Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(14): e23824, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39012304

RESUMEN

The regenerative ability of limb bones after injury decreases during aging, but whether a similar phenomenon occurs in jawbones and whether autophagy plays a role in this process remain unclear. Through retrospective analysis of clinical data and studies on a mouse model of jawbone defects, we confirmed the presence of delayed or impaired bone regeneration in the jawbones of old individuals and mice. Subsequently, osteoblasts (OBs) derived from mouse jawbones were isolated, showing reduced osteogenesis in senescent osteoblasts (S-OBs). We observed a reduction in autophagy within both aged jawbones and S-OBs. Additionally, pharmacological inhibition of autophagy in normal OBs (N-OBs) led to cell aging and decreased osteogenesis, while autophagic activation reversed the aging phenotype of S-OBs. The activator rapamycin (RAPA) increased the autophagy level and bone regeneration in aged jawbones. Finally, we found that fatty acid-binding protein 3 (FABP3) was degraded by autolysosomes through its interaction with sequestosome 1 (P62/SQSTM1). Autophagy inhibition within senescent jawbones and S-OBs led to the excessive accumulation of FABP3, and FABP3 knockdown partially rescued the decreased osteogenesis in S-OBs and alleviated age-related compromised jawbone regeneration. In summary, we confirmed that autophagy inhibition plays an important role in delaying bone regeneration in aging jawbones. Autophagic activation or FABP3 knockdown can partially rescue the osteogenesis of S-OBs and the regeneration of aging jawbones, providing insight into jawbone aging.


Asunto(s)
Envejecimiento , Autofagia , Regeneración Ósea , Proteínas de Unión a Ácidos Grasos , Osteoblastos , Osteogénesis , Animales , Autofagia/fisiología , Osteoblastos/metabolismo , Ratones , Osteogénesis/fisiología , Envejecimiento/fisiología , Envejecimiento/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Masculino , Humanos , Ratones Endogámicos C57BL , Maxilares , Femenino , Senescencia Celular/fisiología
2.
Chem Soc Rev ; 53(13): 7202-7298, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855863

RESUMEN

The growing global energy demand necessitates the development of renewable energy solutions to mitigate greenhouse gas emissions and air pollution. To efficiently utilize renewable yet intermittent energy sources such as solar and wind power, there is a critical need for large-scale energy storage systems (EES) with high electrochemical performance. While lithium-ion batteries (LIBs) have been successfully used for EES, the surging demand and price, coupled with limited supply of crucial metals like lithium and cobalt, raised concerns about future sustainability. In this context, potassium-ion batteries (PIBs) have emerged as promising alternatives to commercial LIBs. Leveraging the low cost of potassium resources, abundant natural reserves, and the similar chemical properties of lithium and potassium, PIBs exhibit excellent potassium ion transport kinetics in electrolytes. This review starts from the fundamental principles and structural regulation of PIBs, offering a comprehensive overview of their current research status. It covers cathode materials, anode materials, electrolytes, binders, and separators, combining insights from full battery performance, degradation mechanisms, in situ/ex situ characterization, and theoretical calculations. We anticipate that this review will inspire greater interest in the development of high-efficiency PIBs and pave the way for their future commercial applications.

3.
Circulation ; 147(1): 8-19, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36335918

RESUMEN

BACKGROUND: The ISCHEMIA trial (International Study of Comparative Health Effectiveness With Medical and Invasive Approaches) compared an initial invasive versus an initial conservative management strategy for patients with chronic coronary disease and moderate or severe ischemia, with no major difference in most outcomes during a median of 3.2 years. Extended follow-up for mortality is ongoing. METHODS: ISCHEMIA participants were randomized to an initial invasive strategy added to guideline-directed medical therapy or a conservative strategy. Patients with moderate or severe ischemia, ejection fraction ≥35%, and no recent acute coronary syndromes were included. Those with an unacceptable level of angina were excluded. Extended follow-up for vital status is being conducted by sites or through central death index search. Data obtained through December 2021 are included in this interim report. We analyzed all-cause, cardiovascular, and noncardiovascular mortality by randomized strategy, using nonparametric cumulative incidence estimators, Cox regression models, and Bayesian methods. Undetermined deaths were classified as cardiovascular as prespecified in the trial protocol. RESULTS: Baseline characteristics for 5179 original ISCHEMIA trial participants included median age 65 years, 23% women, 16% Hispanic, 4% Black, 42% with diabetes, and median ejection fraction 0.60. A total of 557 deaths accrued during a median follow-up of 5.7 years, with 268 of these added in the extended follow-up phase. This included a total of 343 cardiovascular deaths, 192 noncardiovascular deaths, and 22 unclassified deaths. All-cause mortality was not different between randomized treatment groups (7-year rate, 12.7% in invasive strategy, 13.4% in conservative strategy; adjusted hazard ratio, 1.00 [95% CI, 0.85-1.18]). There was a lower 7-year rate cardiovascular mortality (6.4% versus 8.6%; adjusted hazard ratio, 0.78 [95% CI, 0.63-0.96]) with an initial invasive strategy but a higher 7-year rate of noncardiovascular mortality (5.6% versus 4.4%; adjusted hazard ratio, 1.44 [95% CI, 1.08-1.91]) compared with the conservative strategy. No heterogeneity of treatment effect was evident in prespecified subgroups, including multivessel coronary disease. CONCLUSIONS: There was no difference in all-cause mortality with an initial invasive strategy compared with an initial conservative strategy, but there was lower risk of cardiovascular mortality and higher risk of noncardiovascular mortality with an initial invasive strategy during a median follow-up of 5.7 years. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT04894877.


Asunto(s)
Síndrome Coronario Agudo , Enfermedad de la Arteria Coronaria , Humanos , Femenino , Anciano , Masculino , Tratamiento Conservador , Teorema de Bayes , Enfermedad de la Arteria Coronaria/terapia , Síndrome Coronario Agudo/terapia , Resultado del Tratamiento
4.
J Am Chem Soc ; 146(13): 9163-9171, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38515295

RESUMEN

It remains challenging to obtain a single product in the gas-solid photocatalytic reduction of CO2 because CO and CH4 are usually produced simultaneously. This study presents the design of the I-type nested heterojunction TiO2/BiVO4 with controllable electron transport by modulating the TiO2 component. This study demonstrates that slowing electron transport could enable TiO2/BiVO4-4 to generate CO with 100% selectivity. In addition, modifying TiO2/BiVO4-4 by loading a Cu single atom further increased the CO product yield by 3.83 times (17.33 µmol·gcat-1·h-1), while maintaining 100% selectivity for CO. Characterization and density functional theory (DFT) calculations revealed that the selectivity was mainly determined by the electron transport of the support, whereas CO2 was efficiently adsorbed and activated by the Cu single atom. Such a two-step regulation strategy of combining heterojunction with single atom enhances the possibility of simultaneously obtaining high selectivity and high yield in the photocatalytic reduction of CO2.

5.
Eur J Immunol ; 53(9): e2350386, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37424054

RESUMEN

Cyclic GMP-AMP synthase (cGAS) monitors dsDNA in the cytosol in response to pathogenic invasion or tissue injury, initiating cGAS-STING signaling cascades that regulate various cellular physiologies, including IFN /cytokine production, autophagy, protein synthesis, metabolism, senescence, and distinct types of cell death. cGAS-STING signaling is crucial for host defense and tissue homeostasis; however, its dysfunction frequently leads to infectious, autoimmune, inflammatory, degenerative, and cancerous diseases. Our knowledge regarding the relationships between cGAS-STING signaling and cell death is rapidly evolving, highlighting their essential roles in pathogenesis and disease progression. Nevertheless, the direct control of cell death by cGAS-STING signaling, rather than IFN/NF-κB-mediated transcriptional regulation, remains relatively unexplored. This review examines the mechanistic interplays between cGAS-STING cascades and apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagic/lysosomal cell death. We will also discuss their pathological implications in human diseases, particularly in autoimmunity, cancer, and organ injury scenarios. We hope that this summary will stimulate discussion for further exploration of the complex life-or-death responses to cellular damage mediated by cGAS-STING signaling.


Asunto(s)
Nucleotidiltransferasas , Transducción de Señal , Humanos , Transducción de Señal/fisiología , ADN/metabolismo , Apoptosis
6.
Small ; 20(9): e2306187, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37857586

RESUMEN

Low Coulombic efficiency (CE) and safety issues are huge problems that hinder the practical application of Li metal anodes. Constructing Li host structures decorated with functional species can restrain the growth of Li dendrites and alleviate the great volume change. Here, a 3D porous carbonaceous skeleton modified with rich lithiophilic groups (Zn, ZnO, and Zn(CN)2 ) is synthesized as a Li host via one-step carbonization of a triazole-containing metal-organic framework. The nano lithiophilic groups serve as preferred sites for Li nucleation and growth, regulating a uniform Li+ flux and uniform current density distribution. In addition, the 3D porous network functions as a Li reservoir that provides rich internal space to store Li, thus alleviating the volumetric expansion during Li plating/stripping process. Thanks to these component and structural merits, an ultra-low overpotential for Li deposition is achieved, together with high CE of over 99.5% for more than 500 cycles at 1 mA cm-2 and 1 mAh cm-2 in half cells. The symmetric cells exhibit a prolonged cycling of 900 h at 1 mA cm-2 . The full cells by coupling Zn/ZnO/Zn(CN)2 @C-Li anode with LiFePO4 cathode deliver a high capacity retention of 94.3% after 200 cycles at 1 C.

7.
Small ; : e2311966, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770995

RESUMEN

Wood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot-pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid-water mixture enables the densification of tube-line wood cells into layer-by-layer sheet structures without hot-pressing. The natural capillary force induces self-densification in a simple drying process resulting in a transparent wood film. The as-prepared films with ≈150 µm thickness possess an optical transmittance ≈70%, while maintaining optical haze >95%. Due to the densely packed sheet structure with a large interfacial area, the reassembled wood film is fivefold stronger and stiffer than the delignified wood in fiber direction. Owing to a low density, the specific tensile strength and elastic modulus are as high as 282 MPa cm3 g-1 and 31 GPa cm3 g-1. A facile and highly energy efficient wood nanotechnology approach are demonstrated toward more sustainable materials and processes by directly converting delignified wood into transparent wood omitting polymeric matrix infiltration or mechanical pressing.

8.
Environ Res ; 245: 118039, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38147919

RESUMEN

RATIONALE: Air pollution and extreme temperature and humidity are risk factors for lung dysfunction, but their interactions are not clearly understood. OBJECTIVES: To assess the impact of exposure to air pollutants and meteorological factors on lung function, and the contribution of their interaction to the overall effect. METHODS: The peak expiratory flow rates of 135 participants were repeatedly measured during up to four visits. Two weeks before each visit, the concentrations of gaseous pollutants and 19 fine particle components, and the temperature and relative humidity, were continuously monitored in the community where they lived. A Bayesian Kernel machine regression model was used to explore the non-linear exposure-response relationships of the peak expiratory flow rate with pollutant exposure and meteorological factors, and their interactions. MEASUREMENTS AND MAIN RESULTS: Increased temperature and relative humidity could exacerbate pollutant-associated decline in the peak expiratory flow rate, although their associations with lung dysfunction disappeared after adjustment for pollutant exposure. For example, declines of peak expiratory flow rate associated with interquartile range increase of 3-day cadmium exposure were -0.03 and -0.07 units, when temperature was at 0.1 and 19.5 °C, respectively. Decreased temperature were associated with declines of peak expiratory flow rate after adjustment for pollutant exposure, and had interaction with pollutant exposure on lung dysfunction. CONCLUSIONS: High temperature, low temperature, and high humidity were all high-risk factors for lung dysfunction, and their interactions with pollutant levels contributed greatly to the overall effects.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Humanos , Anciano , Humedad , Temperatura , Teorema de Bayes , Material Particulado/toxicidad , Material Particulado/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Pulmón/química
9.
Arch Insect Biochem Physiol ; 115(1): e22069, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288499

RESUMEN

Sodium pyruvate is a natural metabolite commonly used in biological fields, including cell culture. This study investigated the effects of sodium pyruvate on the lifespan and other physiological characters of Drosophila melanogaster, by measuring feeding, fecundity, and spontaneous activity. The results indicated that 0.2 mol/L of sodium pyruvate increased the median lifespan of female flies by 8.33%. Moreover, the group sleep duration of female flies significantly increased by 53.98% when exposed to the sodium pyruvate concentration. However, the intake of sodium pyruvate did not significantly affect the fecundity or food intake of female flies. Our results also show that the effect of extending lifespan and increasing sleep time was dose-dependent and sex-specific. Our data provides the role of sodium pyruvate as an insect culture additive by enhancing survival.


Asunto(s)
Drosophila , Longevidad , Masculino , Femenino , Animales , Drosophila melanogaster/fisiología , Dieta , Suplementos Dietéticos , Sueño , Piruvatos/farmacología , Sodio/farmacología
10.
Appl Microbiol Biotechnol ; 108(1): 302, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639796

RESUMEN

Alternative splicing (AS) greatly expands the protein diversity in eukaryotes. Although AS variants have been frequently reported existing in filamentous fungi, it remains unclear whether lignocellulose-degrading enzyme genes in industrially important fungi undergo AS events. In this work, AS events of lignocellulose-degrading enzymes genes in Aspergillus niger under two carbon sources (glucose and wheat straw) were investigated by RNA-Seq. The results showed that a total of 23 out of the 56 lignocellulose-degrading enzyme genes had AS events and intron retention was the main type of these AS events. The AS variant enzymes from the annotated endo-ß-1,4-xylanase F1 gene (xynF1) and the endo-ß-1,4-glucanase D gene (eglD), noted as XYNF1-AS and EGLD-AS, were characterized compared to their normal splicing products XYNF1 and EGLD, respectively. The AS variant XYNF1-AS displayed xylanase activity whereas XYNF1 did not. As for EGLD-AS and EGLD, neither of them showed annotated endo-ß-1,4-glucanase activity. Instead, both showed lytic polysaccharide monooxygenase (LPMO) activity with some differences in catalytic properties. Our work demonstrated that the AS variants in A. niger were good sources for discovering novel lignocellulose-degrading enzymes. KEY POINTS: • AS events were identified in the lignocellulose-degrading enzyme genes of A. niger. • New ß-1,4-xylanase and LPMO derived from AS events were characterized.


Asunto(s)
Empalme Alternativo , Aspergillus niger , Aspergillus niger/metabolismo , Lignina/metabolismo
11.
Int J Clin Pharmacol Ther ; 62(1): 1-7, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37969092

RESUMEN

BACKGROUND: Failure to achieve target concentrations of ß-lactam antibiotics is not uncommon despite administration of high doses. The objective of this study was to identify risk factors predicting non-attainment of ß-lactams target concentration in critically ill patients receiving meropenem as an intravenous infusion. MATERIALS AND METHODS: The retrospective study included adult patients receiving meropenem by intravenous infusion and undergoing therapeutic drug monitoring (TDM) in the intensive care units (ICU) at Nanjing First Hospital. Blood samples were analyzed using UPLC-MS. Potential risk factors were evaluated by correlating them with meropenem trough concentrations (Cmin) lower than the targeted concentration (the minimum inhibitory concentration (MIC)). RESULTS: Non-attainment of target concentrations was observed in 41 patients (19.5%) of the 210 patients examined. Predictors for non-attainment using multivariate logistic regression analysis were: age (p = 0.013), dosage (p = 0.042), augmented renal clearance (ARC), (p = 0.041). CONCLUSION: In addition to the expected risk factors (age and dosage), ARC was a predictor for non-attainment of the target concentration. The risk of non-attainment of target concentrations increased with an increase in creatinine clearance. Attention should be given to ARC and creatinine clearance when administering meropenem by intravenous infusion.


Asunto(s)
Antibacterianos , Enfermedad Crítica , Adulto , Humanos , Meropenem , Antibacterianos/efectos adversos , Enfermedad Crítica/terapia , Estudios Retrospectivos , Creatinina , Cromatografía Liquida , Espectrometría de Masas en Tándem
12.
Metab Brain Dis ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995495

RESUMEN

Increasing evidences implicate vital role of neuronal damage in the development of hepatic encephalopathy (HE). Neurofilament light chain (NfL) is the main frame component of neurons and is closely related to axonal radial growth and neuronal structural stability. We hypothesized that NfL as a biomarker of axonal injury may contribute to early diagnosis of HE. This study recruited 101 patients with liver cirrhosis, 10 healthy individuals, and 7 patients with Parkinson's disease. Minimal hepatic encephalopathy (MHE) was diagnosed using psychometric hepatic encephalopathy score. Serum NfL levels were measured by the electrochemiluminescence immunoassay. Serum NfL levels in cirrhotic patients with MHE were significantly higher than cirrhotic patients without MHE, and increased accordingly with the aggravation of HE. Serum NfL levels were associated with psychometric hepatic encephalopathy score, Child-Pugh score, model for end-stage liver disease score, and days of hospitalization. Additionally, serum NfL was an independent predictor of MHE (odds ratio of 1.020 (95% CI 1.005-1.034); P = 0.007). The discriminative abilities of serum NfL were high for identifying MHE (AUC of 0.8134 (95% CI 0.7130-0.9219); P ˂ 0.001) and OHE (AUC of 0.8852 (95% CI 0.8117-0.9587); P ˂ 0.001). Elevated serum NfL levels correlated with the presence of MHE and associated with the severity of HE, are expected to be a biomarker in patients with cirrhosis. Our study suggested that neuronal damage may play a critical role in the development of HE.

13.
Ecotoxicol Environ Saf ; 277: 116361, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663189

RESUMEN

Soil heavy metal contamination has become a global environmental issue, which threaten soil quality, food security and human health. Symphytum officinale L. have exhibited high tolerance and restoration capacity to heavy metals (HMs) stress. However, little is known about the mechanisms of HMs in S. officinale. In this study, transcriptomic and physiological changes of S. officinale response to different HMs (Pb, Cd and Zn) were analyzed and investigated the key genes and pathways involved in HMs uptake patterns. The results showed that phenotypic effects are not significant, and antioxidant enzyme activities were all upregulated. Transcriptome analysis indicated that 1247 differential genes were up-regulated, and 1963 differential genes were down-regulated under Cd stress, while 3752 differential genes were up-regulated, and 7197 differential genes were down-regulated under Pb stress; and 527 differential genes were up-regulated; and 722 differential genes were down-regulated under Zn stress. Based on their expression, we preliminarily speculate that different HMs resistance of S. officinale may be regulated by the differential expression of key genes. These results provide a theoretical basis for determining the exact expression of genes in plants under different heavy metal stress, the processes involved molecular pathways, and how they can be efficiently utilized to improve plant tolerance to toxic metals and improve phytoremediation efficiency.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Transcriptoma , Metales Pesados/toxicidad , Contaminantes del Suelo/toxicidad , Transcriptoma/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Plomo/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Cadmio/toxicidad , Perfilación de la Expresión Génica , Biodegradación Ambiental , Zinc/toxicidad
14.
Nano Lett ; 23(20): 9594-9601, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844201

RESUMEN

Rechargeable potassium-ion batteries (PIBs) are regarded as potential substitutes for industrial lithium-ion batteries in large scale energy storage systems due to the world's abundant potassium supplies. Althogh cobalt hexacyanocobaltate (CoHCC) exhibits broad potential as a PIB anode material, its performance is currently unsatisfactory. Herein, novel 5 nm scale ultrathin CoHCC nanosheet-assembled nanoboxes with interspersed carbon nanotubes (CNTs/CoHCC nanoboxes) are fabricated to realize a highly reactive PIB anode. The ultrathin CoHCC layers substantially accelerate electron conduction and provide numerous active sites, while the connected CNTs provide fast axial electron transport. Consequently, the optimized anode exhibits a remarkable discharge capacity of 580.9 mAh g-1 at 0.1 A g-1 and long-term stability with 71.3% retention over 1000 cycles. In situ and ex situ characterizations and density functional theory calculations are further employed to elucidate the K+ storage process and the reason for the enhanced performance of the CNTs/CoHCC nanoboxes.

15.
Nano Lett ; 23(2): 694-700, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36629141

RESUMEN

Layered transition-metal (TM) oxides have drawn ever-growing interest as positive electrode materials in potassium-ion batteries (PIBs). Nevertheless, the practical implementation of these positive electrode materials is seriously hampered by their inferior cyclic property and rate performance. Reported here is a self-templating strategy to prepare homogeneous P2-K0.6CoO2 (KCO) microcubes. Benefiting from the unusual microcube architecture, the interface between the electrolyte and the active material is considerably diminished. As a result, the KCO microcubes manifest boosted electrochemical properties for potassium storage including large reversible capacity (87.2 mAh g-1 under 20 mA g-1), superior rate performance, and ultralong cyclic steady (an improved capacity retention of 86.9% under 40 mA g-1 after 1000 cycles). More importantly, the fabrication approach can be effectively extended to prepare other layered TM oxide (P3-K0.5MnO2, P3-K0.5Mn0.8Fe0.2O2, P2-K0.6Co0.67Mn0.33O2, and P2-K0.6Co0.66Mn0.17Ni0.17O2) microcubes and nonlayered TM oxide (KFeO2) microcubes.

16.
J Environ Manage ; 359: 120975, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677230

RESUMEN

Microplastics, as a pivotal concern within plastic pollution, have sparked widespread apprehension due to their ubiquitous presence. Recent research indicates that these minuscule plastic particles may exert discernible effects on the locomotor capabilities and behavior of insect larvae. This study focuses on the impact of polystyrene microplastics (PS-MPs) on the behavior of Drosophila melanogaster larvae, utilizing fruit flies as a model organism. Kinematic analysis methods were employed to assess and extrapolate the toxic effects of PS-MPs on the larvae. Drosophila larvae were exposed to varying concentrations (Control, 0.1 g/L, 1 g/L, 10 g/L, 20 g/L) of 5 µm PS-MPs during their developmental stages. The study involved calculating and evaluating parameters such as the proportion of larvae reaching the edge, distance covered, velocity, and angular velocity within a 5-min timeframe. Across different concentrations, Drosophila larvae exhibit differential degrees of impaired motor function and disrupted locomotor orientation. The proportion of larvae reaching the edge decreased, velocity significantly declined, and angular velocity exhibited a notable increase. These findings strongly suggest that when exposed to a PS-MPs environment, Drosophila larvae exhibit slower movement, increased angular rotation per unit time, leading to a reduction in the proportion of larvae reaching the edge. The altered behavior of Drosophila larvae implies potential damage of microplastics on insect larvae development and activity, consequently impacting the ecosystem and prompting heightened scrutiny regarding microplastics.


Asunto(s)
Conducta Animal , Drosophila melanogaster , Larva , Aprendizaje Automático , Microplásticos , Poliestirenos , Animales , Microplásticos/toxicidad , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Poliestirenos/toxicidad , Conducta Animal/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Drosophila/efectos de los fármacos
17.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(1): 64-72, 2024 Jan 19.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38426692

RESUMEN

Hepatocellular carcinoma (HCC) is a serious neoplastic disease with increasing incidence and mortality, accounting for 90% of all liver cancers. Hepatitis viruses are the major causative agents in the development of HCC. Hepatitis A virus (HAV) primarily causes acute infections, which is associated with HCC to a certain extent, as shown by clinicopathological studies. Chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infections lead to persistent liver inflammation and cirrhosis, disrupt multiple pathways associated with cellular apoptosis and proliferation, and are the most common viral precursors of HCC. Mutations in the HBV X protein (HBx) gene are closely associated with the incidence of HCC, while the expression of HCV core proteins contributes to hepatocellular lipid accumulation, thereby promoting tumorigenesis. In the clinical setting, hepatitis D virus (HDV) frequently co-infects with HBV, increasing the risk of chronic hepatitis. Hepatitis E virus (HEV) usually causes acute infections. However, chronic infections of HEV have been increasing recently, particularly in immuno-compromised patients and organ transplant recipients, which may increase the risk of progression to cirrhosis and the occurrence of HCC. Early detection, effective intervention and vaccination against these viruses may significantly reduce the incidence of liver cancer, while mechanistic insights into the interplay between hepatitis viruses and HCC may facilitate the development of more effective intervention strategies. This article provides a comprehensive overview of hepatitis viruses and reviews recent advances in research on aberrant hepatic immune responses and the pathogenesis of HCC due to viral infection.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Hepatitis B , Hepatitis C , Hepatitis Viral Humana , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Hepatitis B Crónica/complicaciones , Hepatitis B/complicaciones , Hepatitis Viral Humana/complicaciones , Hepatitis C/complicaciones , Cirrosis Hepática/complicaciones
18.
Angew Chem Int Ed Engl ; 63(28): e202405648, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38660735

RESUMEN

The interfacial electric field (IEF) in the heterostructure can accelerate electron transport and ion migration, thereby enhancing the electrochemical performance of potassium-ion batteries (PIBs). Nevertheless, the quantification and modulation of the IEF for high-efficiency PIB anodes currently remains a blank slate. Herein, we achieve for the first time the quantification and tuning of IEF via amorphous carbon-coated undifferentiated cobalt-doped FeSe/Fe3Se4 heterostructure (denoted UN-CoFe4Se5/C) for efficient potassium storage. Co doping can increase the IEF in FeSe/Fe3Se4, thereby improving the electron transport, promoting the potassium adsorption capacity, and lowering the diffusion barrier. As expected, the IEF magnitude in UN-CoFe4Se5/C is experimentally quantified as 62.84 mV, which is 3.65 times larger than that of amorphous carbon-coated FeSe/Fe3Se4 heterostructure (Fe4Se5/C). Benefiting from the strong IEF, UN-CoFe4Se5/C as a PIB anode exhibits superior rate capability (145.8 mAh g-1 at 10.0 A g-1) and long cycle lifespan (capacity retention of 95.1 % over 3000 cycles at 1.0 A g-1). Furthermore, this undifferentiated doping strategy can universally regulate the IEF magnitude in CoSe2/Co9Se8 and FeS2/Fe7S8 heterostructures. This work can provide fundamental insights into the design of advanced PIB electrodes.

19.
Angew Chem Int Ed Engl ; : e202409145, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869085

RESUMEN

Metal hexacyanoferrates (HCFs) are regarded as promising cathode materials for potassium-ion batteries (PIBs) on account of their low cost and high energy density. However, the difficult-to-remove [Fe(CN)6] vacancies and crystal water lead to structural instability and capacity deterioration as well as the stereotype of poor thermostability of conventional HCFs. Herein, we report (100) face-oriented potassium magnesium hexacyanoferrate (KMgHCF) nanoplates with low [Fe(CN)6] vacancies and high crystallinity, enabling thermostability up to 550 °C, high-temperature carbon coating and crystal water elimination. The as-obtained KMgHCF/C nanoplates exhibit superior potassium storage properties, including a large reversible capacity of 84.6 mAh g-1, a high voltage plateau of 3.87 V, excellent long-term cycling performance over 15000 cycles and high rate capability at 5 A g-1. The unprecedented cycling stability of KMgHCF/C is attributed to the synergistic effect of a highly reversible two-phase reaction, low [Fe(CN)6] vacancies and no crystal water, a specially exposed steady (100) surface, and a protective carbon coating. This work provides a new material selection and modification strategy for the practical application of HCFs in PIBs.

20.
Hum Brain Mapp ; 44(17): 5749-5769, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683097

RESUMEN

Attention deficit is a critical symptom that impairs social functioning in adolescents with major depressive disorder (MDD). In this study, we aimed to explore the dynamic neural network activity associated with attention deficits and its relationship with clinical outcomes in adolescents with MDD. We included 188 adolescents with MDD and 94 healthy controls. By combining psychophysics, resting-state electroencephalography (EEG), and functional magnetic resonance imaging (fMRI) techniques, we aimed to identify dynamic network features through the investigation of EEG microstate characteristics and related temporal network features in adolescents with MDD. At baseline, microstate analysis revealed that the occurrence of Microstate C in the patient group was lower than that in healthy controls, whereas the duration and coverage of Microstate D increased in the MDD group. Mediation analysis revealed that the probability of transition from Microstate C to D mediated anhedonia and attention deficits in the MDD group. fMRI results showed that the temporal variability of the dorsal attention network (DAN) was significantly weaker in patients with MDD than in healthy controls. Importantly, the temporal variability of DAN mediated the relationship between anhedonia and attention deficits in the patient group. After acute-stage treatment, the response prediction group (RP) showed improvement in Microstates C and D compared to the nonresponse prediction group (NRP). For resting-state fMRI data, the temporal variability of DAN was significantly higher in the RP group than in the NRP group. Overall, this study enriches our understanding of the neural mechanisms underlying attention deficits in patients with MDD and provides novel clinical biomarkers.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Adolescente , Trastorno Depresivo Mayor/diagnóstico por imagen , Anhedonia , Electroencefalografía , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Encéfalo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA