Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 726: 150235, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38908345

RESUMEN

BACKGROUND: Diabetic ulcers (DUs) are characterized by chronic inflammation and delayed re-epithelialization, with a high incidence and weighty economic burden. The primary therapeutic strategies for refractory wounds include surgery, non-invasive wound therapy, and drugs, while the optimum regimen remains controversial. Sirtuin-6 (SIRT6) is a histone deacetylase and a key epigenetic factor that exerts anti-inflammatory and pro-proliferatory effects in wound healing. However, the exact function of SIRT6 in DUs remains unclear. METHODS: We generated tamoxifen-inducible SIRT6 knockout mice by crossing SIRT6flox/flox homozygous mice with UBC-creERT2+ transgenic mice. Systemic SIRT6 null mice, under either normal or diabetic conditions, were utilized to assess the effects of SIRT6 in DUs treatment. Gene and protein expressions of SIRT6 and inflammatory cytokines were measured by Western blotting and RT-qPCR. Histopathological examination confirmed the altered re-epithelialization (PCNA), inflammation (NF-κB p50 and F4/80), and angiogenesis (CD31) markers during DUs restoration. RESULTS: Knockout of SIRT6 inhibited the healing ability of DUs, presenting attenuated re-epithelialization (PCNA), exacerbated inflammation responses (NF-κB p50, F4/80, Il-1ß, Tnf-α, Il-6, Il-10, and Il-4), and hyperplasia vascular (CD31) compared with control mice. CONCLUSIONS: SIRT6 could boost impaired wound healing through improving epidermal proliferation, inflammation, and angiogenesis. Our study highlighted the therapeutic potential of the SIRT6 agonist for DUs treatment.

2.
J Invest Dermatol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879155

RESUMEN

Atopic dermatitis (AD), a chronic and recurrent inflammatory skin disorder, presents a high incidence and imposes a substantial economic burden. Preventing its recurrence remains a significant challenge in dermatological therapy due to poorly understood underlying mechanisms. In our study, we adopted a strategy of tracing the mechanisms of recurrence from clinical outcomes. We developed a mouse model of recurrent AD and applied clinically validated treatment regimens. Transcriptomic analyses revealed a pronounced enrichment in the glutathione metabolic pathway in the treated group. Through integrated bioinformatics and in vivo validation, we identified glutathione S-transferase alpha 4 (GSTA4) as a pivotal mediator in AD recurrence. Immunohistochemical analysis demonstrated decreased GSTA4 expression in lesions from AD patients. Functionally, in vitro overexpression of GSTA4 significantly curtailed AD-like inflammatory responses and reactive oxygen species (ROS) production. Moreover, we discovered that NRF2 transcriptional activity regulates GSTA4 expression and function. Our treatment notably augmented NRF2-mediated GSTA4 transcription, yielding pronounced anti-inflammatory and ROS-neutralizing effects. Conclusively, our findings implicate GSTA4 as a critical factor in the recurrence of AD, particularly in the context of oxidative stress and chronic inflammation. Targeting the NRF2-GSTA4 axis emerges as a promising anti-inflammatory and antioxidative strategy for preventing AD recurrence.

3.
Cell Death Dis ; 14(8): 553, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620327

RESUMEN

Histologically, melanoma tissues had fewer positive cells percentage of pyroptosis-related genes (PRGs), GZMA, GSDMB, NLRP1, IL18, and CHMP4A in epidermal than in normal skin. Pyroptosis, a new frontier in cancer, affects the tumor microenvironment and tumor immunotherapy. Nevertheless, the role of pyroptosis remains controversial, which reason is partly due to the heterogeneity of the cellular composition in melanoma. In this study, we present a comprehensive analysis of the single-cell transcriptome landscape of pyroptosis in melanoma specimens. Our findings reveal dysregulation in the expression of PRGs, particularly in immune cells, such as CD8+ cells (representing CD8+ T cells) and CD57+ cells (representing NK cells). Additionally, the immunohistochemical and multiplex immunofluorescence staining experiments results further confirmed GZMA+ cells and GSDMB+ cells were predominantly expressed in immune cells, especially in CD8 + T cells and NK cells. Melanoma specimens secreted a minimal presence of GZMA+ merged CD8+ T cells (0.11%) and GSDMB+ merged CD57+ cells (0.08%), compared to the control groups exhibiting proportions of 4.02% and 0.62%, respectively. The aforementioned findings indicate that a reduced presence of immune cells within tumors may play a role in diminishing the ability of pyroptosis, consequently posing a potential risk to the anti-melanoma properties. To quantify clinical relevance, we constructed a prognostic risk model and an individualized nomogram (C-index=0.58, P = 0.002), suggesting a potential role of PRGs in malignant melanoma prevention. In conclusion, our integrated single-cell and bulk RNA-seq analysis identified immune cell clusters and immune gene modules with experiment validation, contributing to our better understanding of pyroptosis in melanoma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Linfocitos T CD8-positivos , Piroptosis/genética , Melanoma/genética , Neoplasias Cutáneas/genética , Células Asesinas Naturales , Microambiente Tumoral
4.
Front Plant Sci ; 13: 1021483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388526

RESUMEN

Most cultivars of Vitis vinifera L. are very sensitive to cold. As an exogenous protectant, Biodegradable Liquid Film (BLF) is considered to protect winegrapes from low temperatures and dry winds for safe overwintering. This study aimed to reveal the physiological and biochemical mechanisms of BLF regulating the freezing tolerance of wine grapes. Groups of ten-year-old vines (Cabernet Sauvignon) were sprayed with BLF in November 2020 and 2021, or left untreated as a control treatment, and field plant mortality after overwintering were investigated. Branch samples were collected monthly for determination of biochemical indicators. Dormant two-year-old cuttings (Cabernet Sauvignon) were also used for the determination of relative expression levels of key genes. The results showed that the application of BLF reduced the branch semi-lethal temperature in January and February samples compared with control, and reduced the mortality of above-ground parts, branches and buds. The physiological status of shoots was greatly affected by the climatic conditions of the year, but BLF treatment increased the levels of soluble protein and soluble sugar, and also decreased the content of superoxide anion and malondialdehyde at most sampling times. Correlation analysis showed that the differences in freezing tolerance between BLF and no treated overwintering(CK) vines were mainly related to peroxidase activity, soluble sugar, reducing sugar and starch content. Low temperature stress activated the over expression of ICE1, CBF1, and CBF3, especially for 12h. BLF treatment significantly increased the expression levels of CBF1 and CBF3 under low temperature stress. Overall, these results demonstrate that BLF treatment protects vines from freezing damage by upregulating osmo-regulatory substances and alleviating oxidative damage.

5.
Huan Jing Ke Xue ; 42(5): 2343-2352, 2021 May 08.
Artículo en Zh | MEDLINE | ID: mdl-33884804

RESUMEN

The visible light-driven photocatalyst Ag3PO4/g-C3N4 was synthesized by a simple in-situ precipitation method. The synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. Compared with that of single Ag3PO4 and g-C3N4, the Ag3PO4/g-C3N4 composite had a higher catalytic efficiency for levofloxacin. According to the energy band analysis and free radical capture experiment, the mechanism of the Z-type heterostructure of the Ag3PO4/g-C3N4 composite was proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA