Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 131(11): 926-943, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36278398

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a growing health problem without effective therapies. Epidemiological studies indicate that diabetes is a strong risk factor for HFpEF, and about 45% of patients with HFpEF are suffering from diabetes, yet the underlying mechanisms remain elusive. METHODS: Using a combination of echocardiography, hemodynamics, RNA-sequencing, molecular biology, in vitro and in vivo approaches, we investigated the roles of SIRT6 (sirtuin 6) in regulation of endothelial fatty acid (FA) transport and HFpEF in diabetes. RESULTS: We first observed that endothelial SIRT6 expression was markedly diminished in cardiac tissues from heart failure patients with diabetes. We then established an experimental mouse model of HFpEF in diabetes induced by a combination of the long-term high-fat diet feeding and a low-dose streptozocin challenge. We also generated a unique humanized SIRT6 transgenic mouse model, in which a single copy of human SIRT6 transgene was engineered at mouse Rosa26 locus and conditionally induced with the Cre-loxP technology. We found that genetically restoring endothelial SIRT6 expression in the diabetic mice ameliorated diastolic dysfunction concurrently with decreased cardiac lipid accumulation. SIRT6 gain- or loss-of-function studies showed that SIRT6 downregulated endothelial FA uptake. Mechanistically, SIRT6 suppressed endothelial expression of PPARγ through SIRT6-dependent deacetylation of histone H3 lysine 9 around PPARγ promoter region; and PPARγ reduction mediated SIRT6-dependent inhibition of endothelial FA uptake. Importantly, oral administration of small molecule SIRT6 activator MDL-800 to diabetic mice mitigated cardiac lipid accumulation and diastolic dysfunction. CONCLUSIONS: The impairment of endothelial SIRT6 expression links diabetes to HFpEF through the alteration of FA transport across the endothelial barrier. Genetic and pharmacological strategies that restored endothelial SIRT6 function in mice with diabetes alleviated experimental HFpEF by limiting FA uptake and improving cardiac metabolism, thus warranting further clinical evaluation.


Asunto(s)
Diabetes Mellitus Experimental , Insuficiencia Cardíaca , Sirtuinas , Humanos , Ratones , Animales , Volumen Sistólico/fisiología , Insuficiencia Cardíaca/metabolismo , PPAR gamma , Modelos Animales de Enfermedad , Sirtuinas/genética , Lípidos
2.
Pharmacol Res ; 199: 107029, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056513

RESUMEN

Aortic dissection (AD) is a fatal cardiovascular disease with limited pharmacotherapies. To discover novel therapeutic targets for AD, the present study was conducted on ascending aorta samples from AD patients versus those from control subjects using proteomic analysis. Integrated proteomic data analysis identified S100 calcium-binding proteins A8 and A9 (S100A8/A9) as new therapeutic targets for AD. As assessed by ELISA, the circulating levels of S100A8/A9 were elevated in AD patients. In addition, we validated the upregulation of S100A8/A9 in a mouse model of AD. In vitro and in vivo studies substantiated that S100A8/A9, as danger-associated molecular pattern molecules, promotes the smooth muscle cells phenotypic switch by inhibiting serum response factor (SRF) activity but elevating NF-κB dependent inflammatory response. Depletion of S100A8/A9 attenuates the occurrence and development of AD. As a proof of concept, we tested the safety and efficacy of pharmacological inhibition of S100A8/A9 by ABR-25757 (paquinimod) in a mouse model of AD. We observed that ABR-25757 ameliorated the incidence of rupture and improved elastin morphology associated with AD. Further single-cell RNA sequencing disclosed that the phenotypic switch of vascular smooth muscle cells (VSMCs) and inflammatory response pathways were responsible for ABR-25757-mediated protection against AD. Thus, this study reveals the regulatory mechanism of S100A8/A9 in AD and offers a potential therapeutic avenue to treat AD by targeting S100A8/A9.


Asunto(s)
Disección Aórtica , Proteoma , Ratones , Animales , Humanos , Proteínas de Unión al Calcio , Proteómica , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Modelos Animales de Enfermedad , Disección Aórtica/tratamiento farmacológico
3.
Pharmacol Res ; 203: 107156, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522762

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and morbidity and mortality rates continue to rise. Atherosclerosis constitutes the principal etiology of CVDs. Endothelial injury, inflammation, and dysfunction are the initiating factors of atherosclerosis. Recently, we reported that endothelial adenosine receptor 2 A (ADORA2A), a G protein-coupled receptor (GPCR), plays critical roles in neovascularization disease and cerebrovascular disease. However, the precise role of endothelial ADORA2A in atherosclerosis is still not fully understood. Here, we showed that ADORA2A expression was markedly increased in the aortic endothelium of humans with atherosclerosis or Apoe-/- mice fed a high-cholesterol diet. In vivo studies unraveled that endothelial-specific Adora2a deficiency alleviated endothelial-to-mesenchymal transition (EndMT) and prevented the formation and instability of atherosclerotic plaque in Apoe-/- mice. Moreover, pharmacologic inhibition of ADORA2A with KW6002 recapitulated the anti-atherogenic phenotypes observed in genetically Adora2a-deficient mice. In cultured human aortic endothelial cells (HAECs), siRNA knockdown of ADORA2A or KW6002 inhibition of ADORA2A decreased EndMT, whereas adenoviral overexpression of ADORA2A induced EndMT. Mechanistically, ADORA2A upregulated ALK5 expression via a cAMP/PKA/CREB axis, leading to TGFß-Smad2/3 signaling activation, thereby promoting EndMT. In conclusion, these findings, for the first time, demonstrate that blockade of ADORA2A attenuated atherosclerosis via inhibition of EndMT induced by the CREB1-ALK5 axis. This study discloses a new link between endothelial ADORA2A and EndMT and indicates that inhibiting endothelial ADORA2A could be an effective novel strategy for the prevention and treatment of atherosclerotic CVDs.


Asunto(s)
Aterosclerosis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Transición Epitelial-Mesenquimal , Ratones Endogámicos C57BL , Receptor de Adenosina A2A , Receptor Tipo I de Factor de Crecimiento Transformador beta , Animales , Humanos , Masculino , Ratones , Antagonistas del Receptor de Adenosina A2/farmacología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones Noqueados , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal
4.
Acta Pharmacol Sin ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589689

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is closely associated with metabolic derangement. Sodium glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) exert anti-HFpEF effects, but the underlying mechanisms remain unclear. In this study, we explored the anti-HFpEF effects of empagliflozin and liraglutide and the underlying molecular mechanisms in a mouse model of HFpEF. This model was established by high-fat diet (HFD) feeding plus Nω-nitro-L-arginine methyl ester (L-NAME) treatment. The mice were treated with empagliflozin (20 mg·kg-1·d-1, i.g.) or liraglutide (0.3 mg·kg-1·d-1, i.p.) or their combination for 4 weeks. At the end of the experimental protocol, cardiac function was measured using ultrasound, then mice were euthanized and heart, liver, and kidney tissues were collected. Nuclei were isolated from frozen mouse ventricular tissue for single-nucleus RNA-sequencing (snRNA-seq). We showed that administration of empagliflozin or liraglutide alone or in combination significantly improved diastolic function, ameliorated cardiomyocyte hypertrophy and cardiac fibrosis, as well as exercise tolerance but no synergism was observed in the combination group. Furthermore, empagliflozin and/or liraglutide lowered body weight, improved glucose metabolism, lowered blood pressure, and improved liver and kidney function. After the withdrawal of empagliflozin or liraglutide for 1 week, these beneficial effects tended to diminish. The snRNA-seq analysis revealed a subcluster of myocytes, in which Erbb4 expression was down-regulated under HFpEF conditions, and restored by empagliflozin or liraglutide. Pseudo-time trajectory analysis and cell-to-cell communication studies confirmed that the Erbb4 pathway was a prominent pathway essential for both drug actions. In the HFpEF mouse model, both empagliflozin and liraglutide reversed Erbb4 down-regulation. In rat h9c2 cells, we showed that palmitic acid- or high glucose-induced changes in PKCα and/or ERK1/2 phosphorylation at least in part through Erbb4. Collectively, the single-cell atlas reveals the anti-HFpEF mechanism of empagliflozin and liraglutide, suggesting that Erbb4 pathway represents a new therapeutic target for HFpEF. Effects and mechanisms of action of empagliflozin and liraglutide in HFpEF mice. HFpEF was induced with a high-fat diet and L-NAME for 15 weeks, and treatment with empagliflozin and liraglutide improved the HFpEF phenotype. Single nucleus RNA sequencing (snRNA-seq) was used to reveal the underlying mechanism of action of empagliflozin and liraglutide.

5.
Acta Pharmacol Sin ; 45(6): 1316-1320, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38459255

RESUMEN

Within the context of residual cardiovascular risk in post-statin era, emerging evidence from epidemiologic and human genetic studies have demonstrated that triglyceride (TG)-rich lipoproteins and their remnants are causally related to cardiovascular risk. While, carriers of loss-of-function mutations of ApoC3 have low TG levels and are protected from cardiovascular disease (CVD). Of translational significance, siRNAs/antisense oligonucleotide (ASO) targeting ApoC3 is beneficial for patients with atherosclerotic CVD. Therefore, animal models of atherosclerosis with both hypercholesterolemia and hypertriglyceridemia are important for the discovery of novel therapeutic strategies targeting TG-lowering on top of traditional cholesterol-lowering. In this study, we constructed a novel mouse model of familial combined hyperlipidemia through inserting a human ApoC3 transgene (hApoC3-Tg) into C57BL/6 J mice and injecting a gain-of-function variant of adeno-associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9)-D377Y concurrently with high cholesterol diet (HCD) feeding for 16 weeks. In the last 10 weeks, hApoC3-Tg mice were orally treated with a combination of atorvastatin (10 mg·kg-1·d-1) and fenofibrate (100 mg·kg-1·d-1). HCD-treated hApoC3-Tg mice demonstrated elevated levels of serum TG, total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). Oral administration of atorvastatin and fenofibrate significantly decreased the plaque sizes of en face aorta, aortic sinus and innominate artery accompanied by improved lipid profile and distribution. In summary, this novel mouse model is of considerable clinical relevance for evaluation of anti-atherosclerotic drugs by targeting both hypercholesterolemia and hypertriglyceridemia.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Hiperlipidemia Familiar Combinada , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Aterosclerosis/tratamiento farmacológico , Humanos , Ratones , Hiperlipidemia Familiar Combinada/tratamiento farmacológico , Hiperlipidemia Familiar Combinada/genética , Apolipoproteína C-III/genética , Masculino , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Hipolipemiantes/uso terapéutico , Hipolipemiantes/farmacología , Triglicéridos/sangre , Dieta Alta en Grasa , Atorvastatina/uso terapéutico , Atorvastatina/farmacología
6.
Acta Pharmacol Sin ; 45(1): 23-35, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37644131

RESUMEN

Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Animales , Humanos , Volumen Sistólico/fisiología , Comorbilidad , Descubrimiento de Drogas
7.
Acta Pharmacol Sin ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886550

RESUMEN

Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 µM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.

8.
Handb Exp Pharmacol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755351

RESUMEN

Atherosclerosis is a common cardiovascular disease closely associated with factors such as hyperlipidaemia and chronic inflammation. Among them, endothelial dysfunction serves as a major predisposing factor. Vascular endothelial dysfunction is manifested by impaired endothelium-dependent vasodilation, enhanced oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, endothelial senescence, and endothelial-mesenchymal transition (EndoMT). Flavonoids are known for their antioxidant activity, eliminating oxidative stress induced by reactive oxygen species (ROS), thereby preventing the oxidation of low-density lipoprotein (LDL) cholesterol, reducing platelet aggregation, alleviating ischemic damage, and improving vascular function. Flavonoids have also been shown to possess anti-inflammatory activity and to protect the cardiovascular system. This review focuses on the protective effects of these naturally-occuring bioactive flavonoids against the initiation and progression of atherosclerosis through their effects on endothelial cells including, but not limited to, their antioxidant, anti-inflammatory, anti-thrombotic, and lipid-lowering properties. However, more clinical evidences are still needed to determine the exact role and optimal dosage of these compounds in the treatment of atherosclerosis.

9.
Eur Heart J ; 44(14): 1265-1279, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36721994

RESUMEN

AIMS: Proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of pulmonary hypertension (PH). Proliferative cells utilize purine bases from the de novo purine synthesis (DNPS) pathways for nucleotide synthesis; however, it is unclear whether DNPS plays a critical role in VSMC proliferation during development of PH. The last two steps of DNPS are catalysed by the enzyme 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC). This study investigated whether ATIC-driven DNPS affects the proliferation of pulmonary artery smooth muscle cells (PASMCs) and the development of PH. METHODS AND RESULTS: Metabolites of DNPS in proliferative PASMCs were measured by liquid chromatography-tandem mass spectrometry. ATIC expression was assessed in platelet-derived growth factor-treated PASMCs and in the lungs of PH rodents and patients with pulmonary arterial hypertension. Mice with global and VSMC-specific knockout of Atic were utilized to investigate the role of ATIC in both hypoxia- and lung interleukin-6/hypoxia-induced murine PH. ATIC-mediated DNPS at the mRNA, protein, and enzymatic activity levels were increased in platelet-derived growth factor-treated PASMCs or PASMCs from PH rodents and patients with pulmonary arterial hypertension. In cultured PASMCs, ATIC knockdown decreased DNPS and nucleic acid DNA/RNA synthesis, and reduced cell proliferation. Global or VSMC-specific knockout of Atic attenuated vascular remodelling and inhibited the development and progression of both hypoxia- and lung IL-6/hypoxia-induced PH in mice. CONCLUSION: Targeting ATIC-mediated DNPS compromises the availability of purine nucleotides for incorporation into DNA/RNA, reducing PASMC proliferation and pulmonary vascular remodelling and ameliorating the development and progression of PH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Ratones , Animales , Roedores/metabolismo , Remodelación Vascular/fisiología , Arteria Pulmonar , Purinas/metabolismo , Células Cultivadas , Hipoxia/metabolismo , ARN Mensajero/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proliferación Celular , Miocitos del Músculo Liso/metabolismo
10.
Pharmacol Rev ; 73(3): 924-967, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34088867

RESUMEN

The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1ß monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.


Asunto(s)
Aterosclerosis , Tratamiento Farmacológico de COVID-19 , COVID-19 , Fármacos Cardiovasculares , Enfermedades Cardiovasculares , Endotelio Vascular , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , COVID-19/metabolismo , COVID-19/fisiopatología , Fármacos Cardiovasculares/clasificación , Fármacos Cardiovasculares/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Descubrimiento de Drogas , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Humanos , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , SARS-CoV-2
11.
Trends Biochem Sci ; 44(7): 561-564, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31036409

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare and fatal disease with features of premature aging and cardiovascular diseases (atherosclerosis, myocardial infarction, and stroke). Several landmark studies in 2018-2019 have revealed novel mechanisms underlying cardiovascular pathologies in HGPS, and implicate future potential therapies for HGPS, and possibly physiological aging.


Asunto(s)
Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/tratamiento farmacológico , Piperidinas/uso terapéutico , Progeria/complicaciones , Progeria/tratamiento farmacológico , Piridinas/uso terapéutico , Enfermedades Cardiovasculares/patología , Humanos , Progeria/patología
12.
Arch Biochem Biophys ; 742: 109636, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230810

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. This article shows significant data duplication and overlap with Liu, Weihua et al., Effects of berberine on matrix accumulation and NF-kappa B signal pathway in alloxan-induced diabetic mice with renal injury. European Journal of Pharmacology. 2010 Jul 25; 638(1-3):150-5 (https://doi.org/10.1016/j.ejphar.2010.04.033) without adequate referencing. Although there is a slight difference in the methodology section regarding alloxan-induced diabetes models in the two articles, there is a clear overlap between Table 2 of Lan, Tian et al. (2010); and Tables 1 and 2 of Liu, Weihua et al. (2010). The two manuscripts were submitted from the same laboratory in the same year.

13.
Crit Rev Food Sci Nutr ; 63(14): 2093-2118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34553653

RESUMEN

Vascular diseases arise due to vascular endothelium dysfunction in response to several pro-inflammatory stimuli and invading pathogens. Thickening of the vessel wall, formation of atherosclerotic plaques consisting of proliferating smooth muscle cells, macrophages and lymphocytes are the major consequences of impaired endothelium resulting in atherosclerosis, hypercholesterolemia, hypertension, type 2 diabetes mellitus, chronic renal failure and many others. Decreased nitric oxide (NO) bioavailability was found to be associated with anomalous endothelial function because of either its reduced production level by endothelial NO synthase (eNOS) which synthesize this potent endogenous vasodilator from L-arginine or its enhanced breakdown due to severe oxidative stress and eNOS uncoupling. Polyphenols are a group of bioactive compounds having more than 7000 chemical entities present in different cereals, fruits and vegetables. These natural compounds possess many OH groups which are largely responsible for their strong antioxidative, anti-inflammatory antithrombotic and anti-hypersensitive properties. Several flavonoid-derived polyphenols like flavones, isoflavones, flavanones, flavonols and anthocyanidins and non-flavonoid polyphenols like tannins, curcumins and resveratrol have attracted scientific interest for their beneficial effects in preventing endothelial dysfunction. This article will focus on in vitro as well as in vivo and clinical studies evidences of the polyphenols with eNOS modulating activity against vascular disease condition while their molecular mechanism will also be discussed.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión , Humanos , Polifenoles/farmacología , Polifenoles/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Endotelio Vascular , Óxido Nítrico
14.
Acta Pharmacol Sin ; 44(4): 695-709, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36253560

RESUMEN

The fight against coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is still raging. However, the pathophysiology of acute and post-acute manifestations of COVID-19 (long COVID-19) is understudied. Endothelial cells are sentinels lining the innermost layer of blood vessel that gatekeep micro- and macro-vascular health by sensing pathogen/danger signals and secreting vasoactive molecules. SARS-CoV-2 infection primarily affects the pulmonary system, but accumulating evidence suggests that it also affects the pan-vasculature in the extrapulmonary systems by directly (via virus infection) or indirectly (via cytokine storm), causing endothelial dysfunction (endotheliitis, endothelialitis and endotheliopathy) and multi-organ injury. Mounting evidence suggests that SARS-CoV-2 infection leads to multiple instances of endothelial dysfunction, including reduced nitric oxide (NO) bioavailability, oxidative stress, endothelial injury, glycocalyx/barrier disruption, hyperpermeability, inflammation/leukocyte adhesion, senescence, endothelial-to-mesenchymal transition (EndoMT), hypercoagulability, thrombosis and many others. Thus, COVID-19 is deemed as a (micro)vascular and endothelial disease. Of translational relevance, several candidate drugs which are endothelial protective have been shown to improve clinical manifestations of COVID-19 patients. The purpose of this review is to provide a latest summary of biomarkers associated with endothelial cell activation in COVID-19 and offer mechanistic insights into the molecular basis of endothelial activation/dysfunction in macro- and micro-vasculature of COVID-19 patients. We envisage further development of cellular models and suitable animal models mimicking endothelial dysfunction aspect of COVID-19 being able to accelerate the discovery of new drugs targeting endothelial dysfunction in pan-vasculature from COVID-19 patients.


Asunto(s)
COVID-19 , Células Endoteliales , Animales , Humanos , Biomarcadores , COVID-19/patología , Células Endoteliales/patología , Síndrome Post Agudo de COVID-19 , SARS-CoV-2
15.
Acta Pharmacol Sin ; 44(12): 2358-2375, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37550526

RESUMEN

Atherosclerosis, one of the life-threatening cardiovascular diseases (CVDs), has been demonstrated to be a chronic inflammatory disease, and inflammatory and immune processes are involved in the origin and development of the disease. Toll-like receptors (TLRs), a class of pattern recognition receptors that trigger innate immune responses by identifying pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), regulate numerous acute and chronic inflammatory diseases. Recent studies reveal that TLRs have a vital role in the occurrence and development of atherosclerosis, including the initiation of endothelial dysfunction, interaction of various immune cells, and activation of a number of other inflammatory pathways. We herein summarize some other inflammatory signaling pathways, protein molecules, and cellular responses associated with TLRs, such as NLRP3, Nrf2, PCSK9, autophagy, pyroptosis and necroptosis, which are also involved in the development of AS. Targeting TLRs and their regulated inflammatory events could be a promising new strategy for the treatment of atherosclerotic CVDs. Novel drugs that exert therapeutic effects on AS through TLRs and their related pathways are increasingly being developed. In this article, we comprehensively review the current knowledge of TLR signaling pathways in atherosclerosis and actively seek potential therapeutic strategies using TLRs as a breakthrough point in the prevention and therapy of atherosclerosis.


Asunto(s)
Aterosclerosis , Proproteína Convertasa 9 , Humanos , Proproteína Convertasa 9/metabolismo , Receptores Toll-Like/metabolismo , Transducción de Señal/fisiología , Aterosclerosis/metabolismo
16.
Acta Pharmacol Sin ; 44(8): 1625-1636, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36997664

RESUMEN

Vascular calcification is caused by the deposition of calcium salts in the intimal or tunica media layer of the aorta, which increases the risk of cardiovascular events and all-cause mortality. However, the mechanisms underlying vascular calcification are not fully clarified. Recently it has been shown that transcription factor 21 (TCF21) is highly expressed in human and mouse atherosclerotic plaques. In this study we investigated the role of TCF21 in vascular calcification and the underlying mechanisms. In carotid artery atherosclerotic plaques collected from 6 patients, we found that TCF21 expression was upregulated in calcific areas. We further demonstrated TCF21 expression was increased in an in vitro vascular smooth muscle cell (VSMC) osteogenesis model. TCF21 overexpression promoted osteogenic differentiation of VSMC, whereas TCF21 knockdown in VSMC attenuated the calcification. Similar results were observed in ex vivo mouse thoracic aorta rings. Previous reports showed that TCF21 bound to myocardin (MYOCD) to inhibit the transcriptional activity of serum response factor (SRF)-MYOCD complex. We found that SRF overexpression significantly attenuated TCF21-induced VSMC and aortic ring calcification. Overexpression of SRF, but not MYOCD, reversed TCF21-inhibited expression of contractile genes SMA and SM22. More importantly, under high inorganic phosphate (3 mM) condition, SRF overexpression reduced TCF21-induced expression of calcification-related genes (BMP2 and RUNX2) as well as vascular calcification. Moreover, TCF21 overexpression enhanced IL-6 expression and downstream STAT3 activation to facilitate vascular calcification. Both LPS and STAT3 could induce TCF21 expression, suggesting that the inflammation and TCF21 might form a positive feedback loop to amplify the activation of IL-6/STAT3 signaling pathway. On the other hand, TCF21 induced production of inflammatory cytokines IL-1ß and IL-6 in endothelial cells (ECs) to promote VSMC osteogenesis. In EC-specific TCF21 knockout (TCF21ECKO) mice, VD3 and nicotine-induced vascular calcification was significantly reduced. Our results suggest that TCF21 aggravates vascular calcification by activating IL-6/STAT3 signaling and interplay between VSMC and EC, which provides new insights into the pathogenesis of vascular calcification. TCF21 enhances vascular calcification by activating the IL-6-STAT3 signaling pathway. TCF21 inhibition may be a new potential therapeutic strategy for the prevention and treatment of vascular calcification.


Asunto(s)
Placa Aterosclerótica , Calcificación Vascular , Animales , Humanos , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Interleucina-6/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Osteogénesis , Placa Aterosclerótica/metabolismo , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/patología
17.
Proc Natl Acad Sci U S A ; 117(9): 4792-4801, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32075915

RESUMEN

Angiogenesis, the formation of new blood vessels, is tightly regulated by gene transcriptional programs. Yin Ying 1 (YY1) is a ubiquitously distributed transcription factor with diverse and complex biological functions; however, little is known about the cell-type-specific role of YY1 in vascular development and angiogenesis. Here we report that endothelial cell (EC)-specific YY1 deletion in mice led to embryonic lethality as a result of abnormal angiogenesis and vascular defects. Tamoxifen-inducible EC-specific YY1 knockout (YY1iΔEC ) mice exhibited a scarcity of retinal sprouting angiogenesis with fewer endothelial tip cells. YY1iΔEC mice also displayed severe impairment of retinal vessel maturation. In an ex vivo mouse aortic ring assay and a human EC culture system, YY1 depletion impaired endothelial sprouting and migration. Mechanistically, YY1 functions as a repressor protein of Notch signaling that controls EC tip-stalk fate determination. YY1 deficiency enhanced Notch-dependent gene expression and reduced tip cell formation. Specifically, YY1 bound to the N-terminal domain of RBPJ (recombination signal binding protein for Ig Kappa J region) and competed with the Notch coactivator MAML1 (mastermind-like protein 1) for binding to RBPJ, thereby impairing the NICD (intracellular domain of the Notch protein)/MAML1/RBPJ complex formation. Our study reveals an essential role of endothelial YY1 in controlling sprouting angiogenesis through directly interacting with RBPJ and forming a YY1-RBPJ nuclear repression complex.


Asunto(s)
Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Morfogénesis/fisiología , Neovascularización Patológica/metabolismo , Factor de Transcripción YY1/metabolismo , Animales , Proteínas Portadoras/metabolismo , Diferenciación Celular , Células Endoteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones/embriología , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Proteínas Nucleares , Unión Proteica , Receptores Notch/metabolismo , Vasos Retinianos/metabolismo , Transducción de Señal , Factores de Transcripción , Factor de Transcripción YY1/genética
18.
Inflammopharmacology ; 31(3): 1069-1093, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36997729

RESUMEN

Chemokines belong to the family of cytokines with chemoattractant properties that regulate chemotaxis and leukocyte migration, as well as the induction of angiogenesis and maintenance of hemostasis. Curcumin, the major component of the Curcuma longa rhizome, has various pharmacological actions, including anti-inflammatory, immune-regulatory, anti-oxidative, and lipid-modifying properties. Chemokines and chemokine receptors are influenced/modulated by curcumin. Thus, the current review focuses on the molecular mechanisms associated with curcumin's effects on chemoattractant cytokines, as well as putting into context the many studies that have reported curcumin-mediated regulatory effects on inflammatory conditions in the organs/systems of the body (e.g., the central nervous system, liver, and cardiovascular system). Curcumin's effects on viral and bacterial infections, cancer, and adverse pregnancy outcomes are also reviewed.


Asunto(s)
Curcumina , Curcumina/farmacología , Curcumina/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Hígado , Citocinas , Quimiocinas , Curcuma
19.
Biochem Biophys Res Commun ; 622: 163-169, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-35868060

RESUMEN

Preclinical mouse models of cardiometabolic diseases are crucial to study the pathological mechanisms of cardiometabolic diseases and to explore potential new therapeutic agents. Using double-knockouts in the background of ApoE-/- or Ldlr-/- mice requires an extensive amount of breeding and is costly. A significant breakthrough in atherosclerosis research is the use of AAV8-PCSK9-D377Y (a gain-of-function mutant of PCSK9 which promotes LDLR degradation) injection which can induce hyperlipidemia, increased endothelial stiffness, vascular calcification, aneurysm, and atherosclerotic plaque development in normal C57BL/6J mice. The purpose of this study was to assess the possibility that the injection of AAV8-PCSK9 vectors in db/db mice (a well-established animal model of type 2 diabetes mellitus) produces a novel mouse model of diabetes, atherosclerosis and fatty liver disease to study the pathomechanisms of cardiometabolic disease and its complications. Db/db mice were injected with AAV8-PCSK9-D377Y (AAV8-PCSK9 for simplicity) or AAV8-control and fed with high-cholesterol diets for 8 weeks. Levels of total cholesterol (TC) and triglyceride (TG) were significantly elevated in AAV8-PCSK9-injected mice compared to the controls. AAV8-PCSK9 injection led to increased serum level of PCSK9, serious liver steatosis, hypercholesterolemia and atherosclerotic plaque as determined by aortic arch/roots histopathological staining, with Oil Red O, Masson-trichrome and hematoxylin-eosin staining. RNA sequencing and bioinformatics were used to assess the global gene expression in liver tissues. We conclude that AAV8-PCSK9 injection in db/db mice is a promising and time-efficient approach to induce diabetic atherosclerosis with fatty liver. This mouse model can be a new one to investigate the etiology and therapeutics of atherosclerosis with diabetes and fatty liver beyond the traditional model established in ApoE-/- mice or LDLR-/- mice receiving streptozotocin (STZ) injection.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Hígado Graso , Hipercolesterolemia , Hepatopatías , Placa Aterosclerótica , Animales , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/terapia , Colesterol , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Dieta , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/genética , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
20.
Pharmacol Res ; 175: 106043, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954030

RESUMEN

Inflammation associated endothelial dysfunction represents a pivotal contributor to atherosclerosis. Increasingly, evidence has demonstrated that interleukin 1 receptor (IL1-R) / toll-like receptor (TLR) signaling participates in the development of atherosclerosis. Recent large-scale clinical trials have supported the therapeutic potential of anti-inflammatory therapies targeting IL-1ß and IL-6 in reducing atherosclerosis. The present study examined the pharmacological effects of IL-1R-associated kinase 1 and 4 inhibitors (IRAK1/4i) in regulating inflammation of the endothelium and atherosclerosis. We demonstrate that dual pharmacological inhibition of IRAK1 and IRAK4 by an IRAK1/4i is more effective against LPS induced endothelial inflammation, compared with IRAK1 inhibitor or IRAK4 inhibitor monotherapy. IRAK1/4i showed little endothelial cell toxicity at concentrations from 1 µM up to 10 µM. Inhibition of IRAK1/4 reduced endothelial activation induced by LPS in vitro as evidenced by attenuated monocyte adhesion to the endothelium. Mechanistically, blockade of IRAK1/4 ameliorated the transcriptional activity of NF-κB. To assess the pharmacological effects of IRAK1/4i on atherosclerosis in vivo, ApoE-/- mice were orally administered IRAK1/4i (20 mg/kg/d) for 8 weeks. We show that IRAK1/4i reduced atherosclerotic lesion size in the aortic sinus and increased hepatic LDLR protein levels as well as lowered LDL-C level, without affecting other lipid parameters or glucose tolerance. Taken together, our findings demonstrate that dual pharmacological inhibition of IRAK1 and IRAK4 attenuates endothelial inflammation, lowers LDL-C levels and reduces atherosclerosis. Our study reinforces the evolving standing of anti-inflammatory approaches in cardiovascular therapeutics.


Asunto(s)
Antiinflamatorios/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Antiinflamatorios/farmacología , Aorta/efectos de los fármacos , Aorta/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Cultivadas , LDL-Colesterol/sangre , LDL-Colesterol/metabolismo , Colágeno/metabolismo , Endotelio Vascular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Lipopolisacáridos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Noqueados para ApoE , FN-kappa B/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptores de LDL/genética , Receptores de LDL/metabolismo , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA