Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 44(17): 3773-3779, 2019 Sep.
Artículo en Zh | MEDLINE | ID: mdl-31602952

RESUMEN

The aim of this paper was to explore the mechanism of Shenxiong Glucose Injection antagonizing apoptosis of H9 c2 cells induced by H_2O_2. H9 c2 cells were pretreated with 1. 7%,3. 4% and 6. 8% Shenxiong Glucose Injection,and then H_2O_2 was introduced to induce apoptosis in vitro. Cell viability was detected by MTS assay,morphological changes of apoptosis were observed by AO/EB fluorescence staining,apoptosis rate was detected by Annexin/PI method,cell expression profile was detected by gene chip technology,the mRNA of PIK3 CA,Bcl-2,Bax,caspase-3 and GAPDH were detected by qRT-PCR,the protein expression levels of PIK3 CA,AKT,P-AKT,Bcl-2,Bax and caspase-3 were detected by Western blot,and the contents of LDH and MDA were detected by kit. The results showed that Shenxiong Glucose Injection of different concentrations significantly increased the viability of H9 c2 cells treated with H_2O_2( P<0. 01),and reversed H_2O_2-induced apoptosis( P< 0. 01). The microarray experiments showed that 138 genes were altered in H9 c2 cells after treatment with Shenxiong Glucose Injection. The differential expression fold of PIK3 CA associated with PI3 K/AKT pathway was 3. 59. The results of qRT-PCR and Western blot showed that Shenxiong Glucose Injection could down-regulate the mRNA and protein expression levels of caspase-3( P<0. 01),up-regulate the mRNA and protein expression level of PIK3 CA and Bcl-2( P<0. 01),and up-regulate the phosphorylation levels of AKT( P<0. 01) in H_2O_2-treated H9 c2 cells. The protective effect of Shenxiong Glucose Injection on H_2O_2 cells injury was significantly inhibited by LY294002,a PI3 K/AKT pathway inhibitor. The results suggested that Shenxiong Glucose Injection may inhibit H_2O_2-induced H9 c2 cells apoptosis by regulating PI3 K/AKT signaling pathway.


Asunto(s)
Apoptosis , Medicamentos Herbarios Chinos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Línea Celular , Cromonas , Glucosa , Morfolinas , Ratas
2.
Artículo en Inglés | MEDLINE | ID: mdl-37957937

RESUMEN

Myocardial ischemia/reperfusion injury (MIRI) remains a main reason for death after cardiovascular diseases. Up-regulation of adipocyte enhancer binding protein 1 (AEBP1) has been found in ischemic cardiomyopathy patients. However, its influence and detailed mechanisms in MIRI are obscure. In this study, expression of target molecules was determined by RT-qPCR and Western blotting. Cell viability and apoptosis were evaluated by CCK-8 and TUNEL. Inflammatory cytokine levels were assessed by ELISA. Myocardial function and pathological changes were examined by echocardiography and HE staining. Cardiac infarct size was determined by TTC staining. Our data indicated that oxygen-glucose deprivation/reoxygenation (OGD/R) resulted in high expression of AEBP1, while low expression of IκBα in cardiomyocytes. In vitro data indicated that AEBP1 knockdown increased viability, inhibited apoptosis, and inflammation in H9c2 cells under OGD/R. AEBP1 interacted with IκBα to cause IκBα degradation, and facilitated the nuclear translocation of NF-κB. Moreover, IκBα silencing attenuated siAEBP1-medaited inhibition in inflammation and apoptosis of OGD/R-treated H9c2 cells, suggesting that IκBα was involved in the pro-inflammatory action of AEBP1. Finally, deficiency of AEBP1 mitigated MIRI in rats through IκBα/NF-κB pathway. Taken together, AEBP1 exacerbated MIRI through repressing IκBα expression to trigger NF-κB-mediated inflammation.

3.
Front Pharmacol ; 13: 931811, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686658

RESUMEN

Background: Shenxiong Glucose Injection (SGI) is a traditional Chinese medicine formula composed of ligustrazine hydrochloride and Danshen (Radix et rhizoma Salviae miltiorrhizae; Salvia miltiorrhiza Bunge, Lamiaceae). Our previous studies and others have shown that SGI has excellent therapeutic effects on myocardial ischemia (MI). However, the potential mechanisms of action have yet to be elucidated. This study aimed to explore the molecular mechanism of SGI in MI treatment. Methods: Sprague-Dawley rats were treated with isoproterenol (ISO) to establish the MI model. Electrocardiograms, hemodynamic parameters, echocardiograms, reactive oxygen species (ROS) levels, and serum concentrations of cardiac troponin I (cTnI) and cardiac troponin T (cTnT) were analyzed to explore the protective effect of SGI on MI. In addition, a model of oxidative damage and apoptosis in human umbilical vein endothelial cells (HUVECs) was established using CoCl2. Cell viability, Ca2+ concentration, mitochondrial membrane potential (MMP), apoptosis, intracellular ROS, and cell cycle parameters were detected in the HUVEC model. The expression of apoptosis-related proteins (Bcl-2, Caspase-3, PARP, cytoplasmic and mitochondrial Cyt-c and Bax, and p-ERK1/2) was determined by western blotting, and the expression of cleaved caspase-3 was analyzed by immunofluorescence. Results: SGI significantly reduced ROS production and serum concentrations of cTnI and cTnT, reversed ST-segment elevation, and attenuated the deterioration of left ventricular function in ISO-induced MI rats. In vitro, SGI treatment significantly inhibited intracellular ROS overexpression, Ca2+ influx, MMP disruption, and G2/M arrest in the cell cycle. Additionally, SGI treatment markedly upregulated the expression of anti-apoptotic protein Bcl-2 and downregulated the expression of pro-apoptotic proteins p-ERK1/2, mitochondrial Bax, cytoplasmic Cyt-c, cleaved caspase-3, and PARP. Conclusion: SGI could improve MI by inhibiting the oxidative stress and apoptosis signaling pathways. These findings provide evidence to explain the pharmacological action and underlying molecular mechanisms of SGI in the treatment of MI.

4.
Biomed Pharmacother ; 143: 112114, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34474350

RESUMEN

BACKGROUND: Shenxiong glucose injection (SGI) is a traditional Chinese medicine injection composed of water extract of Salvia miltiorrhiza and Ligustrazine hydrochloride. SGI has shown strong antioxidant and anti-apoptotic properties. However, the mechanisms underlying its anti-apoptotic effect need to be addressed. METHODS: H9c2 cell apoptosis model was established by treatment of hydrogen peroxide (H2O2). Cell survival rates were examined by MTS assay, cell apoptosis rates were determined by flow cytometry, levels of intracellular ROS were assessed by ROS kit, proteome phosphorylation was determined by phosphoproteomic analysis, and extracellular signal-regulated kinase (ERK), phosphorylated ERK, phosphorylated c-Jun, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), Bcl-2, and cleaved caspase-3 were examined by Western blot. RESULT: SGI showed protective effects against H2O2-induced reduced cell viability, elevated ROS, and increased apoptosis in H9c2 cells. Phosphorylation proteomics detected a total of 3369 proteins with 78 protein of upregulated phosphorylation and 104 protein of downregulated phosphorylation. Kyoto Encyclopedia Genes and Genomes pathway analyses of differentially phosphorylated proteins showed that the ERK pathway, the downstream pathway of the focal adhesion pathway related to apoptosis, was highly enriched, and the phosphorylation levels of ERK and c-Jun were confirmed by Western blot. In addition, the ERK pathway inhibitor PD98059 significantly inhibited the anti-apoptotic effect of SGI. CONCLUSION: SGI antagonizes H2O2-induced cell apoptosis by activating the ERK pathway.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular , Peróxido de Hidrógeno/toxicidad , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Proteoma , Proteómica , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA