Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(5): e1010691, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37200372

RESUMEN

Replication protein A (RPA) is a heterotrimeric complex and the major single-strand DNA (ssDNA) binding protein in eukaryotes. It plays important roles in DNA replication, repair, recombination, telomere maintenance, and checkpoint signaling. Because RPA is essential for cell survival, understanding its checkpoint signaling function in cells has been challenging. Several RPA mutants have been reported previously in fission yeast. None of them, however, has a defined checkpoint defect. A separation-of-function mutant of RPA, if identified, would provide significant insights into the checkpoint initiation mechanisms. We have explored this possibility and carried out an extensive genetic screen for Rpa1/Ssb1, the large subunit of RPA in fission yeast, looking for mutants with defects in checkpoint signaling. This screen has identified twenty-five primary mutants that are sensitive to genotoxins. Among these mutants, two have been confirmed partially defective in checkpoint signaling primarily at the replication fork, not the DNA damage site. The remaining mutants are likely defective in other functions such as DNA repair or telomere maintenance. Our screened mutants, therefore, provide a valuable tool for future dissection of the multiple functions of RPA in fission yeast.


Asunto(s)
Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Replicación del ADN/genética , Daño del ADN/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Reparación del ADN/genética , ADN de Cadena Simple/metabolismo
2.
Breast Cancer Res ; 26(1): 27, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347651

RESUMEN

BACKGROUND: A malignancy might be found at surgery in cases of atypical ductal hyperplasia (ADH) diagnosed via US-guided core needle biopsy (CNB). The objective of this study was to investigate the diagnostic performance of contrast-enhanced ultrasound (CEUS) in predicting ADH diagnosed by US-guided CNB that was upgraded to malignancy after surgery. METHODS: In this retrospective study, 110 CNB-diagnosed ADH lesions in 109 consecutive women who underwent US, CEUS, and surgery between June 2018 and June 2023 were included. CEUS was incorporated into US BI-RADS and yielded a CEUS-adjusted BI-RADS. The diagnostic performance of US BI-RADS and CEUS-adjusted BI-RADS for ADH were analyzed and compared. RESULTS: The mean age of the 109 women was 49.7 years ± 11.6 (SD). The upgrade rate of ADH at CNB was 48.2% (53 of 110). The sensitivity, specificity, positive predictive value, and negative predictive value of CEUS for identification of malignant upgrading were 96.2%, 66.7%,72.9%, and 95.0%, respectively, based on BI-RADS category 4B threshold. The two false-negative cases were low-grade ductal carcinoma in situ. Compared with the US, CEUS-adjusted BI-RADS had better specificity for lesions smaller than 2 cm (76.7% vs. 96.7%, P = 0.031). After CEUS, 16 (10 malignant and 6 nonmalignant) of the 45 original US BI-RADS category 4A lesions were up-classified to BI-RADS 4B, and 3 (1 malignant and 2 nonmalignant) of the 41 original US BI-RADS category 4B lesions were down-classified to BI-RADS 4A. CONCLUSIONS: CEUS is helpful in predicting malignant upgrading of ADH, especially for lesions smaller than 2 cm and those classified as BI-RADS 4A and 4B on ultrasound.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Femenino , Humanos , Persona de Mediana Edad , Carcinoma Intraductal no Infiltrante/diagnóstico por imagen , Ultrasonografía Mamaria , Estudios Retrospectivos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Biopsia con Aguja Gruesa
3.
BMC Plant Biol ; 23(1): 118, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36849930

RESUMEN

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) have a positive effect on drought tolerance of plants after establishing reciprocal resymbiosis with roots, while the underlying mechanism is not deciphered. Metabolomics can explain the mechanism of plant response to environmental stress by analyzing the changes of all small molecular weight metabolites. The purpose of this study was to use Ultra High Performance Liquid Chromatography Q Exactive Mass Spectrometer to analyze changes in root metabolites of walnut (Juglans regia) after inoculation with an arbuscular mycorrhizal fungus Diversispora spurca under well-watered (WW) and drought stress (DS). RESULTS: Sixty days of soil drought significantly inhibited root mycorrhizal colonization rate, shoot and root biomass production, and leaf water potential in walnut, while AMF inoculation significantly increased biomass production and leaf water potential, accompanied by a higher increase magnitude under DS versus under WW. A total of 3278 metabolites were identified. Under WW, AMF inoculation up-regulated 172 metabolites and down-regulated 61 metabolites, along with no changes in 1104 metabolites. However, under DS, AMF inoculation up-regulated 49 metabolites and down-regulated 116 metabolites, coupled with no changes in 1172 metabolites. Among them, juglone (a quinone found in walnuts) as the first ranked differential metabolite was up-regulated by AMF under WW but not under DS; 2,3,5-trihydroxy-5-7-dimethoxyflavanone as the first ranked differential metabolite was increased by AMF under DS but not under WW. The KEGG annotation showed a large number of metabolic pathways triggered by AMF, accompanied by different metabolic pathways under WW and DS. Among them, oxidative phosphorylation and phenylalanine metabolism and biosynthesis were triggered by AMF in response to WW and DS, where N-acetyl-L-phenylalanine was induced by AMF to increase under DS, while decreasing under WW. CONCLUSION: This study provides new insights into the metabolic mechanisms of mycorrhiza-enhanced drought tolerance in walnuts.


Asunto(s)
Juglans , Micorrizas , Sequías , Metabolómica , Resistencia a la Sequía
4.
Phys Rev Lett ; 131(25): 256002, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38181352

RESUMEN

The Fe_{4}Se_{5} with a sqrt[5]×sqrt[5] Fe vacancy order is suggested to be a Mott insulator and the parent state of bulk FeSe superconductor. The iron vacancy ordered state has been considered as a Mott insulator and the parent compound of bulk FeSe-based superconductors. However, for the superconducting FeSe/SrTiO_{3} monolayer (FeSe/STO) with an interface-enhanced high transition temperature (T_{c}), the electronic evolution from its Fe vacancy ordered parent phase to the superconducting state, has not been explored due to the challenge to realize an Fe vacancy order in the FeSe/STO monolayer, even though important to the understanding of superconductivity mechanism. In this study, we developed a new method to generate Fe vacancies within the FeSe/STO monolayer in a tunable fashion, with the assistance of atomic hydrogen. As a consequence, an insulating sqrt[5]×sqrt[5] Fe vacancy ordered monolayer is realized as the parent state. By using scanning tunneling microscopy and scanning tunneling spectroscopy, the spectral evolution from superconductivity to insulator is fully characterized. Surprisingly, a prominent spectral weight transfer occurs, thus implying a strong electron correlation effect. Moreover, the Fe vacancy induced insulating gap exhibits no Mott gap-like features. This work provides new insights in understanding the high-T_{c} superconductivity in FeSe/STO monolayer.

5.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175973

RESUMEN

The heterotrimeric Tel2-Tti1-Tti2 or TTT complex is essential for cell viability and highly observed in eukaryotes. As the co-chaperone of ATR, ATM, DNA-PKcs, mTOR, SMG1, and TRRAP, the phosphatidylinositol 3-kinase-related kinases (PIKKs) and a group of large proteins of 300-500 kDa, the TTT plays crucial roles in genome stability, cell proliferation, telomere maintenance, and aging. Most of the protein kinases in the kinome are targeted by co-chaperone Cdc37 for proper folding and stability. Like Cdc37, accumulating evidence has established the mechanism by which the TTT interacts with chaperone Hsp90 via R2TP (Rvb1-Rvb2-Tah1-Pih1) complex or other proteins for co-translational maturation of the PIKKs. Recent structural studies have revealed the α-solenoid structure of the TTT and its interactions with the R2TP complex, which shed new light on the co-chaperone mechanism and provide new research opportunities. A series of mutations of the TTT have been identified that cause disease syndrome with neurodevelopmental defects, and misregulation of the TTT has been shown to contribute to myeloma, colorectal, and non-small-cell lung cancers. Surprisingly, Tel2 in the TTT complex has recently been found to be a target of ivermectin, an antiparasitic drug that has been used by millions of patients. This discovery provides mechanistic insight into the anti-cancer effect of ivermectin and thus promotes the repurposing of this Nobel-prize-winning medicine for cancer chemotherapy. Here, we briefly review the discovery of the TTT complex, discuss the recent studies, and describe the perspectives for future investigation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Proteínas HSP90 de Choque Térmico/metabolismo , Ivermectina , Chaperonas Moleculares/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
6.
FEMS Yeast Res ; 22(1)2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262697

RESUMEN

Schizosaccharomyces pombe is an established yeast model for studying the cellular mechanisms conserved in humans, such as the DNA replication checkpoint. The replication checkpoint deals with replication stress caused by numerous endogenous and exogenous factors that perturb fork movement. If undealt with, perturbed forks collapse, causing chromosomal DNA damage or cell death. Hydroxyurea (HU) is an inhibitor of ribonucleotide reductase (RNR) commonly used in checkpoint studies. It produces replication stress by depleting dNTPs, which slows the movement of ongoing forks and thus activates the replication checkpoint. However, HU also causes side effects such as oxidative stress, particularly under chronic exposure conditions, which complicates the studies. To find a drug that generates replication stress more specifically, we tested three other RNR inhibitors gemcitabine, guanazole and triapine in S. pombe under various experimental conditions. Our results show that guanazole and triapine can produce replication stress more specifically than HU under chronic, not acute drug treatment conditions. Therefore, using the two drugs in spot assay, the method commonly used for testing drug sensitivity in yeasts, should benefit the checkpoint studies in S. pombe and likely the research in other model systems.


Asunto(s)
Ribonucleótido Reductasas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/metabolismo , Replicación del ADN , Desoxicitidina/análogos & derivados , Inhibidores Enzimáticos/metabolismo , Guanazol , Humanos , Hidroxiurea/farmacología , Piridinas , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Ribonucleótido Reductasas/farmacología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Tiosemicarbazonas , Gemcitabina
7.
Curr Genet ; 67(3): 369-382, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33427950

RESUMEN

DNA replication checkpoint is a cell signaling pathway that is activated in response to perturbed replication. Although it is crucial for maintaining genomic integrity and cell survival, the exact mechanism of the checkpoint signaling remains to be understood. Emerging evidence has shown that RecQ helicases, a large family of helicases that are conserved from bacteria to yeasts and humans, contribute to the replication checkpoint as sensors, adaptors, or regulation targets. Here, we highlight the multiple functions of RecQ helicases in the replication checkpoint in four model organisms and present additional evidence that fission yeast RecQ helicase Rqh1 may participate in the replication checkpoint as a sensor.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , ADN Helicasas/genética , Replicación del ADN/genética , RecQ Helicasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Humanos , Schizosaccharomyces/genética , Transducción de Señal/genética
8.
Nano Lett ; 20(11): 8408-8414, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33064495

RESUMEN

The interfacial charge transfer from the substrate may influence the electronic structure of the epitaxial van der Waals (vdW) monolayers and, thus, their further technological applications. For instance, the freestanding Sb monolayer in the puckered honeycomb phase (α-antimonene), the structural analogue of black phosphorene, was predicted to be a semiconductor, but the epitaxial one behaves as a gapless semimetal when grown on the Td-WTe2 substrate. Here, we demonstrate that interface engineering can be applied to tune the interfacial charge transfer and, thus, the electron band of the epitaxial monolayer. As a result, the nearly freestanding (semiconducting) α-antimonene monolayer with a band gap of ∼170 meV was successfully obtained on the SnSe substrate. Furthermore, a semiconductor-semimetal crossover is observed in the bilayer α-antimonene. This study paves the way toward modifying the electron structure in two-dimensional vdW materials through interface engineering.

10.
Phys Rev Lett ; 123(20): 206405, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31809103

RESUMEN

Metallization of 1T-TaS_{2} is generally initiated at the domain boundary of a charge density wave (CDW), at the expense of its long-range order. However, we demonstrate in this study that the metallization of 1T-TaS_{2} can be also realized without breaking the long-range CDW order upon surface alkali doping. By using scanning tunneling microscopy, we find the long-range CDW order is always persisting, and the metallization is instead associated with additional in-gap excitations. Interestingly, the in-gap excitation is near the top of the lower Hubbard band, in contrast to a conventional electron-doped Mott insulator where it is beneath the upper Hubbard band. In combination with the numerical calculations, we suggest that the appearance of the in-gap excitations near the lower Hubbard band is mainly due to the effectively reduced on-site Coulomb energy by the adsorbed alkali ions.

11.
J Biol Chem ; 292(22): 9088-9103, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28377506

RESUMEN

Hydroxyurea (HU) has a long history of clinical and scientific use as an antiviral, antibacterial, and antitumor agent. It inhibits ribonucleotide reductase and reversibly arrests cells in S phase. However, high concentrations or prolonged treatment with low doses of HU can cause cell lethality. Although the cytotoxicity of HU may significantly contribute to its therapeutic effects, the underlying mechanisms remain poorly understood. We have previously shown that HU can induce cytokinesis arrest in the erg11-1 mutant of fission yeast, which has a partial defect in the biosynthesis of fungal membrane sterol ergosterol. Here, we report the identification of a new mutant in heme biosynthesis, hem13-1, that is hypersensitive to HU. We found that the HU hypersensitivity of the hem13-1 mutant is caused by oxidative stress and not by replication stress or a defect in cellular response to replication stress. The mutation is hypomorphic and causes heme deficiency, which likely sensitizes the cells to the HU-induced oxidative stress. Because the heme biosynthesis pathway is highly conserved in eukaryotes, this finding, as we show in our separate report, may help to expand the therapeutic spectrum of HU to additional pathological conditions.


Asunto(s)
Hemo/biosíntesis , Hidroxiurea/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Hemo/genética , Mutación , Estrés Oxidativo/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-28893786

RESUMEN

We have previously reported that an erg11 mutation affecting ergosterol synthesis and a hem13 mutation in the heme synthesis pathway significantly sensitize the fission yeast Schizosaccharomyces pombe to hydroxyurea (HU) (1, 2). Here we show that treatment with inhibitors of Erg11 and heme biosynthesis phenocopies the two mutations in sensitizing wild-type cells to HU. Importantly, HU synergistically interacts with the heme biosynthesis inhibitor sampangine and several Erg11 inhibitors, the antifungal azoles, in causing cell lethality. Since the synergistic drug interactions are also observed in the phylogenetically divergent Saccharomyces cerevisiae and the opportunistic fungal pathogen Candida albicans, the synergism is likely conserved in eukaryotes. Interestingly, our genetic data for S. pombe has also led to the discovery of a robust synergism between sampangine and the azoles in C. albicans Thus, combinations of HU, sampangine, and the azoles can be further studied as a new method for the treatment of fungal infections.


Asunto(s)
Alcaloides/farmacología , Antifúngicos/farmacología , Azoles/farmacología , Inhibidores Enzimáticos/farmacología , Hidroxiurea/farmacología , Schizosaccharomyces/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Coproporfirinógeno Oxidasa/genética , Sistema Enzimático del Citocromo P-450/genética , Citocinesis/efectos de los fármacos , Sinergismo Farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Pruebas de Sensibilidad Microbiana , Naftiridinas , Ribonucleótido Reductasas/antagonistas & inhibidores , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética
14.
World J Stem Cells ; 16(2): 114-125, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38455108

RESUMEN

Human pluripotent stem cell (hPSC)-derived kidney organoids share similarities with the fetal kidney. However, the current hPSC-derived kidney organoids have some limitations, including the inability to perform nephrogenesis and lack of a corticomedullary definition, uniform vascular system, and coordinated exit pathway for urinary filtrate. Therefore, further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development, regeneration, disease modeling, and drug screening. In this review, we discussed recent advances in the generation of hPSC-derived kidney organoids, how these organoids contribute to the understanding of human kidney development and research in disease modeling. Additionally, the limitations, future research focus, and applications of hPSC-derived kidney organoids were highlighted.

15.
Nat Commun ; 15(1): 4784, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839772

RESUMEN

Two-dimensional topological insulators hosting the quantum spin Hall effect have application potential in dissipationless electronics. To observe the quantum spin Hall effect at elevated temperatures, a wide band gap is indispensable to efficiently suppress bulk conduction. Yet, most candidate materials exhibit narrow or even negative band gaps. Here, via elegant control of van der Waals epitaxy, we have successfully grown monolayer ZrTe5 on a bilayer graphene/SiC substrate. The epitaxial ZrTe5 monolayer crystalizes in two allotrope isomers with different intralayer alignments of ZrTe3 prisms. Our scanning tunneling microscopy/spectroscopy characterization unveils an intrinsic full band gap as large as 254 meV and one-dimensional edge states localized along the periphery of the ZrTe5 monolayer. First-principles calculations further confirm that the large band gap originates from strong spin-orbit coupling, and the edge states are topologically nontrivial. These findings thus provide a highly desirable material platform for the exploration of the high-temperature quantum spin Hall effect.

16.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-38188419

RESUMEN

Ribonucleotide reductase (RNR) is essential for the biosynthesis of dNTPs and a therapeutic target. We have identified a missense mutation in suc22 , which encodes the small subunit of RNR in fission yeast. The suc22-S239F mutation significantly sensitizes the cells to chronic but not acute treatment with the RNR inhibitor hydroxyurea. Preliminary data indicate that the drug sensitivity is likely due to decreased RNR activity. Since S239F is the first missense mutation reported for suc22 and the mutated residue is highly conserved, the results will be useful for future yeast genetic studies and potentially, the development of new therapeutics targeting RNR.

17.
bioRxiv ; 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945624

RESUMEN

Replication protein A (RPA) is a heterotrimeric complex and the major single-strand DNA (ssDNA) binding protein in eukaryotes. It plays important roles in DNA replication, repair, recombination, telomere maintenance, and checkpoint signaling. Because RPA is essential for cell survival, understanding its checkpoint signaling function in cells has been challenging. Several RPA mutants have been reported previously in fission yeast. None of them, however, has a defined checkpoint defect. A separation-of-function mutant of RPA, if identified, would provide significant insights into the checkpoint initiation mechanisms. We have explored this possibility and carried out an extensive genetic screening for Rpa1/Ssb1, the large subunit of RPA in fission yeast, looking for mutants with defects in checkpoint signaling. This screen has identified twenty-five primary mutants that are sensitive to genotoxins. Among these mutants, two have been confirmed partially defective in checkpoint signaling primarily at the replication fork, not the DNA damage site. The remaining mutants are likely defective in other functions such as DNA repair or telomere maintenance. Our screened mutants, therefore, provide a valuable tool for future dissection of the multiple functions of RPA in fission yeast. AUTHOR SUMMARY: Originally discovered as a protein required for replication of simian virus SV40 DNA, replication protein A is now known to function in DNA replication, repair, recombination, telomere maintenance, and checkpoint signaling in all eukaryotes. The protein is a complex of three subunits and the two larger ones are essential for cell growth. This essential function however complicates the studies in living cells, and for this reason, its checkpoint function remains to be fully understood. We have carried out an genetic screening of the largest subunit of this protein in fission yeast, aiming to find a non-lethal mutant that lacks the checkpoint function. This extensive screen has uncovered two mutants with a partial defect in checkpoint signaling when DNA replication is arrested. Surprisingly, although the two mutants also have a defect in DNA repair, their checkpoint signaling remains largely functional in the presence of DNA damage. We have also uncovered twenty-three mutants with defects in DNA repair or telomere maintenance, but not checkpoint signaling. Therefore, the non-lethal mutants uncovered by this study provide a valuable tool for dissecting the multiple functions of this biologically important protein in fission yeast.

18.
BJR Case Rep ; 9(1): 20220050, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873240

RESUMEN

Primary vaginal cancer is rare, accounting for only 2% of all gynecological malignant tumors. Primary vaginal cell carcinoma is mainly squamous cell carcinoma, accounting for about 90%, and adenocarcinoma only accounts for 8-10%. Primary signet ring cell carcinoma of vagina is rare and has not been reported in the literature. This paper reports a case of signet ring cell carcinoma in vagina.

19.
Front Plant Sci ; 14: 1140467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909381

RESUMEN

Walnut (Juglans regia) is an important nut tree species in the world, whereas walnut trees often face inadequate phosphorus (P) levels of soil, negatively limiting its growth and yield. Arbuscular mycorrhizal fungi (AMF) can colonize walnut roots, but whether and how AMF promotes walnut growth, physiological activities, and P acquisition is unclear. The present study aimed to evaluate the effects of Diversispora spurca on plant growth, chlorophyll component concentrations, leaf gas exchange, sugar and P concentrations, and expression of purple acid phosphatase (PAP) and phosphate transporter (PT) genes in leaves of J. regia var. Liaohe 1 seedling under moderate (100 µmol/L P) and low P (1 µmol/L P) levels conditions. Three months after inoculation, the root mycorrhizal colonization rate and soil hyphal length were 45.6-53.2% and 18.7-39.9 cm/g soil, respectively, and low P treatment significantly increased both root mycorrhizal colonization rate and soil hyphal length. Low P levels inhibited plant growth (height, stem diameter, and total biomass) and leaf gas exchange (photosynthetic rate, transpiration rate and stomatal conductance), while AMF colonization significantly increased these variables at moderate and low P levels. Low P treatment limited the level of chlorophyll a, but AMF colonization did not significantly affect the level of chlorophyll components, independent on soil P levels. AMF colonization also increased leaf glucose at appropriate P levels and leaf fructose at low P levels than non-AMF treatment. AMF colonization significantly increased leaf P concentration by 21.0-26.2% than non-AMF colonization at low and moderate P levels. Low P treatment reduced the expression of leaf JrPAP10, JrPAP12, and JrPT3;2 in the inoculated plants, whereas AMF colonization up-regulated the expression of leaf JrPAP10, JrPAP12, and JrPT3;2 at moderate P levels, although AMF did not significantly alter the expression of JrPAPs and JrPTs at low P levels. It is concluded that AMF improved plant growth, leaf gas exchange, and P acquisition of walnut seedlings at different P levels, where mycorrhizal promotion of P acquisition was dominated by direct mycorrhizal involvement in P uptake at low P levels, while up-regulation of host PAPs and PTs expressions at moderate P levels.

20.
J Biol Chem ; 286(26): 22864-74, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21561865

RESUMEN

Protein phosphorylation is the hallmark of checkpoint activation. Hundreds of targets of checkpoint kinases have been identified recently by genome-wide investigations. However, the complete picture of a phosphorylation network required for activation of a checkpoint pathway has not been available. The DNA replication checkpoint in Schizosaccharomyces pombe contains two major protein kinases, the sensor kinase Rad3 and the effector kinase Cds1, with the latter mediating most of the checkpoint functions. We show here that when DNA replication is arrested, efficient activation of Cds1 requires five phosphorylations that cooperate in a parallel or a sequential manner. Phosphorylation of a threonine residue (Thr(11)) in Cds1 by Rad3 occurs at a basal level in the absence of three other parallel Rad3-dependent phosphorylations on the mediator Mrc1 and Rad9 in the checkpoint clamp complex. However, the three parallel Rad3-dependent phosphorylations are all required for efficient phosphorylation of Thr(11) in Cds1 by Rad3. Phosphorylation of Thr(11) has been shown previously to promote autophosphorylation of Thr(328) in the kinase domain of Cds1, which directly activates the enzyme, leading to full activation of the checkpoint pathway. Interestingly, phosphorylation of Mrc1 by Rad3 does not require the phosphorylation of Rad9, suggesting that activation of the sensor kinase Rad3 in the replication checkpoint of fission yeast may involve a different mechanism.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Proteínas de Unión al ADN/genética , Estudio de Asociación del Genoma Completo , Fosforilación/fisiología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA