Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36655766

RESUMEN

SUMMARY: Circadian oscillations of gene expression regulate daily physiological processes, and their disruption is linked to many diseases. Circadian rhythms can be disrupted in a variety of ways, including differential phase, amplitude and rhythm fitness. Although many differential circadian biomarker detection methods have been proposed, a workflow for systematic detection of multifaceted differential circadian characteristics with accurate false positive control is not currently available. We propose a comprehensive and interactive pipeline to capture the multifaceted characteristics of differentially rhythmic biomarkers. Analysis outputs are accompanied by informative visualization and interactive exploration. The workflow is demonstrated in multiple case studies and is extensible to general omics applications. AVAILABILITY AND IMPLEMENTATION: R package, Shiny app and source code are available in GitHub (https://github.com/DiffCircaPipeline) and Zenodo (https://doi.org/10.5281/zenodo.7507989). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Periodicidad , Programas Informáticos , Flujo de Trabajo
2.
Mol Psychiatry ; 28(11): 4777-4792, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37674018

RESUMEN

Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24-h cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes associated with vesicle-mediated transport and membrane trafficking in the NAc and platelet-derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.


Asunto(s)
Núcleo Accumbens , Trastornos Relacionados con Opioides , Humanos , Núcleo Accumbens/metabolismo , Corteza Prefontal Dorsolateral , Proteoma/metabolismo , Ritmo Circadiano , Trastornos Relacionados con Opioides/metabolismo , Corteza Prefrontal/metabolismo
3.
J Proteome Res ; 22(7): 2377-2390, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37311105

RESUMEN

Substance use disorders are associated with disruptions in sleep and circadian rhythms that persist during abstinence and may contribute to relapse risk. Repeated use of substances such as psychostimulants and opioids may lead to significant alterations in molecular rhythms in the nucleus accumbens (NAc), a brain region central to reward and motivation. Previous studies have identified rhythm alterations in the transcriptome of the NAc and other brain regions following the administration of psychostimulants or opioids. However, little is known about the impact of substance use on the diurnal rhythms of the proteome in the NAc. We used liquid chromatography coupled to tandem mass spectrometry-based quantitative proteomics, along with a data-independent acquisition analysis pipeline, to investigate the effects of cocaine or morphine administration on diurnal rhythms of proteome in the mouse NAc. Overall, our data reveal cocaine and morphine differentially alter diurnal rhythms of the proteome in the NAc, with largely independent differentially expressed proteins dependent on time-of-day. Pathways enriched from cocaine altered protein rhythms were primarily associated with glucocorticoid signaling and metabolism, whereas morphine was associated with neuroinflammation. Collectively, these findings are the first to characterize the diurnal regulation of the NAc proteome and demonstrate a novel relationship between the phase-dependent regulation of protein expression and the differential effects of cocaine and morphine on the NAc proteome. The proteomics data in this study are available via ProteomeXchange with identifier PXD042043.


Asunto(s)
Cocaína , Ratones , Animales , Cocaína/farmacología , Núcleo Accumbens/metabolismo , Morfina/farmacología , Morfina/metabolismo , Proteoma/genética , Proteoma/metabolismo , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología
4.
Mol Psychiatry ; 26(8): 4066-4084, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33235333

RESUMEN

Valproate (VPA) has been used in the treatment of bipolar disorder since the 1990s. However, the therapeutic targets of VPA have remained elusive. Here we employ a preclinical model to identify the therapeutic targets of VPA. We find compounds that inhibit histone deacetylase proteins (HDACs) are effective in normalizing manic-like behavior, and that class I HDACs (e.g., HDAC1 and HDAC2) are most important in this response. Using an RNAi approach, we find that HDAC2, but not HDAC1, inhibition in the ventral tegmental area (VTA) is sufficient to normalize behavior. Furthermore, HDAC2 overexpression in the VTA prevents the actions of VPA. We used RNA sequencing in both mice and human induced pluripotent stem cells (iPSCs) derived from bipolar patients to further identify important molecular targets. Together, these studies identify HDAC2 and downstream targets for the development of novel therapeutics for bipolar mania.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ácido Valproico , Animales , Histona Desacetilasa 2/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Manía , Ratones , Ácido Valproico/farmacología
5.
Psychiatry Res ; 331: 115636, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104424

RESUMEN

Antipsychotic drug (AP)-naïve first-episode psychosis (FEP) patients display premorbid cognitive dysfunctions and dysglycemia. Brain insulin resistance may link metabolic and cognitive disorders in humans. This suggests that central insulin dysregulation represents a component of the pathophysiology of psychosis spectrum disorders (PSDs). Nonetheless, the links between central insulin dysregulation, dysglycemia, and cognitive deficits in PSDs are poorly understood. We investigated whether AP-naïve FEP patients share overlapping brain gene expression signatures with central insulin perturbation (CIP) in rodent models. We systematically compiled and meta-analyzed peripheral transcriptomic datasets of AP-naïve FEP patients along with hypothalamic and hippocampal datasets of CIP rodent models to identify common transcriptomic signatures. The common signatures were used for pathway analysis and to identify potential drug treatments with discordant (reverse) signatures. AP-naïve FEP and CIP (hypothalamus and hippocampus) shared 111 and 346 common signatures respectively, which were associated with pathways related to inflammation, endoplasmic reticulum stress, and neuroplasticity. Twenty-two potential drug treatments were identified, including antidiabetic agents. The pathobiology of PSDs may include central insulin dysregulation, which contribute to dysglycemia and cognitive dysfunction independently of AP treatment. The identified treatments may be tested in early psychosis patients to determine if dysglycemia and cognitive deficits can be mitigated.


Asunto(s)
Antipsicóticos , Resistencia a la Insulina , Trastornos Psicóticos , Humanos , Antipsicóticos/uso terapéutico , Insulina , Transcriptoma , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/genética , Trastornos Psicóticos/complicaciones
6.
Transl Psychiatry ; 14(1): 19, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38199991

RESUMEN

Antipsychotic (AP)-naive first-episode psychosis (FEP) patients display early dysglycemia, including insulin resistance and prediabetes. Metabolic dysregulation may therefore be intrinsic to psychosis spectrum disorders (PSDs), independent of the metabolic effects of APs. However, the potential biological pathways that overlap between PSDs and dysglycemic states remain to be identified. Using meta-analytic approaches of transcriptomic datasets, we investigated whether AP-naive FEP patients share overlapping gene expression signatures with non-psychiatrically ill early dysglycemia individuals. We meta-analyzed peripheral transcriptomic datasets of AP-naive FEP patients and non-psychiatrically ill early dysglycemia subjects to identify common gene expression signatures. Common signatures underwent pathway enrichment analysis and were then used to identify potential new pharmacological compounds via Integrative Library of Integrated Network-Based Cellular Signatures (iLINCS). Our search results yielded 5 AP-naive FEP studies and 4 early dysglycemia studies which met inclusion criteria. We discovered that AP-naive FEP and non-psychiatrically ill subjects exhibiting early dysglycemia shared 221 common signatures, which were enriched for pathways related to endoplasmic reticulum stress and abnormal brain energetics. Nine FDA-approved drugs were identified as potential drug treatments, of which the antidiabetic metformin, the first-line treatment for type 2 diabetes, has evidence to attenuate metabolic dysfunction in PSDs. Taken together, our findings support shared gene expression changes and biological pathways associating PSDs with dysglycemic disorders. These data suggest that the pathobiology of PSDs overlaps and potentially contributes to dysglycemia. Finally, we find that metformin may be a potential treatment for early metabolic dysfunction intrinsic to PSDs.


Asunto(s)
Antipsicóticos , Diabetes Mellitus Tipo 2 , Metformina , Trastornos Psicóticos , Humanos , Transcriptoma , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/genética , Glucosa , Metformina/farmacología , Metformina/uso terapéutico
7.
Psychiatry Res ; 334: 115773, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350292

RESUMEN

Previous studies have shown significant sex-specific differences in major depressive disorder (MDD) in multiple biological parameters. Most studies focused on young and middle-aged adults, and there is a paucity of information about sex-specific biological differences in older adults with depression (aka, late-life depression (LLD)). To address this gap, this study aimed to evaluate sex-specific biological abnormalities in a large group of individuals with LLD using an untargeted proteomic analysis. We quantified 344 plasma proteins using a multiplex assay in 430 individuals with LLD and 140 healthy comparisons (HC) (age range between 60 and 85 years old for both groups). Sixty-six signaling proteins were differentially expressed in LLD (both sexes). Thirty-three proteins were uniquely associated with LLD in females, while six proteins were uniquely associated with LLD in males. The main biological processes affected by these proteins in females were related to immunoinflammatory control. In contrast, despite the smaller number of associated proteins, males showed dysregulations in a broader range of biological pathways, including immune regulation pathways, cell cycle control, and metabolic control. Sex has a significant impact on biomarker changes in LLD. Despite some overlap in differentially expressed biomarkers, males and females show different patterns of biomarkers changes, and males with LLD exhibit abnormalities in a larger set of biological processes compared to females. Our findings can provide novel targets for sex-specific interventions in LLD.


Asunto(s)
Depresión , Trastorno Depresivo Mayor , Persona de Mediana Edad , Humanos , Masculino , Femenino , Anciano , Anciano de 80 o más Años , Caracteres Sexuales , Proteómica , Biomarcadores
8.
Nat Commun ; 15(1): 878, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296993

RESUMEN

In brain, the striatum is a heterogenous region involved in reward and goal-directed behaviors. Striatal dysfunction is linked to psychiatric disorders, including opioid use disorder (OUD). Striatal subregions are divided based on neuroanatomy, each with unique roles in OUD. In OUD, the dorsal striatum is involved in altered reward processing, formation of habits, and development of negative affect during withdrawal. Using single nuclei RNA-sequencing, we identified both canonical (e.g., dopamine receptor subtype) and less abundant cell populations (e.g., interneurons) in human dorsal striatum. Pathways related to neurodegeneration, interferon response, and DNA damage were significantly enriched in striatal neurons of individuals with OUD. DNA damage markers were also elevated in striatal neurons of opioid-exposed rhesus macaques. Sex-specific molecular differences in glial cell subtypes associated with chronic stress were found in OUD, particularly female individuals. Together, we describe different cell types in human dorsal striatum and identify cell type-specific alterations in OUD.


Asunto(s)
Cuerpo Estriado , Trastornos Relacionados con Opioides , Masculino , Animales , Humanos , Femenino , Macaca mulatta , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/metabolismo , Perfilación de la Expresión Génica
9.
bioRxiv ; 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36909659

RESUMEN

Substance use disorders (SUDs) are associated with disruptions in sleep and circadian rhythms that persist during abstinence and may contribute to relapse risk. Repeated use of substances such as psychostimulants and opioids may lead to significant alterations in molecular rhythms in the nucleus accumbens (NAc), a brain region central to reward and motivation. Previous studies have identified rhythm alterations in the transcriptome of the NAc and other brain regions following the administration of psychostimulants or opioids. However, little is known about the impact of substance use on the diurnal rhythms of the proteome in the NAc. We used liquid chromatography coupled to tandem mass spectrometry-based (LC-MS/MS) quantitative proteomics, along with a data-independent acquisition (DIA) analysis pipeline, to investigate the effects of cocaine or morphine administration on diurnal rhythms of proteome in the mouse NAc. Overall, our data reveals cocaine and morphine differentially alters diurnal rhythms of the proteome in the NAc, with largely independent differentially expressed proteins dependent on time-of-day. Pathways enriched from cocaine altered protein rhythms were primarily associated with glucocorticoid signaling and metabolism, whereas morphine was associated with neuroinflammation. Collectively, these findings are the first to characterize the diurnal regulation of the NAc proteome and demonstrate a novel relationship between phase-dependent regulation of protein expression and the differential effects of cocaine and morphine on the NAc proteome.

10.
bioRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37066169

RESUMEN

Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24- hour cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes related to vesicle-mediated transport and membrane trafficking in the NAc and platelet derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.

11.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873436

RESUMEN

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

12.
Biol Psychiatry ; 91(1): 152-162, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33934884

RESUMEN

BACKGROUND: Diurnal rhythms in gene expression have been detected in the human brain. Previous studies found that males and females exhibit 24-hour rhythms in known circadian genes, with earlier peak expression in females. Whether there are sex differences in large-scale transcriptional rhythms in the cortex that align with observed sex differences in physiological and behavioral rhythms is currently unknown. METHODS: Diurnal rhythmicity of gene expression was determined for males and females using RNA sequencing data from human postmortem dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). Sex differences among rhythmic genes were determined using significance cutoffs, threshold-free analyses, and R2 difference. Phase concordance was assessed across the DLPFC and ACC for males and females. Pathway and transcription factor analyses were also conducted on significantly rhythmic genes. RESULTS: Canonical circadian genes had diurnal rhythms in both sexes with similar amplitude and phase. When analyses were expanded to the entire transcriptome, significant sex differences in transcriptional rhythms emerged. There were nearly twice as many rhythmic transcripts in the DLPFC in males and nearly 4 times as many rhythmic transcripts in the ACC in females. Results suggest a diurnal rhythm in synaptic transmission specific to the ACC in females (e.g., GABAergic [gamma-aminobutyric acidergic] and cholinergic neurotransmission). For males, there was phase concordance between the DLPFC and ACC, while phase asynchrony was found in females. CONCLUSIONS: There are robust sex differences in molecular rhythms of genes in the DLPFC and ACC, providing potential mechanistic insights into how neurotransmission and synaptic function are modulated in a circadian-dependent and sex-specific manner.


Asunto(s)
Corteza Prefontal Dorsolateral , Caracteres Sexuales , Ritmo Circadiano/genética , Femenino , Humanos , Masculino , Análisis de Secuencia de ARN , Transcriptoma
13.
Front Psychiatry ; 13: 945548, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090351

RESUMEN

Microglia are resident macrophages of the brain, performing roles related to brain homeostasis, including modulation of synapses, trophic support, phagocytosis of apoptotic cells and debris, as well as brain protection and repair. Studies assessing morphological and transcriptional features of microglia found regional differences as well as sex differences in some investigated brain regions. However, markers used to isolate microglia in many previous studies are not expressed exclusively by microglia or cannot be used to identify and isolate microglia in all contexts. Here, fluorescent activated cell sorting was used to isolate cells expressing the microglia-specific marker TMEM119 from prefrontal cortex (PFC), striatum, and midbrain in mice. RNA-sequencing was used to assess the transcriptional profile of microglia, focusing on brain region and sex differences. We found striking brain region differences in microglia-specific transcript expression. Most notable was the distinct transcriptional profile of midbrain microglia, with enrichment for pathways related to immune function; these midbrain microglia exhibited a profile similar to disease-associated or immune-surveillant microglia. Transcripts more highly expressed in PFC isolated microglia were enriched for synapse-related pathways while microglia isolated from the striatum were enriched for pathways related to microtubule polymerization. We also found evidence for a gradient of expression of microglia-specific transcripts across the rostral-to-caudal axes of the brain, with microglia extracted from the striatum exhibiting a transcriptional profile intermediate between that of the PFC and midbrain. We also found sex differences in expression of microglia-specific transcripts in all 3 brain regions, with many selenium-related transcripts more highly expressed in females across brain regions. These results suggest that the transcriptional profile of microglia varies between brain regions under homeostatic conditions, suggesting that microglia perform diverse roles in different brain regions and even based on sex.

14.
Transl Psychiatry ; 12(1): 123, 2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35347109

RESUMEN

Severe and persistent disruptions to sleep and circadian rhythms are common in people with opioid use disorder (OUD). Preclinical evidence suggests altered molecular rhythms in the brain modulate opioid reward and relapse. However, whether molecular rhythms are disrupted in the brains of people with OUD remained an open question, critical to understanding the role of circadian rhythms in opioid addiction. Using subjects' times of death as a marker of time of day, we investigated transcriptional rhythms in the brains of subjects with OUD compared to unaffected comparison subjects. We discovered rhythmic transcripts in both the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc), key brain areas involved in OUD, that were largely distinct between OUD and unaffected subjects. Fewer rhythmic transcripts were identified in DLPFC of subjects with OUD compared to unaffected subjects, whereas in the NAc, nearly double the number of rhythmic transcripts was identified in subjects with OUD. In NAc of subjects with OUD, rhythmic transcripts peaked either in the evening or near sunrise, and were associated with an opioid, dopamine, and GABAergic neurotransmission. Associations with altered neurotransmission in NAc were further supported by co-expression network analysis which identified OUD-specific modules enriched for transcripts involved in dopamine, GABA, and glutamatergic synaptic functions. Additionally, rhythmic transcripts in DLPFC and NAc of subjects with OUD were enriched for genomic loci associated with sleep-related GWAS traits, including sleep duration and insomnia. Collectively, our findings connect transcriptional rhythm changes in opioidergic, dopaminergic, GABAergic signaling in the human brain to sleep-related traits in opioid addiction.


Asunto(s)
Núcleo Accumbens , Trastornos Relacionados con Opioides , Analgésicos Opioides , Encéfalo , Humanos , Trastornos Relacionados con Opioides/genética , Corteza Prefrontal
15.
iScience ; 25(8): 104771, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35982797

RESUMEN

Bromocriptine is approved as a diabetes therapy, yet its therapeutic mechanisms remain unclear. Though bromocriptine's actions have been mainly attributed to the stimulation of brain dopamine D2 receptors (D2R), bromocriptine also targets the pancreas. Here, we employ bromocriptine as a tool to elucidate the roles of catecholamine signaling in regulating pancreatic hormone secretion. In ß-cells, bromocriptine acts on D2R and α2A-adrenergic receptor (α2A-AR) to reduce glucose-stimulated insulin secretion (GSIS). Moreover, in α-cells, bromocriptine acts via D2R to reduce glucagon secretion. α2A-AR activation by bromocriptine recruits an ensemble of G proteins with no ß-arrestin2 recruitment. In contrast, D2R recruits G proteins and ß-arrestin2 upon bromocriptine stimulation, demonstrating receptor-specific signaling. Docking studies reveal distinct bromocriptine binding to α2A-AR versus D2R, providing a structural basis for bromocriptine's dual actions on ß-cell α2A-AR and D2R. Together, joint dopaminergic and adrenergic receptor actions on α-cell and ß-cell hormone release provide a new therapeutic mechanism to improve dysglycemia.

16.
Biol Psychiatry ; 90(8): 550-562, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34380600

RESUMEN

BACKGROUND: Prevalence rates of opioid use disorder (OUD) have increased dramatically, accompanied by a surge of overdose deaths. While opioid dependence has been extensively studied in preclinical models, an understanding of the biological alterations that occur in the brains of people who chronically use opioids and who are diagnosed with OUD remains limited. To address this limitation, RNA sequencing was conducted on the dorsolateral prefrontal cortex and nucleus accumbens, regions heavily implicated in OUD, from postmortem brains in subjects with OUD. METHODS: We performed RNA sequencing on the dorsolateral prefrontal cortex and nucleus accumbens from unaffected comparison subjects (n = 20) and subjects diagnosed with OUD (n = 20). Our transcriptomic analyses identified differentially expressed transcripts and investigated the transcriptional coherence between brain regions using rank-rank hypergeometric orderlap. Weighted gene coexpression analyses identified OUD-specific modules and gene networks. Integrative analyses between differentially expressed transcripts and genome-wide association study datasets using linkage disequilibrium scores assessed the genetic liability of psychiatric-related phenotypes in OUD. RESULTS: Rank-rank hypergeometric overlap analyses revealed extensive overlap in transcripts between the dorsolateral prefrontal cortex and nucleus accumbens in OUD, related to synaptic remodeling and neuroinflammation. Identified transcripts were enriched for factors that control proinflammatory cytokine, chondroitin sulfate, and extracellular matrix signaling. Cell-type deconvolution implicated a role for microglia as a potential driver for opioid-induced neuroplasticity. Linkage disequilibrium score analysis suggested genetic liabilities for risky behavior, attention-deficit/hyperactivity disorder, and depression in subjects with OUD. CONCLUSIONS: Overall, our findings suggest connections between the brain's immune system and opioid dependence in the human brain.


Asunto(s)
Núcleo Accumbens , Trastornos Relacionados con Opioides , Analgésicos Opioides/uso terapéutico , Estudio de Asociación del Genoma Completo , Humanos , Trastornos Relacionados con Opioides/genética , Corteza Prefrontal
17.
Transl Psychiatry ; 11(1): 59, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33589583

RESUMEN

Dopamine (DA) and norepinephrine (NE) are catecholamines primarily studied in the central nervous system that also act in the pancreas as peripheral regulators of metabolism. Pancreatic catecholamine signaling has also been increasingly implicated as a mechanism responsible for the metabolic disturbances produced by antipsychotic drugs (APDs). Critically, however, the mechanisms by which catecholamines modulate pancreatic hormone release are not completely understood. We show that human and mouse pancreatic α- and ß-cells express the catecholamine biosynthetic and signaling machinery, and that α-cells synthesize DA de novo. This locally-produced pancreatic DA signals via both α- and ß-cell adrenergic and dopaminergic receptors with different affinities to regulate glucagon and insulin release. Significantly, we show DA functions as a biased agonist at α2A-adrenergic receptors, preferentially signaling via the canonical G protein-mediated pathway. Our findings highlight the interplay between DA and NE signaling as a novel form of regulation to modulate pancreatic hormone release. Lastly, pharmacological blockade of DA D2-like receptors in human islets with APDs significantly raises insulin and glucagon release. This offers a new mechanism where APDs act directly on islet α- and ß-cell targets to produce metabolic disturbances.


Asunto(s)
Dopamina , Glucagón , Adrenérgicos , Glucagón/metabolismo , Insulina/metabolismo , Secreción de Insulina , Norepinefrina , Páncreas/metabolismo
18.
Front Cell Dev Biol ; 8: 234, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411698

RESUMEN

The progress in the field of high-dimensional cytometry has greatly increased the number of markers that can be simultaneously analyzed producing datasets with large numbers of parameters. Traditional biaxial manual gating might not be optimal for such datasets. To overcome this, a large number of automated tools have been developed to aid with cellular clustering of multi-dimensional datasets. Here were review two large categories of such tools; unsupervised and supervised clustering tools. After a thorough review of the popularity and use of each of the available unsupervised clustering tools, we focus on the top six tools to discuss their advantages and limitations. Furthermore, we employ a publicly available dataset to directly compare the usability, speed, and relative effectiveness of the available unsupervised and supervised tools. Finally, we discuss the current challenges for existing methods and future direction for the new generation of cell type identification approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA