in mammals to establish partner cognition. Deficit in sociability has been represented in human patients and animal models of neurodevelopmental disorders, which are connected with genetic variants of synaptic glutamate receptors and associated PDZ-binding proteins. However, it remains elusive how these key proteins are specialized in the cellular level for the initial social behaviour during postnatal developmental stage. Here we identify a hippocampal CA3 specifically expressed PDZ scaffold protein Lnx1 required for initial social behaviour. Through gene targeting we find that Lnx1 deficiency led to a hippocampal subregional disorder in neuronal activity and social memory impairments for partner discrimination observed in juvenile mice which also show cognitive defects in adult stage. We further demonstrate that Lnx1 deletion causes NMDA receptor (NMDAR) hypofunction and this is attributable to decreased GluN2B expression in PSD compartment and disruption of the Lnx1-NMDAR-EphB2 complex. Specific restoration of Lnx1 or EphB2 protein in the CA3 area of Lnx1-/- mice rescues the defective synaptic function and social memory. These findings thus reveal crucial roles of postsynaptic NMDAR multiprotein complex that regulates the formation of initial social memory during the adolescent period.


Asunto(s)
Región CA3 Hipocampal/fisiología , Memoria , Receptores de N-Metil-D-Aspartato , Conducta Social , Ubiquitina-Proteína Ligasas , Animales , Trastornos de la Memoria/genética , Ratones , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
5.
Glia ; 68(11): 2361-2376, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32469469

RESUMEN

Astrocytes are fundamental for maintaining brain homeostasis and are commonly involved in the progression of neurodegenerative diseases including Alzheimer's disease (AD). In response to injury or toxic material, astrocytes undergo activation that results in hypertrophy and process ramification. Although numerous studies have shown that reactive astrocytes are intimately related to the pathogenesis of AD, their characteristic features including morphological and molecular alterations that occur during different stages of AD progression remain to be elucidated. Here, we crossed astrocyte-specific reporter mice hGFAP-CreERT2;Rosa-tdTomato with APP/PS1 mice, and then used genetic tracing to characterize the morphological profiles and expression of molecular biomarkers associated with progressive ß-amyloid deposits in the cortical region of AD mice. Expression of glutamine synthetase (GS) was lower in cortical reactive astrocytes, in contrast to the higher expression of glial fibrillary acidic protein, of APP/PS1 mice and AD patients relative to that in cortical astrocytes of wild-type mice and age-matched controls, respectively. GS activity was also decreased obviously in the cortex of APP/PS1 mice at 6 and 12 months of age relative to that in the wild-type mice of the same ages. Furthermore, cortical reactive astrocytes in APP/PS1 mice and AD patients did not undergo proliferation. Finally, based on RNA-sequencing analysis, we identified differentially expressed transcripts of signal transduction molecules involved in early induction of reactive astrocytes in the cortex of APP/PS1 mice. These findings provide a morphological and molecular basis with which to understand the function and mechanism of reactive astrocytes in the progression of AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Astrocitos/metabolismo , Proliferación Celular/genética , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Presenilina-1/genética
6.
Cell Mol Life Sci ; 75(22): 4207-4222, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29938386

RESUMEN

Axonal outgrowth and guidance require numerous extracellular cues and intracellular mediators that transduce signals in the growth cone to regulate cytoskeletal dynamics. However, the way in which cytoskeletal effectors respond to these signals remains elusive. Here, we demonstrate that Porf-2, a neuron-expressed RhoGTPase-activating protein, plays an essential role in the inhibition of initial axon growth by restricting the expansion of the growth cone in a cell-autonomous manner. Furthermore, the EphB1 receptor is identified as an upstream controller that binds and regulates Porf-2 specifically upon extracellular ephrin-B stimulation. The activated EphB forward signal deactivates Rac1 through the GAP domain of Porf-2, which inhibits growth cone formation and brakes axon growth. Our results therefore provide a novel GAP that regulates axon growth and braking sequentially through Eph receptor-independent and Eph receptor-dependent pathways.


Asunto(s)
Axones/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Receptor EphB1/metabolismo , Transducción de Señal , Animales , Axones/metabolismo , Axones/ultraestructura , Células Cultivadas , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/fisiología , Hipocampo/crecimiento & desarrollo , Ratones , Ratones Noqueados , Morfogénesis , Dominios Proteicos
7.
J Neurosci ; 36(39): 10151-62, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27683910

RESUMEN

UNLABELLED: The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. SIGNIFICANCE STATEMENT: Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal developing brain.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Glutamatos/metabolismo , Instinto , Neurogénesis/fisiología , Neuronas/fisiología , Receptor EphB2/metabolismo , Envejecimiento/fisiología , Animales , Mecanismos de Defensa , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal/fisiología
8.
Exp Cell Res ; 348(1): 10-22, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27565439

RESUMEN

Cancer often arises by the constitutive activation of mitogenic pathways by mutations in stem cells. Eph receptors are unusual in that although they regulate the proliferation of stem/progenitor cells in many adult organs, they typically fail to transform cells. Multiple ephrins and Eph receptors are often co-expressed and are thought to be redundant, but we here describe an unexpected dichotomy with two homologous ligands, ephrin-B1 and ephrin-B2, regulating specifically migration or proliferation in the intestinal stem cell niche. We demonstrate that the combined activity of two different coexpressed Eph receptors of the A and B class assembled into common signaling clusters in response to ephrin-B2 is required for mitogenic signaling. The requirement of two different Eph receptors to convey mitogenic signals identifies a new type of cooperation within this receptor family and helps explain why constitutive activation of a single receptor fails to transform cells.


Asunto(s)
Receptores de la Familia Eph/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Efrina-B1/metabolismo , Efrina-B2/metabolismo , Humanos , Intestinos/citología , Cinética , Masculino , Ratones Endogámicos C57BL , Fosforilación , Proteolisis , Transducción de Señal , Nicho de Células Madre , Células Madre/citología , Células Madre/metabolismo
9.
Semin Cell Dev Biol ; 23(1): 58-64, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22044884

RESUMEN

Axon-cell and axon-dendrite contact is a highly regulated process necessary for the formation of precise neural circuits and a functional neural network. Eph-ephrin interacting molecules on the membranes of axon nerve terminals and target dendrites act as bidirectional ligands/receptors to transduce signals into both the Eph-expressing and ephrin-expressing cells to regulate cytoskeletal dynamics. In particular, recent evidence indicates that ephrin reverse signal transduction events are important in controlling both axonal and dendritic elaborations of neurons in the developing nervous system. Here we review how ephrin reverse signals are transduced into neurons to control maturation of axonal pre-synaptic and dendritic post-synaptic structures.


Asunto(s)
Axones/fisiología , Encéfalo/citología , Efrinas/fisiología , Transducción de Señal , Sinapsis/fisiología , Animales , Axones/metabolismo , Encéfalo/crecimiento & desarrollo , Dendritas/metabolismo , Dendritas/fisiología , Efrinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sinapsis/metabolismo
10.
Aging Cell ; : e14187, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716507

RESUMEN

Behavioral changes or neuropsychiatric symptoms (NPSs) are common features in dementia and are associated with accelerated cognitive impairment and earlier deaths. However, how NPSs are intertwined with cognitive decline remains elusive. In this study, we identify that the basolateral amygdala (BLA) is a key brain region that is associated with mood disorders and memory decline in the AD course. During the process from pre- to post-onset in AD, the dysfunction of parvalbumin (PV) interneurons and pyramidal neurons in the amygdala leads to hyperactivity of pyramidal neurons in the basal state and insensitivity to external stimuli. We further demonstrate that serotonin (5-HT) receptors in distinct neurons synergistically regulate the BLA microcircuit of AD rather than 5-HT levels, in which both restrained inhibitory inputs by excessive 5-HT1AR signaling in PV interneurons and depolarized pyramidal neurons via upregulated 5-HT2AR contribute to aberrant neuronal hyperactivity. Downregulation of these two 5-HT receptors simultaneously enables neurons to resist ß-amyloid peptides (Aß) neurotoxicity and ameliorates the mood and cognitive defects. Therefore, our study reveals a crucial role of 5-HT receptors for regulating neuronal homeostasis in AD pathogenesis, and this would provide early intervention and potential targets for AD cognitive decline.

11.
Transl Neurodegener ; 12(1): 1, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624510

RESUMEN

BACKGROUND: Ribosomal protein S6 kinase 1 (S6K1) is a serine-threonine kinase that has two main isoforms: p70S6K (70-kDa isoform) and p85S6K (85-kDa isoform). p70S6K, with its upstream mammalian target of rapamycin (mTOR), has been shown to be involved in learning and memory and participate in the pathophysiology of Alzheimer's disease (AD). However, the function of p85S6K has long been neglected due to its high similarity to p70S6k. The role of p85S6K in learning and memory is still largely unknown. METHODS: We fractionated the postsynaptic densities to illustrate the differential distribution of p85S6K and p70S6K. Coimmunoprecipitation was performed to unveil interactions between p85S6K and the GluA1 subunit of AMPA receptor. The roles of p85S6K in synaptic targeting of GluA1 and learning and memory were evaluated by specific knockdown or overexpression of p85S6K followed by a broad range of methodologies including immunofluorescence, Western blot, in situ proximity ligation assay, morphological staining and behavioral examination. Further, the expression level of p85S6K was measured in brains from AD patients and AD model mice. RESULTS: p85S6K, but not p70S6K, was enriched in the postsynaptic densities. Moreover, knockdown of p85S6K resulted in defective spatial and recognition memory. In addition, p85S6K could interact with the GluA1 subunit of AMPA receptor through synapse-associated protein 97 and A-kinase anchoring protein 79/150. Mechanistic studies demonstrated that p85S6K could directly phosphorylate GluA1 at Ser845 and increase the amount of GluA1 in synapses, thus sustaining synaptic function and spine densities. Moreover, p85S6K was found to be specifically decreased in the synaptosomal compartment in the brains of AD patients and AD mice. Overexpression of p85S6K ameliorated the synaptic deficits and cognitive impairment in transgenic AD model mice. CONCLUSIONS: These results strongly imply a significant role for p85S6K in maintaining synaptic and cognitive function by interacting with GluA1. The findings provide an insight into the rational targeting of p85S6K as a therapeutic potential for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Ratones , Enfermedad de Alzheimer/genética , Receptores AMPA , Disfunción Cognitiva/genética , Cognición , Ratones Transgénicos , Mamíferos
12.
Front Mol Neurosci ; 15: 861873, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531068

RESUMEN

Postsynaptic structure assembly and remodeling are crucial for functional synapse formation during the establishment of neural circuits. However, how the specific scaffold proteins regulate this process during the development of the postnatal period is poorly understood. In this study, we find that the deficiency of ligand of Numb protein X 1 (Lnx1) leads to abnormal development of dendritic spines to impair functional synaptic formation. We further demonstrate that loss of Lnx1 promotes the internalization of EphB receptors from the cell surface. Constitutively active EphB2 intracellular signaling rescues synaptogenesis in Lnx1 mutant mice. Our data thus reveal a molecular mechanism whereby the Lnx1-EphB complex controls postsynaptic structure for synapse maturation during the adolescent period.

13.
J Clin Invest ; 132(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35426376

RESUMEN

Mushroom spine loss and calcium dyshomeostasis are early hallmark events of age-related neurodegeneration, such as Alzheimer's disease (AD), that are connected with neuronal hyperactivity in early pathology of cognitive brain areas. However, it remains elusive how these key events are triggered at the molecular level for the neuronal abnormality that occurs at the initial stage of disease. Here, we identify downregulated miR-339-5p and its upregulated target protein, neuronatin (Nnat), in cortex neurons from the presenilin-1 M146V knockin (PSEN1-M146V KI) mouse model of familial AD (FAD). Inhibition of miR-339-5p or overexpression of Nnat recapitulates spine loss and endoplasmic reticulum calcium overload in cortical neurons with the PSEN1 mutation. Conversely, either overexpression of miR-339-5p or knockdown of Nnat restores spine morphogenesis and calcium homeostasis. We used fiber photometry recording during the object-cognitive process to further demonstrate that the PSEN1 mutant causes defective habituation in neuronal reaction in the retrosplenial cortex and that this can be rescued by restoring the miR-339-5p/Nnat pathway. Our findings thus reveal crucial roles of the miR-339-5p/Nnat pathway in FAD that may serve as potential diagnostic and therapeutic targets for early pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Animales , Ratones , Enfermedad de Alzheimer/patología , Calcio/metabolismo , MicroARNs/genética , Neuronas/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
14.
Nat Commun ; 13(1): 5540, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130959

RESUMEN

Threat and extinction memories are crucial for organisms' survival in changing environments. These memories are believed to be encoded by separate ensembles of neurons in the brain, but their whereabouts remain elusive. Using an auditory fear-conditioning and extinction paradigm in male mice, here we discovered that two distinct projection neuron subpopulations in physical proximity within the insular cortex (IC), targeting the central amygdala (CeA) and nucleus accumbens (NAc), respectively, to encode fear and extinction memories. Reciprocal intracortical inhibition of these two IC subpopulations gates the emergence of either fear or extinction memory. Using rabies-virus-assisted tracing, we found IC-NAc projection neurons to be preferentially innervated by intercortical inputs from the orbitofrontal cortex (OFC), specifically enhancing extinction to override fear memory. These results demonstrate that IC serves as an operation node harboring distinct projection neurons that decipher fear or extinction memory under the top-down executive control from OFC.


Asunto(s)
Extinción Psicológica , Miedo , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Masculino , Ratones , Neuronas/fisiología , Núcleo Accumbens/fisiología , Corteza Prefrontal/fisiología
15.
Transl Neurodegener ; 10(1): 30, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34389067

RESUMEN

The epigenetic clock is defined by the DNA methylation (DNAm) level and has been extensively applied to distinguish biological age from chronological age. Aging-related neurodegeneration is associated with epigenetic alteration, which determines the status of diseases. In recent years, extensive research has shown that physical exercise (PE) can affect the DNAm level, implying a reversal of the epigenetic clock in neurodegeneration. PE also regulates brain plasticity, neuroinflammation, and molecular signaling cascades associated with epigenetics. This review summarizes the effects of PE on neurodegenerative diseases via both general and disease-specific DNAm mechanisms, and discusses epigenetic modifications that alleviate the pathological symptoms of these diseases. This may lead to probing of the underpinnings of neurodegenerative disorders and provide valuable therapeutic references for cognitive and motor dysfunction.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Epigénesis Genética/fisiología , Ejercicio Físico/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Envejecimiento/genética , Daño del ADN/fisiología , Metilación de ADN/fisiología , Ejercicio Físico/tendencias , Humanos , Enfermedades Neurodegenerativas/genética
16.
Neurosci Bull ; 37(2): 145-165, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32996060

RESUMEN

Acid-sensing ion channels (ASICs), the main H+ receptors in the central nervous system, sense extracellular pH fluctuations and mediate cation influx. ASIC1a, the major subunit responsible for acid-activated current, is widely expressed in brain neurons, where it plays pivotal roles in diverse functions including synaptic transmission and plasticity. However, the underlying molecular mechanisms for these functions remain mysterious. Using extracellular epitope tagging and a novel antibody recognizing the hASIC1a ectodomain, we examined the membrane targeting and dynamic trafficking of hASIC1a in cultured cortical neurons. Surface hASIC1a was distributed throughout somata and dendrites, clustered in spine heads, and co-localized with postsynaptic markers. By extracellular pHluorin tagging and fluorescence recovery after photobleaching, we detected movement of hASIC1a in synaptic spine heads. Single-particle tracking along with use of the anti-hASIC1a ectodomain antibody revealed long-distance migration and local movement of surface hASIC1a puncta on dendrites. Importantly, enhancing synaptic activity with brain-derived neurotrophic factor accelerated the trafficking and lateral mobility of hASIC1a. With this newly-developed toolbox, our data demonstrate the synaptic location and high dynamics of functionally-relevant hASIC1a on the surface of excitatory synapses, supporting its involvement in synaptic functions.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Neuronas , Canales Iónicos Sensibles al Ácido/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
17.
Natl Sci Rev ; 8(9): nwab004, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34691732

RESUMEN

Synaptic associativity, a feature of Hebbian plasticity wherein coactivation of two inputs onto the same neuron produces synergistic actions on postsynaptic activity, is a primary cellular correlate of associative learning. However, whether and how synaptic associativity are implemented into context-dependent relapse of extinguished memory (i.e. fear renewal) is unknown. Here, using an auditory fear conditioning paradigm in mice, we show that fear renewal is determined by the associativity between convergent inputs from the auditory cortex (ACx) and ventral hippocampus (vHPC) onto the lateral amygdala (LA) that reactivate ensembles engaged during learning. Fear renewal enhances synaptic strengths of both ACx to LA and the previously unknown vHPC to LA monosynaptic inputs. While inactivating either of the afferents abolishes fear renewal, optogenetic activation of their input associativity in the LA recapitulates fear renewal. Thus, input associativity underlies fear memory renewal.

18.
Transl Neurodegener ; 9(1): 44, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33280613

RESUMEN

Deficits in synaptic transmission and plasticity are thought to contribute to the pathophysiology of Alzheimer's disease (AD) and Parkinson's disease (PD). Several brain stimulation techniques are currently available to assess or modulate human neuroplasticity, which could offer clinically useful interventions as well as quantitative diagnostic and prognostic biomarkers. In this review, we discuss several brain stimulation techniques, with a special emphasis on transcranial magnetic stimulation and deep brain stimulation (DBS), and review the results of clinical studies that applied these techniques to examine or modulate impaired neuroplasticity at the local and network levels in patients with AD or PD. The impaired neuroplasticity can be detected in patients at the earlier and later stages of both neurodegenerative diseases. However, current brain stimulation techniques, with a notable exception of DBS for PD treatment, cannot serve as adequate clinical tools to assist in the diagnosis, treatment, or prognosis of individual patients with AD or PD. Targeting the impaired neuroplasticity with improved brain stimulation techniques could offer a powerful novel approach for the treatment of AD and PD.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Enfermedades Neurodegenerativas/fisiopatología , Enfermedades Neurodegenerativas/terapia , Plasticidad Neuronal/fisiología , Estimulación Magnética Transcraneal/métodos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Animales , Encéfalo/fisiopatología , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Técnicas Estereotáxicas
19.
Transl Psychiatry ; 10(1): 389, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168800

RESUMEN

Social isolation in adolescence leads to lasting deficits, including emotional and cognitive dysregulation. It remains unclear, however, how social isolation affects certain processes of memory and what molecular mechanisms are involved. In this study, we found that social isolation during the post-weaning period resulted in forgetting of the long-term fear memory, which was attributable to the downregulation of synaptic function in the hippocampal CA1 region mediated by EphB2, a receptor tyrosine kinase which involves in the glutamate receptor multiprotein complex. Viral-mediated EphB2 knockdown in CA1 mimicked the memory defects in group-housed mice, whereas restoration of EphB2 by either viral overexpression or resocialization reversed the memory decline in isolated mice. Taken together, our finding indicates that social isolation gives rise to memory forgetting by disrupting EphB2-mediated synaptic plasticity, which may provide a potential target for preventing memory loss caused by social isolation or loneliness.


Asunto(s)
Memoria , Receptor EphB2 , Aislamiento Social , Animales , China , Trastornos de la Memoria , Memoria a Largo Plazo , Ratones , Plasticidad Neuronal , Receptor EphB2/genética
20.
Transl Neurodegener ; 9(1): 18, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398165

RESUMEN

BACKGROUND: Neuropsychiatric symptoms (NPS) such as depression, anxiety, apathy, and irritability occur in prodromal phases of clinical Alzheimer's disease (AD), which might be an increased risk for later developing AD. Here we treated young APP/PS1 AD model mice prophylactically with serotonin-selective re-uptake inhibitor (SSRI) paroxetine and investigated the protective role of anti-depressant agent in emotional abnormalities and cognitive defects during disease progress. METHODS: To investigate the protective role of paroxetine in emotional abnormalities and cognitive defects during disease progress, we performed emotional behaviors of 3 months old APP/PS1 mouse following oral administration of paroxetine prophylactically starting at 1 month of age. Next, we tested the cognitive, biochemical and pathological, effects of long term administration of paroxetine at 6 months old. RESULTS: Our results showed that AD mice displayed emotional dysfunction in the early stage. Prophylactic administration of paroxetine ameliorated the initial emotional abnormalities and preserved the eventual memory function in AD mice. CONCLUSION: Our data indicate that prophylactic administration of paroxetine ameliorates the emotional dysfunction and memory deficit in AD mice. These neuroprotective effects are attributable to functional restoration of glutamate receptor (GluN2A) in AD mice.


Asunto(s)
Síntomas Afectivos/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Paroxetina/uso terapéutico , Síntomas Prodrómicos , Síntomas Afectivos/genética , Síntomas Afectivos/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , Fármacos Neuroprotectores/metabolismo , Paroxetina/metabolismo , Presenilina-1/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA