Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microcirculation ; 31(2): e12840, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38082450

RESUMEN

INTRODUCTION: Age-related blood-brain barrier (BBB) disruption, cerebromicrovascular senescence, and microvascular rarefaction substantially contribute to the pathogenesis of vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Previous studies established a causal link between age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), cerebromicrovascular dysfunction, and cognitive decline. The aim of our study was to determine the effect of IGF-1 signaling on senescence, BBB permeability, and vascular density in middle-age and old brains. METHODS: Accelerated endothelial senescence was assessed in senescence reporter mice (VE-Cadherin-CreERT2 /Igf1rfl/fl × p16-3MR) using flow cytometry. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, BBB integrity and capillary density were studied in mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2 /Igf1rfl/fl ) using intravital two-photon microscopy. RESULTS: In VE-Cadherin-CreERT2 /Igf1rfl/fl mice: (1) there was an increased presence of senescent endothelial cells; (2) cumulative permeability of the microvessels to fluorescent tracers of different molecular weights (0.3-40 kDa) is significantly increased, as compared to that of control mice, whereas decline in cortical capillary density does not reach statistical significance. CONCLUSIONS: These findings support the notion that IGF-1 signaling plays a crucial role in preserving a youthful cerebromicrovascular endothelial phenotype and maintaining the integrity of the BBB.


Asunto(s)
Barrera Hematoencefálica , Factor I del Crecimiento Similar a la Insulina , Animales , Ratones , Barrera Hematoencefálica/patología , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Péptidos Similares a la Insulina , Células Endoteliales/metabolismo , Envejecimiento/patología , Encéfalo/irrigación sanguínea , Fenotipo , Endotelio , Senescencia Celular
2.
Alzheimers Dement ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958537

RESUMEN

INTRODUCTION: Mild cognitive impairment (MCI) is a prodromal stage of dementia. Understanding the mechanistic changes from healthy aging to MCI is critical for comprehending disease progression and enabling preventative intervention. METHODS: Patients with MCI and age-matched controls (CN) were administered cognitive tasks during functional near-infrared spectroscopy (fNIRS) recording, and changes in plasma levels of extracellular vesicles (EVs) were assessed using small-particle flow cytometry. RESULTS: Neurovascular coupling (NVC) and functional connectivity (FC) were decreased in MCI compared to CN, prominently in the left-dorsolateral prefrontal cortex (LDLPFC). We observed an increased ratio of cerebrovascular endothelial EVs (CEEVs) to total endothelial EVs in patients with MCI compared to CN, correlating with structural MRI small vessel ischemic damage in MCI. LDLPFC NVC, CEEV ratio, and LDLPFC FC had the highest feature importance in the random Forest group classification. DISCUSSION: NVC, CEEVs, and FC predict MCI diagnosis, indicating their potential as markers for MCI cerebrovascular pathology. HIGHLIGHTS: Neurovascular coupling (NVC) is impaired in mild cognitive impairment (MCI). Functional connectivity (FC) compensation mechanism is lost in MCI. Cerebrovascular endothelial extracellular vesicles (CEEVs) are increased in MCI. CEEV load strongly associates with cerebral small vessel ischemic lesions in MCI. NVC, CEEVs, and FC predict MCI diagnosis over demographic and comorbidity factors.

3.
4.
Clin Auton Res ; 33(6): 767-775, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37943335

RESUMEN

PURPOSE: Acute decompensated heart failure (ADHF) is associated with inflammation, oxidative stress, and excess sympathetic drive. It is unknown whether neuromodulation would improve inflammation and oxidative stress in acute heart failure. We, therefore, performed this proof-of-concept study to evaluate the effects of neuromodulation using noninvasive low-level tragus stimulation on inflammation and oxidative stress in ADHF. METHODS: Nineteen patients with ejection fraction < 40% were randomized to neuromodulation 4 h twice daily (6-10 a.m. and 6-10 p.m.) (n = 8) or sham stimulation (n = 11) during hospital admission. All patients received standard-of-care treatment. Blood samples were collected at admission and discharge. Serum cytokines were assayed using standard immunosorbent techniques. Reactive oxygen species inducibility from cultured coronary endothelial cells exposed to patient sera was determined using a dihydrodichlorofluorescein probe test (expressed as fluorescein units). RESULTS: Compared to sham stimulation, neuromodulation was associated with a significant reduction of circulating serum interleukin-6 levels (-78% vs. -9%; p = 0.012). Similarly, neuromodulation led to a reduction of endothelial cell oxidative stress in the neuromodulation group (1363 units to 978 units, p = 0.003) compared to sham stimulation (1146 units to 1083 units, p = 0.094). No significant differences in heart rate, blood pressure, or renal function were noted between the two groups. CONCLUSION: In this proof-of-concept pilot study, in acute decompensated heart failure, neuromodulation was feasible and safe and was associated with a reduction in systemic inflammation and attenuation of coronary endothelial cellular oxidative stress. CLINICAL TRIAL REGISTRATION: NCT02898181.


Asunto(s)
Células Endoteliales , Insuficiencia Cardíaca , Humanos , Proyectos Piloto , Insuficiencia Cardíaca/terapia , Inflamación/terapia , Estrés Oxidativo
5.
Am J Physiol Heart Circ Physiol ; 322(6): H924-H935, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35333116

RESUMEN

Peripheral artery disease (PAD) is a vascular pathology with high prevalence among the aging population. PAD is associated with decreased cognitive performance, but the underlying mechanisms remain obscure. Normal brain function critically depends on an adequate adjustment of cerebral blood supply to match the needs of active brain regions via neurovascular coupling (NVC). NVC responses depend on healthy microvascular endothelial function. PAD is associated with significant endothelial dysfunction in peripheral arteries, but its effect on NVC responses has not been investigated. This study was designed to test the hypothesis that NVC and peripheral microvascular endothelial function are impaired in PAD. We enrolled 11 symptomatic patients with PAD and 11 age- and sex-matched controls. Participants were evaluated for cognitive performance using the Cambridge Neuropsychological Test Automated Battery and functional near-infrared spectroscopy to assess NVC responses during the cognitive n-back task. Peripheral microvascular endothelial function was evaluated using laser speckle contrast imaging. We found that cognitive performance was compromised in patients with PAD, evidenced by reduced visual memory, short-term memory, and sustained attention. We found that NVC responses and peripheral microvascular endothelial function were significantly impaired in patients with PAD. A positive correlation was observed between microvascular endothelial function, NVC responses, and cognitive performance in the study participants. Our findings support the concept that microvascular endothelial dysfunction and neurovascular uncoupling contribute to the genesis of cognitive impairment in older PAD patients with claudication. Longitudinal studies are warranted to test whether the targeted improvement of NVC responses can prevent or delay the onset of PAD-associated cognitive decline.NEW & NOTEWORTHY Peripheral artery disease (PAD) was associated with significantly decreased cognitive performance, impaired neurovascular coupling (NVC) responses in the prefrontal cortex (PFC), left and right dorsolateral prefrontal cortices (LDLPFC and RDLPFC), and impaired peripheral microvascular endothelial function. A positive correlation between microvascular endothelial function, NVC responses, and cognitive performance may suggest that PAD-related cognitive decrement is mechanistically linked, at least in part, to generalized microvascular endothelial dysfunction and subsequent impairment of NVC responses.


Asunto(s)
Disfunción Cognitiva , Acoplamiento Neurovascular , Enfermedad Arterial Periférica , Anciano , Envejecimiento/fisiología , Arteriolas , Circulación Cerebrovascular/fisiología , Humanos , Acoplamiento Neurovascular/fisiología
6.
Am J Physiol Heart Circ Physiol ; 320(2): H740-H761, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33337961

RESUMEN

Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.


Asunto(s)
Barrera Hematoencefálica/fisiopatología , Cognición , Disfunción Cognitiva/fisiopatología , Endotelio Vascular/fisiopatología , Microvasos/fisiopatología , Acoplamiento Neurovascular , Obesidad/fisiopatología , Factores de Edad , Anciano , Animales , Barrera Hematoencefálica/metabolismo , Envejecimiento Cognitivo , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/psicología , Endotelio Vascular/metabolismo , Femenino , Humanos , Masculino , Microcirculación , Microvasos/metabolismo , Obesidad/epidemiología , Obesidad/psicología , Obesidad/terapia , Medición de Riesgo , Factores de Riesgo
7.
Am J Physiol Heart Circ Physiol ; 320(4): H1370-H1392, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33543687

RESUMEN

Age-related blood-brain barrier (BBB) disruption and cerebromicrovascular rarefaction contribute importantly to the pathogenesis of both vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). Recent advances in geroscience research enable development of novel interventions to reverse age-related alterations of the cerebral microcirculation for prevention of VCID and AD. To facilitate this research, there is an urgent need for sensitive and easy-to-adapt imaging methods that enable longitudinal assessment of changes in BBB permeability and brain capillarization in aged mice and that could be used in vivo to evaluate treatment efficiency. To enable longitudinal assessment of changes in BBB permeability in aged mice equipped with a chronic cranial window, we adapted and optimized two different intravital two-photon imaging approaches. By assessing relative fluorescence changes over the baseline within a volume of brain tissue, after qualitative image subtraction of the brain microvasculature, we confirmed that, in 24-mo-old C57BL/6J mice, cumulative permeability of the microvessels to fluorescent tracers of different molecular masses (0.3 to 40 kDa) is significantly increased compared with that of 5-mo-old mice. Real-time recording of vessel cross-sections showed that apparent solute permeability of single microvessels is significantly increased in aged mice vs. young mice. Cortical capillary density, assessed both by intravital two-photon microscopy and optical coherence tomography was also decreased in aged mice vs. young mice. The presented methods have been optimized for longitudinal (over the period of 36 wk) in vivo assessment of cerebromicrovascular health in preclinical geroscience research.NEW & NOTEWORTHY Methods are presented for longitudinal detection of age-related increase in blood-brain barrier permeability and microvascular rarefaction in the mouse cerebral cortex by intravital two-photon microscopy and optical coherence tomography.


Asunto(s)
Envejecimiento/patología , Barrera Hematoencefálica/diagnóstico por imagen , Permeabilidad Capilar , Corteza Cerebral/irrigación sanguínea , Microscopía Intravital , Microscopía de Fluorescencia por Excitación Multifotónica , Rarefacción Microvascular , Microvasos/diagnóstico por imagen , Tomografía de Coherencia Óptica , Factores de Edad , Envejecimiento/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Masculino , Ratones Endogámicos C57BL , Densidad Microvascular , Microvasos/metabolismo , Microvasos/patología , Factores de Tiempo
8.
J Card Fail ; 27(5): 568-576, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33387632

RESUMEN

BACKGROUND: Autonomic dysregulation in heart failure with reduced ejection fraction plays a major role in endothelial dysfunction. Low-level tragus stimulation (LLTS) is a novel, noninvasive method of autonomic modulation. METHODS AND RESULTS: We enrolled 50 patients with heart failure with reduced ejection fraction (left ventricular ejection fraction of ≤40%) in a randomized, double-blinded, crossover study. On day 1, patients underwent 60 minutes of LLTS with a transcutaneous stimulator (20 Hz, 200 µs pulse width) or sham (ear lobule) stimulation. Macrovascular function was assessed using flow-mediated dilatation in the brachial artery and cutaneous microcirculation with laser speckle contrast imaging in the hand and nail bed. On day 2, patients were crossed over to the other study arm and underwent sham or LLTS; vascular tests were repeated before and after stimulation. Compared with the sham, LLTS improved flow-mediated dilatation by increasing the percent change in the brachial artery diameter (from 5.0 to 7.5, LLTS on day 1, P = .02; and from 4.9 to 7.1, LLTS on day 2, P = .003), compared with no significant change in the sham group (from 4.6 to 4.7, P = .84 on day 1; and from 5.6 to 5.9 on day 2, P = .65). Cutaneous microcirculation in the hand showed no improvement and perfusion of the nail bed showed a trend toward improvement. CONCLUSIONS: Our study demonstrated the beneficial effects of acute neuromodulation on macrovascular function. Larger studies to validate these findings and understand mechanistic links are warranted.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Estudios Cruzados , Insuficiencia Cardíaca/terapia , Humanos , Volumen Sistólico , Función Ventricular Izquierda
9.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466417

RESUMEN

Liposomes are highly biocompatible and versatile drug carriers with an increasing number of applications in the field of nuclear medicine and diagnostics. So far, only negatively charged liposomes with intercalated radiometals, e.g., 64Cu, 99mTc, have been reported. However, the process of cellular uptake of liposomes by endocytosis is rather slow. Cellular uptake can be accelerated by recently developed cationic liposomes, which exhibit extraordinarily high membrane fusion ability. The aim of the present study was the development of the formulation and the characterization of such cationic fusogenic liposomes with intercalated radioactive [131I]I- for potential use in therapeutic applications. The epithelial human breast cancer cell line MDA-MB-231 was used as a model for invasive cancer cells and cellular uptake of [131I]I- was monitored in vitro. Delivery efficiencies of cationic and neutral liposomes were compared with uptake of free iodide. The best cargo delivery efficiency (~10%) was achieved using cationic fusogenic liposomes due to their special delivery pathway of membrane fusion. Additionally, human blood cells were also incubated with cationic control liposomes and free [131I]I-. In these cases, iodide delivery efficiencies remained below 3%.


Asunto(s)
Cationes/química , Portadores de Fármacos/química , Radioisótopos de Yodo/administración & dosificación , Radioisótopos de Yodo/química , Liposomas/química , Nanopartículas/química , Animales , Células CHO , Línea Celular , Línea Celular Tumoral , Cricetulus , Endocitosis/efectos de los fármacos , Humanos , Fusión de Membrana/efectos de los fármacos
10.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560034

RESUMEN

The effects of the renin-angiotensin system (RAS) surpass the renal and cardiovascular systems to encompass other body tissues and organs, including the brain. Angiotensin II (Ang II), the most potent mediator of RAS in the brain, contributes to vascular dementia via different mechanisms, including neuronal homeostasis disruption, vascular remodeling, and endothelial dysfunction caused by increased inflammation and oxidative stress. Other RAS components of emerging significance at the level of the blood-brain barrier include angiotensin-converting enzyme 2 (ACE2), Ang(1-7), and the AT2, Mas, and AT4 receptors. The various angiotensin hormones perform complex actions on brain endothelial cells and pericytes through specific receptors that have either detrimental or beneficial actions. Increasing evidence indicates that the ACE2/Ang(1-7)/Mas axis constitutes a protective arm of RAS on the blood-brain barrier. This review provides an update of studies assessing the different effects of angiotensins on cerebral endothelial cells. The involved signaling pathways are presented and help highlight the potential pharmacological targets for the management of cognitive and behavioral dysfunctions associated with vascular dementia.


Asunto(s)
Demencia Vascular/metabolismo , Sistema Renina-Angiotensina , Animales , Barrera Hematoencefálica/metabolismo , Regulación de la Expresión Génica , Humanos , Transducción de Señal
11.
Am J Physiol Heart Circ Physiol ; 316(6): H1253-H1266, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30875255

RESUMEN

Age-related alterations in endothelium and the resulting vascular dysfunction critically contribute to a range of pathological conditions associated with old age. To develop therapies rationally that improve vascular health and thereby increase health span and life span in older adults, it will be essential to understand the cellular and molecular mechanisms contributing to vascular aging. Preclinical studies in model organisms demonstrate that NAD+ availability decreases with age in multiple tissues and that supplemental NAD+ precursors can ameliorate many age-related cellular impairments. Here, we provide a comprehensive overview of NAD+-dependent pathways [including the NAD+-using silent information regulator-2-like enzymes and poly(ADP-ribose) polymerase enzymes] and the potential consequences of endothelial NAD+ deficiency in vascular aging. The multifaceted vasoprotective effects of treatments that reverse the age-related decline in cellular NAD+ levels, as well as their potential limitations, are discussed. The preventive and therapeutic potential of NAD+ intermediates as effective, clinically relevant interventions in older adults at risk for ischemic heart disease, vascular cognitive impairment, and other common geriatric conditions and diseases that involve vascular pathologies (e.g., sarcopenia, frailty) are critically discussed. We propose that NAD+ precursors [e.g., nicotinamide (Nam) riboside, Nam mononucleotide, niacin] should be considered as critical components of combination therapies to slow the vascular aging process and increase cardiovascular health span.


Asunto(s)
Envejecimiento/metabolismo , Endotelio Vascular/metabolismo , NAD/deficiencia , Enfermedades Vasculares/metabolismo , Factores de Edad , Envejecimiento/patología , Animales , Senescencia Celular , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Metabolismo Energético , Humanos , Estrés Oxidativo , Transducción de Señal , Enfermedades Vasculares/patología , Enfermedades Vasculares/fisiopatología
12.
Am J Physiol Heart Circ Physiol ; 316(5): H1124-H1140, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30848677

RESUMEN

There has been an increasing appreciation of the role of vascular contributions to cognitive impairment and dementia (VCID) associated with old age. Strong preclinical and translational evidence links age-related dysfunction and structural alterations of the cerebral arteries, arterioles, and capillaries to the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. The low-pressure, low-velocity, and large-volume venous circulation of the brain also plays critical roles in the maintenance of homeostasis in the central nervous system. Despite its physiological importance, the role of age-related alterations of the brain venous circulation in the pathogenesis of vascular cognitive impairment and dementia is much less understood. This overview discusses the role of cerebral veins in the pathogenesis of VCID. Pathophysiological consequences of age-related dysregulation of the cerebral venous circulation are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages of venous origin, altered production of cerebrospinal fluid, impaired function of the glymphatics system, dysregulation of cerebral blood flow, and ischemic neuronal dysfunction and damage. Understanding the age-related functional and phenotypic alterations of the cerebral venous circulation is critical for developing new preventive, diagnostic, and therapeutic approaches to preserve brain health in older individuals.


Asunto(s)
Venas Cerebrales/fisiopatología , Circulación Cerebrovascular , Cognición , Envejecimiento Cognitivo/psicología , Disfunción Cognitiva/fisiopatología , Demencia Vascular/fisiopatología , Factores de Edad , Animales , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/psicología , Demencia Vascular/líquido cefalorraquídeo , Demencia Vascular/etiología , Demencia Vascular/psicología , Humanos , Factores de Riesgo
13.
Am J Physiol Heart Circ Physiol ; 314(2): H224-H235, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29030341

RESUMEN

Matrix metalloproteinase (MMP)-9 increases in the myocardium with advanced age and after myocardial infarction (MI). Because young transgenic (TG) mice overexpressing human MMP-9 only in macrophages show better outcomes post-MI, whereas aged TG mice show a worse aging phenotype, we wanted to evaluate the effect of aging superimposed on MI to see if the detrimental effect of aging counteracted the benefits of macrophage MMP-9 overexpression. We used 17- to 28-mo-old male and female C57BL/6J wild-type (WT) and TG mice ( n = 10-21 mice/group) to evaluate the effects of aging superimposed on MI. Despite similar infarct areas and mortality rates at day 7 post-MI, aging TG mice showed improved diastolic properties and remodeling index compared with WT mice (both P < 0.05). Macrophage numbers were higher in TG than WT mice at days 0 and 7 post-MI, and the post-MI increase was due to elevated cluster of differentiation 18 protein levels (all P < 0.05). RNA sequencing analysis of cardiac macrophages isolated from day 7 post-MI infarcts identified 1,276 statistically different (all P < 0.05) genes (994 increased and 282 decreased in TG mice). Reduced expression of vascular endothelial growth factor A, platelet-derived growth factor subunit A, and transforming growth factor-ß3, along with elevated expression of tissue inhibitor of MMP-4, in macrophages revealed mechanisms of indirect downstream effects on fibroblasts and neovascularization. While collagen accumulation was enhanced in TG mice compared with WT mice at days 0 and 7 post-MI ( P < 0.05 for both), the post-MI collagen cross-linking ratio was higher in WT mice ( P < 0.05), consistent with increased diastolic volumes. Vessel numbers [by Griffonia ( Bandeiraea) simplicifolia lectin I staining] were decreased in TG mice compared with WT mice at days 0 and 7 post-MI ( P < 0.05 for both). In conclusion, macrophage-derived MMP-9 improved post-MI cardiac wound healing through direct and indirect mechanisms to improve diastolic physiology and remodeling. NEW & NOTEWORTHY Aging mice with macrophage overexpression of matrix metalloproteinase-9 have increased macrophage numbers 7 days after myocardial infarction, resulting in improved diastolic physiology and left ventricular remodeling through effects on cardiac wound healing.


Asunto(s)
Macrófagos/enzimología , Metaloproteinasa 9 de la Matriz/biosíntesis , Infarto del Miocardio/enzimología , Miocardio/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Cicatrización de Heridas , Factores de Edad , Envejecimiento , Animales , Colágeno/metabolismo , Diástole , Modelos Animales de Enfermedad , Inducción Enzimática , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Mediadores de Inflamación/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Neovascularización Fisiológica , Fenotipo
14.
Am J Physiol Heart Circ Physiol ; 315(3): H522-H530, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29775405

RESUMEN

The generation of big data has enabled systems-level dissections into the mechanisms of cardiovascular pathology. Integration of genetic, proteomic, and pathophysiological variables across platforms and laboratories fosters discoveries through multidisciplinary investigations and minimizes unnecessary redundancy in research efforts. The Mouse Heart Attack Research Tool (mHART) consolidates a large data set of over 10 yr of experiments from a single laboratory for cardiovascular investigators to generate novel hypotheses and identify new predictive markers of progressive left ventricular remodeling after myocardial infarction (MI) in mice. We designed the mHART REDCap database using our own data to integrate cardiovascular community participation. We generated physiological, biochemical, cellular, and proteomic outputs from plasma and left ventricles obtained from post-MI and no-MI (naïve) control groups. We included both male and female mice ranging in age from 3 to 36 mo old. After variable collection, data underwent quality assessment for data curation (e.g., eliminate technical errors, check for completeness, remove duplicates, and define terms). Currently, mHART 1.0 contains >888,000 data points and includes results from >2,100 unique mice. Database performance was tested, and an example is provided to illustrate database utility. This report explains how the first version of the mHART database was established and provides researchers with a standard framework to aid in the integration of their data into our database or in the development of a similar database. NEW & NOTEWORTHY The Mouse Heart Attack Research Tool combines >888,000 cardiovascular data points from >2,100 mice. We provide this large data set as a REDCap database to generate novel hypotheses and identify new predictive markers of adverse left ventricular remodeling following myocardial infarction in mice and provide examples of use. The Mouse Heart Attack Research Tool is the first database of this size that integrates data sets across platforms that include genomic, proteomic, histological, and physiological data.


Asunto(s)
Bases de Datos Factuales , Infarto del Miocardio/patología , Programas Informáticos , Animales , Femenino , Masculino , Ratones , Infarto del Miocardio/fisiopatología , Remodelación Ventricular
15.
Am J Physiol Heart Circ Physiol ; 312(3): H375-H383, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011588

RESUMEN

Advancing age is an independent risk factor for cardiovascular disease. Matrix metalloproteinase-9 (MMP-9) is secreted by macrophages and robustly increases in the left ventricle (LV) with age. The present study investigated the effect of MMP-9 overexpression in macrophages on cardiac aging. We compared 16- to 21-mo-old C57BL/6J wild-type (WT) and transgenic (TG) male and female mice (n = 15-20/group). MMP-9 overexpression amplified the hypertrophic response to aging, as evidenced by increased LV wall thickness and myocyte cross-sectional areas (P < 0.05 for both). MMP-9 overexpression reduced LV expression of the angiogenesis-related factors ICAM-1, integrins α3 and ß3, platelet/endothelial cell adhesion molecule-1, thrombospondin-1, tenascin-c, and versican (all P < 0.05). Concomitantly, the number of vessels in the TG was lower than WT LV (P < 0.05). This led to a mismatch in the muscle-to-vessel ratio and resulted in increased cardiac inflammation. Out of 84 inflammatory genes analyzed, 16 genes increased in the TG compared with WT (all P < 0.05). Of the elevated genes, 14 were proinflammatory genes. The increase in cardiac inflammation resulted in greater accumulation of interstitial collagen in TG (P < 0.05). Fractional shortening was similar between groups, indicating that global cardiac function was still preserved at this age. In conclusion, overexpression of MMP-9 in macrophages resulted in exacerbated cardiac hypertrophy in the setting of vessel rarefaction, which resulted in enhanced inflammation and fibrosis to augment the cardiac-aging phenotype. Our results provide evidence that macrophage-derived MMP-9 may be a therapeutic target in elderly subjects.NEW & NOTEWORTHY The present study was the first to use mice with transgenic overexpression of matrix metalloproteinase-9 (MMP-9) in macrophages to examine the effects of macrophage-derived MMP-9 on cardiac aging. We found that an elevation in macrophage-derived MMP-9 induced a greater age-dependent cardiac hypertrophy and vessel rarefaction phenotype, which enhanced cardiac inflammation and fibrosis.


Asunto(s)
Envejecimiento/patología , Vasos Sanguíneos/fisiopatología , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Inflamación/fisiopatología , Metaloproteinasa 9 de la Matriz/genética , Animales , Cardiomegalia/diagnóstico por imagen , Tamaño de la Célula , Colágeno/metabolismo , Ecocardiografía , Femenino , Fibrosis , Ventrículos Cardíacos/patología , Humanos , Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/patología
16.
Basic Res Cardiol ; 112(3): 33, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28439731

RESUMEN

Inflammation resolution is important for scar formation following myocardial infarction (MI) and requires the coordinated actions of macrophages and fibroblasts. In this study, we hypothesized that exogenous interleukin-10 (IL-10), an anti-inflammatory cytokine, promotes post-MI repair through actions on these cardiac cell types. To test this hypothesis, C57BL/6J mice (male, 3- to 6-month old, n = 24/group) were treated with saline or IL-10 (50 µg/kg/day) by osmotic mini-pump infusion starting at day (d) 1 post-MI and sacrificed at d7 post-MI. IL-10 infusion doubled plasma IL-10 concentrations by d7 post-MI. Despite similar infarct areas and mortality rates, IL-10 treatment significantly decreased LV dilation (1.6-fold for end-systolic volume and 1.4-fold for end-diastolic volume) and improved ejection fraction 1.8-fold (both p < 0.05). IL-10 treatment attenuated inflammation at d7 post-MI, evidenced by decreased numbers of Mac-3-positive macrophages in the infarct (p < 0.05). LV macrophages isolated from d7 post-MI mice treated with IL-10 showed significantly elevated gene expression of M2 markers (Arg1, Ym1, and Tgfb1; all p < 0.05). We further performed RNA-seq analysis on post-MI cardiac macrophages and identified 410 significantly different genes (155 increased, 225 decreased by IL-10 treatment). By functional network analysis grouping, the majority of genes (133 out of 410) were part of the cellular assembly and repair functional group. Of these, hyaluronidase 3 (Hyal3) was the most important feature identified by p value. IL-10 treatment decreased Hyal3 by 28%, which reduced hyaluronan degradation and limited collagen deposition (all p < 0.05). In addition, in vivo IL-10 treatment increased fibroblast activation (proliferation, migration, and collagen production), an effect that was both directly and indirectly influenced by macrophage M2 polarization. Combined, our results indicate that in vivo infusion of IL-10 post-MI improves the LV microenvironment to dampen inflammation and facilitate cardiac wound healing.


Asunto(s)
Fibroblastos/inmunología , Interleucina-10/metabolismo , Macrófagos/inmunología , Infarto del Miocardio/fisiopatología , Remodelación Ventricular/fisiología , Animales , Diferenciación Celular/inmunología , Polaridad Celular , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-10/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL
17.
J Mol Cell Cardiol ; 85: 229-39, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26080361

RESUMEN

Matrix metalloproteinase-9 (MMP-9) deletion attenuates collagen accumulation and dilation of the left ventricle (LV) post-myocardial infarction (MI); however the biomechanical mechanisms underlying the improved outcome are poorly understood. The aim of this study was to determine the mechanisms whereby MMP-9 deletion alters collagen network composition and assembly in the LV post-MI to modulate the mechanical properties of myocardial scar tissue. Adult C57BL/6J wild-type (WT; n=88) and MMP-9 null (MMP-9(-/-); n=92) mice of both sexes underwent permanent coronary artery ligation and were compared to day 0 controls (n=42). At day 7 post-MI, WT LVs displayed a 3-fold increase in end-diastolic volume, while MMP-9(-/-) showed only a 2-fold increase (p<0.05). Biaxial mechanical testing revealed that MMP-9(-/-) infarcts were stiffer than WT infarcts, as indicated by a 1.3-fold reduction in predicted in vivo circumferential stretch (p<0.05). Paradoxically, MMP-9(-/-) infarcts had a 1.8-fold reduction in collagen deposition (p<0.05). This apparent contradiction was explained by a 3.1-fold increase in lysyl oxidase (p<0.05) in MMP-9(-/-) infarcts, indicating that MMP-9 deletion increased collagen cross-linking activity. Furthermore, MMP-9 deletion led to a 3.0-fold increase in bone morphogenetic protein-1, the metalloproteinase that cleaves pro-collagen and pro-lysyl oxidase (p<0.05) and reduced fibronectin fragmentation by 49% (p<0.05) to enhance lysyl oxidase activity. We conclude that MMP-9 deletion increases infarct stiffness and prevents LV dilation by reducing collagen degradation and facilitating collagen assembly and cross-linking through preservation of the fibronectin network and activation of lysyl oxidase.


Asunto(s)
Colágeno/metabolismo , Ventrículos Cardíacos/patología , Infarto del Miocardio/metabolismo , Remodelación Ventricular , Animales , Volumen Cardíaco , Femenino , Ventrículos Cardíacos/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Función Ventricular Izquierda
18.
IUBMB Life ; 67(8): 611-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26269290

RESUMEN

Matrix metalloproteinase-9 (MMP-9) regulates remodeling of the left ventricle after myocardial infarction (MI) and is tightly linked to the inflammatory response. The inflammatory response serves to recruit leukocytes as part of the wound healing reaction to the MI injury, and infiltrated leukocytes produce cytokines and chemokines that stimulate MMP-9 production and release. In turn, MMP-9 proteolyzes cytokines and chemokines. Although in most cases, MMP-9 cleavage of the cytokine or chemokine substrate serves to increase activity, there are cases where cleavage results in reduced activity. Global MMP-9 deletion in mouse MI models has proven beneficial, suggesting inhibition of some aspects of MMP-9 activity may be valuable for clinical use. At the same time, overexpression of MMP-9 in macrophages has also proven beneficial, indicating that we still do not fully understand the complexity of MMP-9 mechanisms of action. In this review, we summarize the cycle of MMP-9 effects on cytokine production and cleavage to regulate leukocyte functions. Although we use MI as the example process, similar events occur in other inflammatory and wound healing conditions.


Asunto(s)
Inflamación/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Infarto del Miocardio/genética , Remodelación Ventricular/genética , Animales , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Leucocitos/metabolismo , Metaloproteinasa 9 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/genética , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Cicatrización de Heridas
19.
Physiology (Bethesda) ; 28(6): 391-403, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24186934

RESUMEN

Matrix metalloproteinase (MMP)-9, one of the most widely investigated MMPs, regulates pathological remodeling processes that involve inflammation and fibrosis in cardiovascular disease. MMP-9 directly degrades extracellular matrix (ECM) proteins and activates cytokines and chemokines to regulate tissue remodeling. MMP-9 deletion or inhibition has proven overall beneficial in multiple animal models of cardiovascular disease. As such, MMP-9 expression and activity is a common end point measured. MMP-9 cell-specific overexpression, however, has also proven beneficial and highlights the fact that little information is available on the underlying mechanisms of MMP-9 function. In this review, we summarize our current understanding of MMP-9 physiology, including structure, regulation, activation, and downstream effects of increased MMP-9. We discuss MMP-9 roles during inflammation and fibrosis in cardiovascular disease. By concentrating on the substrates of MMP-9 and their roles in cardiovascular disease, we explore the overall function and discuss future directions on the translational potential of MMP-9 based therapies.


Asunto(s)
Enfermedades Cardiovasculares/enzimología , Sistema Cardiovascular/enzimología , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/patología , Sistema Cardiovascular/fisiopatología , Fibrosis , Regulación Enzimológica de la Expresión Génica , Humanos , Inflamación/enzimología , Inflamación/patología , Inflamación/fisiopatología , Metaloproteinasa 9 de la Matriz/química , Metaloproteinasa 9 de la Matriz/genética , Conformación Proteica , Transducción de Señal , Relación Estructura-Actividad , Especificidad por Sustrato
20.
Am J Physiol Heart Circ Physiol ; 306(10): H1398-407, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24658018

RESUMEN

Aging is linked to increased matrix metalloproteinase-9 (MMP-9) expression and extracellular matrix turnover, as well as a decline in function of the left ventricle (LV). Previously, we demonstrated that C57BL/6J wild-type (WT) mice > 18 mo of age show impaired diastolic function, which was attenuated by MMP-9 deletion. To evaluate mechanisms that initiate the development of cardiac dysfunction, we compared the LVs of 6-9- and 15-18-mo-old WT and MMP-9 null (Null) mice. All groups showed similar LV function by echocardiography, indicating that dysfunction had not yet developed in the older group. Myocyte nuclei numbers and cross-sectional areas increased in both WT and Null 15-18-mo mice compared with young controls, indicating myocyte hypertrophy. Myocyte hypertrophy leads to an increased oxygen demand, and both WT and Null 15-18-mo mice showed an increase in angiogenic signaling. Plasma proteomic profiling and LV analysis revealed a threefold increase in von Willebrand factor and fivefold increase in vascular endothelial growth factor in WT 15-18-mo mice, which were further elevated in Null mice. In contrast to the upregulation of angiogenic stimulating factors, actual LV vessel numbers increased only in the 15-18-mo Null LV. The 15-18-mo WT showed amplified expression of inflammatory genes related to angiogenesis, including C-C chemokine receptor (CCR)7, CCR10, interleukin (IL)-1f8, IL-13, and IL-20 (all, P < 0.05), and these increases were blunted by MMP-9 deletion (all, P < 0.05). To measure vascular permeability as an index of endothelial function, we injected mice with FITC-labeled dextran. The 15-18-mo WT LV showed increased vascular permeability compared with young WT controls and 15-18-mo Null mice. Combined, our findings revealed that MMP-9 deletion improves angiogenesis, attenuates inflammation, and prevents vascular leakiness in the setting of cardiac aging.


Asunto(s)
Envejecimiento/fisiología , Endotelio Vascular/fisiopatología , Corazón/fisiopatología , Metaloproteinasa 9 de la Matriz/fisiología , Neovascularización Fisiológica/fisiología , Animales , Endotelio Vascular/patología , Femenino , Hipertrofia , Masculino , Metaloproteinasa 9 de la Matriz/deficiencia , Metaloproteinasa 9 de la Matriz/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Miocitos Cardíacos/patología , Fenotipo , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA