Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834148

RESUMEN

In the past few decades, many researchers believed that a high-fat and high-calorie diet is the most critical factor leading to metabolic diseases. However, increasing evidence shows a high-carbohydrate and low-fat diet may also be a significant risk factor. It needs a comprehensive evaluation to prove which viewpoint is more persuasive. We systematically compared the effects of high-fat and high-calorie diets and high-carbohydrate and low-fat ones on glycolipid metabolism in mice to evaluate and compare the effects of different dietary patterns on metabolic changes in mice. Sixty 8-week-old male C57BL/6 mice were divided into four groups after acclimatization and 15% (F-15), 25% (F-25), 35% (F-35), and 45% (F-45) of their dietary energy was derived from fat for 24 weeks. The body weight, body-fat percentage, fasting blood glucose, lipid content in the serum, and triglyceride content in the livers of mice showed a significantly positive correlation with dietary oil supplementation. Interestingly, the total cholesterol content in the livers of mice in the F-15 group was significantly higher than that in other groups (p < 0.05). Compared with the F-45 group, the mRNA expression of sterol synthesis and absorption-related genes (e.g., Asgr1, mTorc1, Ucp20, Srebp2, Hmgcr, and Ldlr), liver fibrosis-related genes (e.g., Col4a1 and Adamts1) and inflammation-related genes (e.g., Il-1ß and Il-6) were significantly higher in the F-15 group. Compared with the F-45 group, the relative abundance of unclassified_f_Lachnospiraceae and Akkermansia was decreased in the F-15 group. While unclassified_f_Lachnospiraceae and Akkermansia are potentially beneficial bacteria, they have the ability to produce short-chain fatty acids and modulate cholesterol metabolism. In addition, the relative abundance of unclassified_f_Lachnospiraceae and Akkermansia was significantly positively correlated with fatty acid transporters expression and negatively correlated with that of cholesteryl acyltransferase 1 and cholesterol synthesis-related genes. In conclusion, our study delineated how a high-fat and high-calorie diet (fat supplied higher than or equal to 35%) induced obesity and hepatic lipid deposition in mice. Although the high-carbohydrate and low-fat diet did not cause weight gain in mice, it induced cholesterol deposition in the liver. The mechanism is mainly through the induction of endogenous synthesis of cholesterol in mice liver through the ASGR1-mTORC1-USP20-HMGCR signaling pathway. The appropriate oil and carbon water ratio (dietary energy supply from fat of 25%) showed the best gluco-lipid metabolic homeostasis in mice.


Asunto(s)
Dieta Alta en Grasa , Hígado , Masculino , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Hígado/metabolismo , Colesterol/metabolismo , Metabolismo de los Lípidos , Carbohidratos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
2.
Med Mycol ; 53(3): 302-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25792759

RESUMEN

Genome plasticity is a hallmark of Candida albicans, and it has been suggested that it generates numerical and structural genomic variations as a means of adaptation. In this study, we used array based comparative genomic hybridization technology and the quantitative real time PCR to investigate the mechanisms by which the following strains obtained by genetic manipulation, CaLY188, CaLY350, CaLY190 and CaLY191, were resistant to antifungal azoles. All four showed trisomy of chromosome R and resistance to azoles. Serial passage of CaLY188 in drug-free medium resulted in chromosome loss, causing chromosome R disomy and loss of azole resistance. Thus we proposed that trisomy of chromosome R contributes to azole resistance.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Cromosomas Fúngicos , Farmacorresistencia Fúngica , Triazoles/farmacología , Trisomía , Pase Seriado
3.
Artículo en Inglés | MEDLINE | ID: mdl-38013045

RESUMEN

Glucosinolates (GLS) in cruciferous vegetables are anti-nutritional factors. Excessive or long-term intake of GLS-containing feed is harmful to animal health and may cause kidney damage. Phenethyl isothiocyanate (PEITC) is a GLS. In this study, we investigated the inhibitory effect of PEITC on a porcine kidney (PK-15) cell line and explored the mechanism of PEITC-induced apoptosis. We found that PEITC could affect cell viability and induce cell apoptosis after incubating cells for 24 h. High concentrations of PEITC can induce intracellular ROS accumulation, resulting in impaired mitochondrial function (decreased MMP, decreased ATP) and DNA damage (increased 8-OHdG), cytochrome c in mitochondria is released into the cytoplasm and activates mitochondrial pathway apoptosis-related proteins (Bcl-2 family and caspase-9, -3). Meanwhile, PEITC could induce intracellular Ca2+ accumulation, disrupt ER homeostasis, and activate the expression levels of three ER-resident transmembrane proteins orchestrating the UPR (PERK, IRE-1α and ATF6) and ER-related proteins (GRP78 and CHOP), thereby activating ERS-pathway apoptosis-related proteins (caspase-12, -7). Our results showed that low concentration (2.5 µM) of PEITC had no damaging effect on cells. In comparison, a high concentration (10 µM) of PEITC could induce cell damage in porcine kidney cells and induce apoptosis in PK-15 cells via the Mitochondrial ROS-associated ERS pathway.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Animales , Porcinos , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial , Proteínas Reguladoras de la Apoptosis/metabolismo , Mitocondrias , Riñón/metabolismo , Línea Celular Tumoral
4.
Animals (Basel) ; 13(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37174491

RESUMEN

The effects of dietary supplementation with two particle sizes of nano zinc oxide (ZnO) on growth performance, immune function, intestinal morphology, and the gut microbiome were determined in a 42-day broiler chicken feeding experiment. A total of 75 one-day-old Arbor Acres broilers were randomized and divided into three groups with five replicates of five chicks each, including the conventional ZnO group (NC), the nano-ZnO group with an average particle size of 82 nm (ZNPL), and the nano-ZnO group with an average particle size of 21 nm (ZNPS). Each group was supplemented with 40 mg/kg of ZnO or nano-ZnO. Our results revealed that birds in the ZNPS group had a higher average daily gain and a lower feed-to-gain ratio than those in the NC group. ZNPS significantly increased the thymus index and spleen index, as well as the levels of serum metallothionein (MT), superoxide dismutase (SOD), and lysozyme (LZM). The ZNPS treatments reduced interleukin (IL)-1ß and tumor necrosis factor-alpha (TNF-α) levels and increased IL-2 and interferon (IFN)-γ levels compared to that in the NC group. Additionally, compared with the birds in the NC group, those in the nano-ZnO group had a higher villus height to crypt depth ratio of the duodenum, jejunum, and ileum. Bacteroides increased in the ZNPS group at the genus level. Further, unidentified_Lachnospiraceae, Blautia, Lachnoclostridium, unidentified_Erysipelotrichaceae, and Intestinimonas were significantly increased in the ZNPL group. In conclusion, nano-ZnO improved the growth performance, promoted the development of immune organs, increased nonspecific immunity, improved the villus height to crypt depth ratio of the small intestine, and enriched the abundance of beneficial bacteria. Notably, the smaller particle size (21 nm) of nano-ZnO exhibited a more potent effect.

5.
J Agric Food Chem ; 71(33): 12574-12586, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37525894

RESUMEN

Subacute mycotoxin exposure in food is commonly overlooked. As one of the most toxic trichothecene mycotoxins, the T-2 toxin severely pollutes human foods and animal feeds. In our study, we investigated the effects of low-dose T-2 toxin on glucose and lipid metabolic function and further investigated the protective effect of tannic acid (TA) in C57BL/6J mice. Results showed that low-dose T-2 toxin significantly impaired blood glucose and lipid homeostasis, promoted ferroptosis in the pancreas and subsequent repression of insulin secretion in ß-cells, and impacted hepatic glucose and lipid metabolism by targeted inhibition of the insulin receptor substrate (IRS)/phosphatidylin-ositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, which induced insulin resistance and steatosis in the liver. TA treatment attenuated pancreatic function and hepatic metabolism by ameliorating oxidative stress and insulin resistance in mice. These findings provide new perspectives on the toxic mechanism and intervention of chronic subacute toxicity of foodborne mycotoxins.


Asunto(s)
Resistencia a la Insulina , Toxina T-2 , Humanos , Animales , Ratones , Glucosa/metabolismo , Toxina T-2/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Metabolismo de los Lípidos , Lípidos/farmacología , Insulina/metabolismo
6.
Nucleic Acids Res ; 38(15): 4985-97, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20385576

RESUMEN

The clustered protocadherins are a subfamily of neuronal cell adhesion molecules that play an important role in development of the nervous systems in vertebrates. The clustered protocadherin genes exhibit complex expression patterns in the central nervous system. In this study, we have investigated the molecular mechanism underlying neuronal expression of protocadherin genes using the protocadherin gene cluster in fugu as a model. By in silico prediction, we identified multiple neuron-restrictive silencer elements (NRSEs) scattered in the fugu protocadherin cluster and demonstrated that these elements bind specifically to NRSF/REST in vitro and in vivo. By using a transgenic Xenopus approach, we show that these NRSEs regulate neuronal specificity of protocadherin promoters by suppressing their activity in non-neuronal tissues. We provide evidence that protocadherin genes that do not contain an NRSE in their 5' intergenic region are regulated by NRSEs in the regulatory region of their neighboring genes. We also show that protocadherin clusters in other vertebrates such as elephant shark, zebrafish, coelacanth, lizard, mouse and human, contain different sets of multiple NRSEs. Taken together, our data suggest that the neuronal specificity of protocadherin cluster genes in vertebrates is regulated by the NRSE-NRSF/REST system.


Asunto(s)
Cadherinas/genética , Silenciador del Gen , Familia de Multigenes , Neuronas/metabolismo , Elementos Silenciadores Transcripcionales , Animales , Línea Celular , Humanos , Ratones , Regiones Promotoras Genéticas , Takifugu/genética , Xenopus laevis , Pez Cebra/genética
7.
Sci Total Environ ; 670: 498-507, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-30904661

RESUMEN

The global urbanization process has been a concern in recent years, and it is a serious challenge to sustainable development and effective urban governance. Rapid changes in urban land use have caused serious damage to the global ecological environment and ecosystem services (ESs). To help city planners and decision-makers in the process of city planning, it is vital to assess the impacts of urban land use changes on ESs. In this study, urban development under trend continuation and policy planning scenarios were assessed to determine whether the policy planning scenario meets the needs of sustainable urbanization. The two scenarios of future urban expansion in Beijing in 2035 were simulated by the FUTURES (FUTure Urban-Regional Environment Simulation) model, and the spatio-temporal changes of ESs in the two scenarios were explored through the InVEST (Integrated Valuation of Environmental Services and Tradeoffs) model. The results show that the major losses of ESs came from the conversion of cropland land to urban land, which accounts for 79.70% and 69.62% of the total carbon storage loss, 67.88% and 43.94% of the total water yield loss, and 79.94% and 77.72% of the total habitat quality loss, under the Status Quo (SQ) and urban planning development (UPD) scenarios, respectively. Our results emphasize that the policies proposed by the UPD scenario appear to greatly reduce the negative impacts of urban land use change on ESs. However, the government cannot neglect the protection of forest and needs to intensify the implementation of policies implementation in the shallow mountainous areas of the western margins and northeastern and northern regions of Beijing. By understanding the trade-off between future urban structure and ESs, city planners and decision-makers can adjust and optimize suggestions for urban planning policies to achieve sustainable development.

8.
J Virol Methods ; 123(1): 41-8, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15582697

RESUMEN

Severe acute respiratory syndrome (SARS), a life-threatening disease, is caused by the newly identified virus SARS coronavirus (SARS-CoV). In order to study the spike (S) protein of this highly contagious virus, we established a clonal cell-line, CHO-SG, from the Chinese hamster ovary cells that stably expresses C-terminally EGFP-tagged SARS-CoV S protein (S-EGFP). The ectodomain of the S glycoprotein is localized on the surface of CHO-SG cells with N-acetyl-glucosamine-terminated carbohydrate structure. CHO-SG cells associated tightly with Vero E6 cells, a SARS-CoV receptor (ACE2) expressing cell-line, and the interaction remained stable under highly stringent condition (1M NaCl). This interaction could be blocked by either the serum from a SARS convalescent patient or a goat anti-ACE2 antibody, indicating that the interaction is specific. A binding epitope with lesser degree of glycosylation and native conformation was localized by using rabbit anti-sera raised against five denatured recombinant S protein fragments expressed in Escherichia coli. One of the sera obtained from the fragment encompassing amino acids 48-358 significantly blocked the interaction between CHO-SG and Vero E6 cells. The region is useful for studying neutralizing antibodies in future vaccine development. This paper describes an easy and safe cell-based assay suitable for studying the binding between SARS-CoV S protein and its receptor.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Receptores Virales/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Animales , Células CHO , Chlorocebus aethiops , Cricetinae , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteína de la Espiga del Coronavirus , Células Vero , Proteínas del Envoltorio Viral/genética
9.
Virulence ; 5(4): 507-20, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24759671

RESUMEN

Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug resistance. Several manipulation techniques have been used for investigation of gene function in C. albicans, including gene disruption, controlled gene expression, protein tagging, gene reintegration, and overexpression. In this review, the main cassettes containing selectable markers used for gene manipulation in C. albicans are summarized; the advantages and limitations of these cassettes are discussed concerning the influences on the target gene expression and the virulence of the mutant strains.


Asunto(s)
Candida albicans/genética , Candidiasis/microbiología , Animales , Candida albicans/metabolismo , Candida albicans/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas Genéticas , Humanos , Virulencia
10.
Artículo en Zh | MEDLINE | ID: mdl-23156805

RESUMEN

OBJECTIVE: To explore the expression and significance of second mitochondria derived activator of caspase (Smac), X-linked inhibitor of apoptosis protein (XIAP)and cysteine containing aspartate specific protease 3 (caspase-3) in the growth, development and carcinogenesis of the nonnasal inverted papilloma (NIP). METHOD: Immunohistochemical method was used to detect the expression of Smac, XIAP, caspase-3 in 10 cases of nasal cavity mucosae (NM) and 45 cases of NIP, the group of NIP including 25 cases of NIP without dysplasia, 11 cases of NIP with dysplasia, and 9 cases of NIP with malignant transformation to squamous cell carcinoma (SCC). RESULT: The intensity of the positive expression of Smac, Caspase-3 in NIP were lower than NM, the intensity of the positive expression decreased with the decreasing degree of histological differentiation. There was a significant difference between NIP without dysplasia and SCC. It was presented with a progressive tendency for the expression of XIAP in the group of NM and NIP. The lower degree of histological differentiation, the higher intensity of the positive expression. The expression between NIP without dysplasia and SCC had a significant difference. Smac negatively correlated with XIAP (r(s) = -0.323, P < 0.05), XIAP negatively correlated with caspase-3 (r(s) = -0.408, P < 0.01), Smac positively correlated with caspase 3 (r(s) = 0.424, P < 0.01). CONCLUSION: Smac, XIAP, caspase 3 might be associated with the growth and carcinogenesis of NIP.


Asunto(s)
Caspasa 3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mitocondriales/metabolismo , Neoplasias Nasales/metabolismo , Papiloma Invertido/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Adulto , Anciano , Proteínas Reguladoras de la Apoptosis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Nasales/patología , Papiloma Invertido/patología
11.
Huan Jing Ke Xue ; 31(7): 1652-6, 2010 Jul.
Artículo en Zh | MEDLINE | ID: mdl-20825040

RESUMEN

Combined effects of acid rain and lanthanum on growth of soybean seedling (Glycine max) and its inherent mechanism were studied in this paper. Compared with treatments by simulated acid rain (pH 3.0, 3.5, 4.5) or rare earth La(III) (60, 100 and 300 mg x L(-1)), the decrease degree of growth parameters in combined treatments was higher, indicating that there were a synergistic effects between acid rain and La. Moreover,the inhibition effects of acid rain and La(III) were more obvious when pH value of acid rain was lower or the concentration of La(III) was higher. The changes of photosynthetic parameters were similar to those of growth, but the decrease degree of each parameter was not same in the same treatment group. The decrease degree of optimal PSII photochemical efficiency (Fv/Fm) and chlorophyll content (Chl) were 9.35%-22.75% and 9.14%-24.53%, respectively, lower than that of photosynthetic rate Pn (22.78%-84.7%), Hill reaction rate (15.52%-73.38%) and Mg2+ -ATPase activity (14.51%-71.54%), showing that the sensitivity of photosynthetic parameters to the combined factors was different. Furthermore, relative analysis showed that the change of Pn were mainly affected by Hill reaction rate and Mg2+ -ATPase activity, and was less influenced by Chl and Fv/Fm. It indicates that the effect of acid rain and La on each reaction in photosynthesis was different, and the inhibition of combined treatments on photosynthesis in plants was one of the main factors affecting growth of plant.


Asunto(s)
Lluvia Ácida/toxicidad , Glycine max/crecimiento & desarrollo , Lantano/toxicidad , Plantones/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Plantones/efectos de los fármacos , Glycine max/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA