Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Acc Chem Res ; 51(6): 1532-1540, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29792673

RESUMEN

Releasing greenhouse gases into the atmosphere because of widespread use of fossil fuels by humankind has resulted in raising the earth's temperature during the past few decades. Known as global warming, increasing the earth's temperature may in turn endanger civilization on the earth by starting a cycle of environmental changes including climate change and sea level rise. Therefore, replacing fossil fuels with more sustainable energy resources has been considered as one of the main strategies to tackle the global warming crisis. In this regard, energy saving devices are required to store the energy from sustainable resources like wind and solar when they are available and deliver them on demand. Moreover, developing plug-in electric vehicles (PEVs) as an alternative for internal combustion engines has been extensively pursued, since a major sector of fossil fuels is used for transportation purposes. However, currently available battery systems fail to meet the required demands for energy storage. Alkali metal-O2 battery systems demonstrate a promising prospect as a high-energy density solution regarding the increasing demand of mankind for energy storage. Combining a metallic negative electrode with a breathing oxygen electrode, a metal-O2 cell can be considered as a half battery/half fuel cell system. The negative electrode in the metal-O2 cells operates a conversion reaction rather than intercalation mechanism, which eliminates the need for a host lattice. In addition, the positive electrode material (O2) comes from the ambient air and hence is not stored in the battery. Therefore, the resultant battery systems exhibit the highest theoretical energy density, which is comparable to that of gasoline. Accordingly, an unprecedented amount of research activity was directed toward alkali metal-O2 batteries in the past decade in response to the need for high-energy storage technology in electric transportation. This extensive research surge has resulted in a rapid expansion of our knowledge about alkali metal-O2 batteries. The present Account summarizes the most recent findings over the underlying chemistry of all components in Na-O2 cells as one of the most efficient members of alkali metal-O2 family.

2.
J Am Chem Soc ; 139(2): 595-598, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28004929

RESUMEN

23Na MAS NMR spectra of sodium-oxygen (Na-O2) cathodes reveals a combination of degradation species: newly observed sodium fluoride (NaF) and the expected sodium carbonate (Na2CO3), as well as the desired reaction product sodium peroxide (Na2O2). The initial reaction product, sodium superoxide (NaO2), is not present in a measurable quantity in the 23Na NMR spectra of the cycled electrodes. The reactivity of solid NaO2 is probed further, and NaF is found to be formed through a reaction between the electrochemically generated NaO2 and the electrode binder, polyvinylidene fluoride (PVDF). The instability of cell components in the presence of desired electrochemical reaction products is clearly problematic and bears further investigation.

3.
ACS Catal ; 13(2): 1349-1358, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36714053

RESUMEN

The rational construction of efficient and low-cost electrocatalysts for the hydrogen evolution reaction (HER) is critical to seawater electrolysis. Herein, trimetallic heterostructured core-shell nanoboxes based on Prussian blue analogues (Ni-Co@Fe-Co PBA) were synthesized using an iterative coprecipitation strategy. The same coprecipitation procedure was used for the preparation of the PBA core and shell, with the synthesis of the shell involving chemical etching during the introduction of ferrous ions. Due to its unique structure and composition, the optimized trimetallic Ni-Co@Fe-Co PBA possesses more active interfacial sites and a high specific surface area. As a result, the developed Ni-Co@Fe-Co PBA electrocatalyst exhibits remarkable electrocatalytic HER performance with small overpotentials of 43 and 183 mV to drive a current density of 10 mA cm-2 in alkaline freshwater and simulated seawater, respectively. Operando Raman spectroscopy demonstrates the evolution of Co2+ from Co3+ in the catalyst during HER. Density functional theory simulations reveal that the H*-N adsorption sites lower the barrier energy of the rate-limiting step, and the introduced Fe species improve the electron mobility of Ni-Co@Fe-Co PBA. The charge transfer at the core-shell interface leads to the generation of H* intermediates, thereby enhancing the HER activity. By pairing this HER catalyst (Ni-Co@Fe-Co PBA) with another core-shell PBA OER catalyst (NiCo@A-NiCo-PBA-AA) reported by our group, the fabricated two-electrode electrolyzer was found to achieve high output current densities of 44 and 30 mA cm-2 at a low voltage of 1.6 V in alkaline freshwater and simulated seawater, respectively, exhibiting remarkable durability over a 100 h test.

4.
Adv Sci (Weinh) ; 9(15): e2200146, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35338616

RESUMEN

Here, a sol-gel method is used to prepare a Prussian blue analogue (NiFe-PBA) precursor with a 2D network, which is further annealed to an Fe3 O4 /NiCx composite (NiFe-PBA-gel-cal), inheriting the ultrahigh specific surface area of the parent structure. When the composite is used as both anode and cathode catalyst for overall water splitting, it requires low voltages of 1.57 and 1.66 V to provide a current density of 100 mA cm-2 in alkaline freshwater and simulated seawater, respectively, exhibiting no obvious attenuation over a 50 h test. Operando Raman spectroscopy and X-ray photoelectron spectroscopy indicate that NiOOH2-x active species containing high-valence Ni3+ /Ni4+ are in situ generated from NiCx during the water oxidation. Density functional theory calculations combined with ligand field theory reveal that the role of high valence states of Ni is to trigger the production of localized O 2p electron holes, acting as electrophilic centers for the activation of redox reactions for oxygen evolution reaction. After hydrogen evolution reaction, a series of ex situ and in situ investigations indicate the reduction from Fe3+ to Fe2+ and the evolution of Ni(OH)2 are the origin of the high activity.

5.
J Mater Chem A Mater ; 10(11): 6023-6030, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35401983

RESUMEN

Single-atom catalysts, in particular the Fe-N-C family of materials, have emerged as a promising alternative to platinum group metals in fuel cells as catalysts for the oxygen reduction reaction. Numerous theoretical studies have suggested that dual atom catalysts can appreciably accelerate catalytic reactions; nevertheless, the synthesis of these materials is highly challenging owing to metal atom clustering and aggregation into nanoparticles during high temperature synthesis treatment. In this work, dual metal atom catalysts are prepared by controlled post synthetic metal-coordination in a C2N-like material. The configuration of the active sites was confirmed by means of X-ray adsorption spectroscopy and scanning transmission electron microscopy. During oxygen reduction, the catalyst exhibited an activity of 2.4 ± 0.3 A gcarbon -1 at 0.8 V versus a reversible hydrogen electrode in acidic media, comparable to the most active in the literature. This work provides a novel approach for the targeted synthesis of catalysts containing dual metal sites in electrocatalysis.

6.
J Biomed Phys Eng ; 11(2): 215-228, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33937128

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a common form of dementia, characterized by production and deposition of ß-amyloid peptide in the brain. Thus, ß-amyloid peptide is a potentially promising biomarker used to diagnose and monitor the progression of AD. OBJECTIVE: The study aims to develop a biosensor based on a molecularly imprinted poly-pyrrole for detection of ß-amyloid. MATERIAL AND METHODS: In this experimental study, an imprinted poly-pyrrole was employed as an artificial receptor synthesized by electro-polymerization of pyrrole on screen-printed carbon electrodes in the presence of ß-amyloid. ß-amyloid acts as a molecular template within the polymer. The biosensor was evaluated by cyclic voltammetry using ferro/ferricyanide marker. The parameters influencing the biosensor performance, including electro-polymerization cycle umbers and ß-amyloid binding time were optimized to achieve the best biosensor sensitivity. RESULTS: The ß-amyloid binding affinity with the biosensor surface was evaluated by the Freundlich isotherm, and Freundlich constant and exponent were obtained as 0.22 ng mL-1 and 10.60, respectively. The biosensor demonstrated a detection limit of 1.2 pg mL-1. The biosensor was applied for ß-amyloid determination in artificial cerebrospinal fluid. CONCLUSION: The biosensor is applicable for early Alzheimer's disease detection.

7.
Iran J Pharm Res ; 19(1): 120-137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922475

RESUMEN

An electrochemical sensor was designed and fabricated for electrocatalytic oxidation and determination of famotidine in pharmaceutical forms. The electrochemical oxidation process and its kinetics were investigated using cyclic voltammetry, steady-state polarization measurements, and chronoamperometry techniques, and also the analytical measurements were performed by amperometry. Upon addition of the drug into the solution, cyclic voltammograms of the fabricated sensor exhibited an increased anodic peak current associated with a decrease in the corresponding cathodic current. These results suggested an electrocatalytic EC' oxidation mechanism for famotidine on the oxyhydroxide species immobilized on the electrode surface. Accordingly, a mechanism involving generation of Ni3+ active sites and their subsequent consumption by the drug was proposed. Moreover, the corresponding rate law under the control of charge transfer was developed and kinetic parameters were derived. A sensitive and time-saving amperometric procedure was also developed for the analysis of famotidine with a detection limit of 5.91 mmol L-1. Using the developed amperometric procedure, famotidine was successfully analyzed in the presence of ibuprofen. The developed sensor in this study displayed enhanced sensitivity and selectivity, compared to some other reported methods.

8.
ACS Appl Mater Interfaces ; 10(28): 23748-23756, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29932623

RESUMEN

Low-cost, high-energy-density, and highly efficient devices for energy storage have long been desired in our society. Herein, a novel high-energy-density hybrid sodium-air cell was fabricated successfully on the basis of acidic catholytes. Such a hybrid sodium-air cell possess a high theoretical voltage of 3.94 V, capacity of 1121 mAh g-1, and energy density of 4418 Wh kg-1. First, the buffering effect of an acidic solution was demonstrated, which provides relatively long and stable cell discharge behaviors. Second, the catholytes of hybrid sodium-air cells were optimized systematically from the solutions of 0.1 M H3PO4 + 0.1 M Na2SO4 to 0.1 M HAc + 0.1 M NaAc and it was found that the cells with 0.1 M H3PO4 + 0.1 M Na2SO4 displayed a maximum power density of 34.9 mW cm-2. The cell with 0.1 M H3PO4 + 0.1 M Na2SO4 displayed higher discharge capacity of 896 mAh g-1. Moreover, the fabricated acidic hybrid sodium-air cells exhibited stable cycling performance in ambient air and they delivered a low voltage gap around 0.3 V when the current density is 0.13 mA cm-2, leading to a high energy efficiency up to 90%. Therefore, the present study provides new opportunities to develop highly cost-effective energy storage technologies.

9.
J Phys Chem Lett ; 8(19): 4794-4800, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28926257

RESUMEN

Sodium-oxygen batteries have received a significant amount of research attention as a low-overpotential alternative to lithium-oxygen. However, the critical factors governing the composition and morphology of the discharge products in Na-O2 cells are not thoroughly understood. Here we show that oxygen containing functional groups at the air electrode surface have a substantial role in the electrochemical reaction mechanisms in Na-O2 cells. Our results show that the presence of functional groups at the air-electrode surface conducts the growth mechanism of discharge products toward a surface-mediated mechanism, forming a conformal film of products at the electrode surface. In addition, oxygen reduction reaction at hydrophilic surfaces more likely passes through a peroxide pathway, which results in the formation of peroxide-based discharge products. Moreover, in-line X-ray diffraction combined with solid state 23Na NMR results indicate the instability of discharge products against carbonaceous electrodes. The findings of this study help to explain the inconsistency among various reports on composition and morphology of the discharge products in Na-O2 cells and allow the precise control over the discharge products.

10.
Adv Mater ; 29(18)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28256756

RESUMEN

Na-metal batteries are considered as the promising alternative candidate for Li-ion battery beneficial from the wide availability and low cost of sodium, high theoretical specific capacity, and high energy density based on the plating/stripping processes and lowest electrochemical potential. For Na-metal batteries, the crucial problem on metallic Na is one of the biggest challenges. Mossy or dendritic growth of Na occurs in the repetitive Na stripping/plating process with an unstable solid electrolyte interphase layer of nonuniform ionic flux, which can not only lead to the low Coulombic efficiency, but also can create short circuit risks, resulting in possible burning or explosion. In this communication, the atomic layer deposition of Al2 O3 coating is first demonstrated for the protection of metallic Na anode for Na-metal batteries. By protecting Na foil with ultrathin Al2 O3 layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved. Furthermore, the thickness of protective layer has been further optimized with 25 cycles of Al2 O3 layer presenting the best performance over 500 cycles. The novel design of atomic layer deposition protected metal Na anode may bring in new opportunities to the realization of the next-generation high energy-density Na metal batteries.

11.
Adv Mater ; 28(33): 7065-93, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27258965

RESUMEN

Alkali metal-oxygen (Li-O2 , Na-O2 ) batteries have attracted a great deal of attention recently due to their high theoretical energy densities, comparable to gasoline, making them attractive candidates for application in electrical vehicles. However, the limited cycling life and low energy efficiency (high charging overpotential) of these cells hinder their commercialization. The Li-O2 battery system has been extensively studied in this regard during the past decade. Compared to the numerous reports of Li-O2 batteries, the research on Na-O2 batteries is still in its infancy. Although, Na-O2 batteries show a number of attractive properties such as low charging overpotential and high round-trip energy efficiency, their cycling life is currently limited to a few tens of cycles. Therefore, understanding the chemistry behind Na-O2 cells is critical towards enhancing their performance and advancing their development. Chemical and electrochemical reactions of Na-O2 batteries are reviewed and compared with those of Li-O2 batteries in the present review, as well as recent works on the chemical composition and morphology of the discharge products in these batteries. Furthermore, the determining kinetics factors for controlling the chemical composition of the discharge products in Na-O2 cells are discussed and the potential research directions toward improving Na-O2 cells are proposed.

12.
Chem Commun (Camb) ; 49(100): 11731-3, 2013 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-24136098

RESUMEN

Nitrogen-doped graphene nanosheets (N-GNSs) displayed a discharge capacity two times greater than their pristine counterpart, as well as superior electrocatalytic activity as a cathode material for sodium-air batteries. The enhanced performance of N-GNSs is attributed to the active sites introduced by nitrogen doping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA