RESUMEN
Vasaikar et al. report a comprehensive proteogenomic analysis of 110 colon cancer samples to identify a variety of potential signaling and metabolic targets, neoantigens, and biomarkers. This resource helps expand our understanding of the fundamental pathophysiology of this tumor type, and future mechanistic studies should help guide novel therapeutic strategies for colon cancer treatment.
Asunto(s)
Neoplasias del Colon , Proteogenómica , Antígenos , HumanosRESUMEN
Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.
Asunto(s)
Fosfotirosina , Proteínas Tirosina Quinasas , Especificidad por Sustrato , Tirosina , Animales , Humanos , Secuencias de Aminoácidos , Evolución Molecular , Espectrometría de Masas , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Proteínas Tirosina Quinasas/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteómica , Transducción de Señal , Dominios Homologos src , Tirosina/metabolismo , Tirosina/químicaRESUMEN
It is increasingly appreciated that oncogenic transformation alters cellular metabolism to facilitate cell proliferation, but less is known about the metabolic changes that promote cancer cell aggressiveness. Here, we analyzed metabolic gene expression in cancer cell lines and found that a set of high-grade carcinoma lines expressing mesenchymal markers share a unique 44 gene signature, designated the "mesenchymal metabolic signature" (MMS). A FACS-based shRNA screen identified several MMS genes as essential for the epithelial-mesenchymal transition (EMT), but not for cell proliferation. Dihydropyrimidine dehydrogenase (DPYD), a pyrimidine-degrading enzyme, was highly expressed upon EMT induction and was necessary for cells to acquire mesenchymal characteristics in vitro and for tumorigenic cells to extravasate into the mouse lung. This role of DPYD was mediated through its catalytic activity and enzymatic products, the dihydropyrimidines. Thus, we identify metabolic processes essential for the EMT, a program associated with the acquisition of metastatic and aggressive cancer cell traits.
Asunto(s)
Transición Epitelial-Mesenquimal , Pirimidinas/metabolismo , Animales , Carcinoma/metabolismo , Línea Celular Tumoral , Dihidrouracilo Deshidrogenasa (NADP)/genética , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Ratones , ARN Interferente Pequeño/metabolismoRESUMEN
Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.
Asunto(s)
Fosfoproteínas , Proteínas Serina-Treonina Quinasas , Proteoma , Serina , Treonina , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Especificidad por Sustrato , Treonina/metabolismo , Proteoma/química , Proteoma/metabolismo , Conjuntos de Datos como Asunto , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Línea Celular , Fosfoserina/metabolismo , Fosfotreonina/metabolismoRESUMEN
Crosstalk and complexity within signaling pathways and their perturbation by oncogenes limit component-by-component approaches to understanding human disease. Network analysis of how normal and oncogenic signaling can be rewired by drugs may provide opportunities to target tumors with high specificity and efficacy. Using targeted inhibition of oncogenic signaling pathways, combined with DNA-damaging chemotherapy, we report that time-staggered EGFR inhibition, but not simultaneous coadministration, dramatically sensitizes a subset of triple-negative breast cancer cells to genotoxic drugs. Systems-level analysis-using high-density time-dependent measurements of signaling networks, gene expression profiles, and cell phenotypic responses in combination with mathematical modeling-revealed an approach for altering the intrinsic state of the cell through dynamic rewiring of oncogenic signaling pathways. This process converts these cells to a less tumorigenic state that is more susceptible to DNA damage-induced cell death by reactivation of an extrinsic apoptotic pathway whose function is suppressed in the oncogene-addicted state.
Asunto(s)
Antineoplásicos/administración & dosificación , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Quimioterapia Combinada/métodos , Receptores ErbB/antagonistas & inhibidores , Transducción de Señal , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Caspasa 8 , Línea Celular Tumoral , Daño del ADN , Receptores ErbB/metabolismo , Femenino , Humanos , Redes y Vías Metabólicas , Modelos BiológicosRESUMEN
Neutrophils sense microbes and host inflammatory mediators, and traffic to sites of infection where they direct a broad armamentarium of antimicrobial products against pathogens. Neutrophils are also activated by damage-associated molecular patterns (DAMPs), which are products of cellular injury that stimulate the innate immune system through pathways that are similar to those activated by microbes. Neutrophils and platelets become activated by injury, and cluster and cross-signal to each other with the cumulative effect of driving antimicrobial defense and hemostasis. In addition, neutrophil extracellular traps are extracellular chromatin and granular constituents that are generated in response to microbial and damage motifs and are pro-thrombotic and injurious. Although neutrophils can worsen tissue injury, neutrophils may also have a role in facilitating wound repair following injury. A central theme of this review relates to how critical functions of neutrophils that evolved to respond to infection and damage modulate the tumor microenvironment (TME) in ways that can promote or limit tumor progression. Neutrophils are reprogrammed by the TME, and, in turn, can cross-signal to tumor cells and reshape the immune landscape of tumors. Importantly, promising new therapeutic strategies have been developed to target neutrophil recruitment and function to make cancer immunotherapy more effective.
Asunto(s)
Trampas Extracelulares , Neutrófilos , Humanos , Plaquetas/metabolismo , Plaquetas/patología , Células Endoteliales , Inflamación , Linfocitos T , Trampas Extracelulares/metabolismoRESUMEN
The surprising decision by Novo Nordisk Foundation (NNF) to discontinue funding for the Center for Protein Research in Copenhagen should prompt discussions about public and private commitment to support basic research.
RESUMEN
Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(ßTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.
Asunto(s)
Fosfoserina/química , Fosfotreonina/química , Estructura Terciaria de Proteína , Proteínas/química , Ciclo Celular/genética , Daño del ADN , Reparación del ADN , Humanos , Modelos Moleculares , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Unión Proteica , Proteínas/genética , Proteínas/metabolismoRESUMEN
Signaling networks respond to diverse stimuli, but how the state of the signaling network is relayed to downstream cellular responses is unclear. We modeled how incremental activation of signaling molecules is transmitted to control apoptosis as a function of signal strength and dynamic range. A linear relationship between signal input and response output, with the dynamic range of signaling molecules uniformly distributed across activation states, most accurately predicted cellular responses. When nonlinearized signals with compressed dynamic range relay network activation to apoptosis, we observe catastrophic, stimulus-specific prediction failures. We develop a general computational technique, "model-breakpoint analysis," to analyze the mechanism of these failures, identifying new time- and stimulus-specific roles for Akt, ERK, and MK2 kinase activity in apoptosis, which were experimentally verified. Dynamic range is rarely measured in signal-transduction studies, but our experiments using model-breakpoint analysis suggest it may be a greater determinant of cell fate than measured signal strength.
Asunto(s)
Citocinas/metabolismo , Modelos Biológicos , Transducción de Señal , Biología de Sistemas/métodos , Animales , Apoptosis , HumanosRESUMEN
Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2 deletion affects proliferation and metabolism in nontransformed, nonimmortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis.
Asunto(s)
Fibroblastos/metabolismo , Metaboloma/genética , Nucleótidos/metabolismo , Piruvato Quinasa/genética , Animales , Ciclo Celular/genética , Proliferación Celular , ADN/biosíntesis , Embrión de Mamíferos , Fibroblastos/citología , Regulación de la Expresión Génica , Redes y Vías Metabólicas/genética , Ratones , Ratones Noqueados , Cultivo Primario de Células , Piruvato Quinasa/deficiencia , Transducción de SeñalRESUMEN
Specificity within protein kinase signaling cascades is determined by direct and indirect interactions between kinases and their substrates. While the impact of localization and recruitment on kinase-substrate targeting can be readily assessed, evaluating the relative importance of direct phosphorylation site interactions remains challenging. In this study, we examine the STE20 family of protein serine-threonine kinases to investigate basic mechanisms of substrate targeting. We used peptide arrays to define the phosphorylation site specificity for the majority of STE20 kinases and categorized them into four distinct groups. Using structure-guided mutagenesis, we identified key specificity-determining residues within the kinase catalytic cleft, including an unappreciated role for the kinase ß3-αC loop region in controlling specificity. Exchanging key residues between the STE20 kinases p21-activated kinase 4 (PAK4) and Mammalian sterile 20 kinase 4 (MST4) largely interconverted their phosphorylation site preferences. In cells, a reprogrammed PAK4 mutant, engineered to recognize MST substrates, failed to phosphorylate PAK4 substrates or to mediate remodeling of the actin cytoskeleton. In contrast, this mutant could rescue signaling through the Hippo pathway in cells lacking multiple MST kinases. These observations formally demonstrate the importance of catalytic site specificity for directing protein kinase signal transduction pathways. Our findings further suggest that phosphorylation site specificity is both necessary and sufficient to mediate distinct signaling outputs of STE20 kinases and imply broad applicability to other kinase signaling systems.
Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Quinasas p21 Activadas/metabolismo , Catálisis , Línea Celular , Humanos , Mutagénesis/genética , Mutagénesis/fisiología , Fosforilación/genética , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Quinasas p21 Activadas/genéticaRESUMEN
Targeting protein - protein interactions (PPIs) has emerged as an important area of discovery for anticancer therapeutic development. In the case of phospho-dependent PPIs, such as the polo-like kinase 1 (Plk1) polo-box domain (PBD), a phosphorylated protein residue can provide high-affinity recognition and binding to target protein hot spots. Developing antagonists of the Plk1 PBD can be particularly challenging if one relies solely on interactions within and proximal to the phospho-binding pocket. Fortunately, the affinity of phospho-dependent PPI antagonists can be significantly enhanced by taking advantage of interactions in both the phospho-binding site and hidden "cryptic" pockets that may be revealed on ligand binding. In our current paper, we describe the design and synthesis of macrocyclic peptide mimetics directed against the Plk1 PBD, which are characterized by a new glutamic acid analog that simultaneously serves as a ring-closing junction that provides accesses to a cryptic binding pocket, while at the same time achieving proper orientation of a phosphothreonine (pT) residue for optimal interaction in the signature phospho-binding pocket. Macrocycles prepared with this new amino acid analog introduce additional hydrogen-bonding interactions not found in the open-chain linear parent peptide. It is noteworthy that this new glutamic acid-based amino acid analog represents the first example of extremely high affinity ligands where access to the cryptic pocket from the pT-2 position is made possible with a residue that is not based on histidine. The concepts employed in the design and synthesis of these new macrocyclic peptide mimetics should be useful for further studies directed against the Plk1 PBD and potentially for ligands directed against other PPI targets.
Asunto(s)
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Quinasa Tipo Polo 1RESUMEN
Chronic inflammation is a major risk factor for colorectal cancer. The p38/MAPKAP Kinase 2 (MK2) kinase axis controls the synthesis of proinflammatory cytokines that mediate both chronic inflammation and tumor progression. Blockade of this pathway has been previously reported to suppress inflammation and to prevent colorectal tumorigenesis in a mouse model of inflammation-driven colorectal cancer, by mechanisms that are still unclear. Here, using whole-animal and tissue-specific MK2 KO mice, we show that MK2 activity in the myeloid compartment promotes tumor progression by supporting tumor neoangiogenesis in vivo. Mechanistically, we demonstrate that MK2 promotes polarization of tumor-associated macrophages into protumorigenic, proangiogenic M2-like macrophages. We further confirmed our results in human cell lines, where MK2 chemical inhibition in macrophages impairs M2 polarization and M2 macrophage-induced angiogenesis. Together, this study provides a molecular and cellular mechanism for the protumorigenic function of MK2.
Asunto(s)
Neoplasias Colorrectales/irrigación sanguínea , Neoplasias Colorrectales/epidemiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/enzimología , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Macrófagos/patología , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
OBJECTIVES: Sepsis and sterile both release "danger signals' that induce the systemic inflammatory response syndrome (SIRS). So differentiating infection from SIRS can be challenging. Precision diagnostic assays could limit unnecessary antibiotic use, improving outcomes. METHODS: After surveying human leukocyte cytokine production responses to sterile damage-associated molecular patterns (DAMPs), bacterial pathogen-associated molecular patterns, and bacteria we created a multiplex assay for 31 cytokines. We then studied plasma from patients with bacteremia, septic shock, "severe sepsis," or trauma (ISS ≥15 with circulating DAMPs) as well as controls. Infections were adjudicated based on post-hospitalization review. Plasma was studied in infection and injury using univariate and multivariate means to determine how such multiplex assays could best distinguish infective from noninfective SIRS. RESULTS: Infected patients had high plasma interleukin (IL)-6, IL-1α, and triggering receptor expressed on myeloid cells-1 (TREM-1) compared to controls [false discovery rates (FDR) <0.01, <0.01, <0.0001]. Conversely, injury suppressed many mediators including MDC (FDR <0.0001), TREM-1 (FDR <0.001), IP-10 (FDR <0.01), MCP-3 (FDR <0.05), FLT3L (FDR <0.05), Tweak, (FDR <0.05), GRO-α (FDR <0.05), and ENA-78 (FDR <0.05). In univariate studies, analyte overlap between clinical groups prevented clinical relevance. Multivariate models discriminated injury and infection much better, with the 2-group random-forest model classifying 11/11 injury and 28/29 infection patients correctly in out-of-bag validation. CONCLUSIONS: Circulating cytokines in traumatic SIRS differ markedly from those in health or sepsis. Variability limits the accuracy of single-mediator assays but machine learning based on multiplexed plasma assays revealed distinct patterns in sepsis- and injury-related SIRS. Defining biomarker release patterns that distinguish specific SIRS populations might allow decreased antibiotic use in those clinical situations. Large prospective studies are needed to validate and operationalize this approach.
Asunto(s)
Citocinas/sangre , Sepsis/sangre , Sepsis/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Informes Anuales como Asunto , Diagnóstico Diferencial , Cirugía General , Pruebas Hematológicas/métodos , Humanos , Estudios Prospectivos , Sepsis/inmunología , Sociedades Médicas , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Estados UnidosRESUMEN
OBJECTIVES: Trauma predisposes to systemic sterile inflammation (systemic inflammatory response syndrome) as well as infection, but the mechanisms linking injury to infection are poorly understood. Mitochondrial debris contains formyl peptides. These bind formyl peptide receptor-1, trafficking neutrophils to wounds, initiating systemic inflammatory response syndrome, and wound healing. Bacterial formyl peptides, however, also attract neutrophils via formyl peptide receptor-1. Thus, mitochondrial formyl peptides might suppress neutrophils antimicrobial function. Also, formyl peptide receptor-1 blockade used to mitigate systemic inflammatory response syndrome might predispose to sepsis. We examined how mitochondrial formyl peptides impact neutrophils functions contributing to antimicrobial responses and how formyl peptide receptor-1 antagonists affect those functions. DESIGN: Prospective study of human and murine neutrophils and clinical cohort analysis. SETTING: University research laboratory and level 1 trauma center. PATIENTS: Trauma patients, volunteer controls. ANIMAL SUBJECTS: C57Bl/6, formyl peptide receptor-1, and formyl peptide receptor-2 knockout mice. INTERVENTIONS: Human and murine neutrophils functions were activated with autologous mitochondrial debris, mitochondrial formyl peptides, or bacterial formyl peptides followed by chemokines or leukotrienes. The experiments were repeated using formyl peptide receptor-1 antagonist cyclosporin H, "designer" human formyl peptide receptor-1 antagonists (POL7178 and POL7200), or anti-formyl peptide receptor-1 antibodies. Mouse injury/lung infection model was used to evaluate effect of formyl peptide receptor-1 inhibition. MEASUREMENTS AND MAIN RESULTS: Human neutrophils cytosolic calcium, chemotaxis, reactive oxygen species production, and phagocytosis were studied before and after exposure to mitochondrial debris, mitochondrial formyl peptides, and bacterial formyl peptides. Mitochondrial formyl peptide and bacterial formyl peptides had similar effects on neutrophils. Responses to chemokines and leukotrienes were suppressed by prior exposure to formyl peptides. POL7200 and POL7178 were specific antagonists of human formyl peptide receptor-1 and more effective than cyclosporin H or anti-formyl peptide receptor-1 antibodies. Formyl peptides inhibited mouse neutrophils responses to chemokines only if formyl peptide receptor-1 was present. Formyl peptide receptor-1 blockade did not inhibit neutrophils bacterial phagocytosis or reactive oxygen species production. Cyclosporin H increased bacterial clearance in lungs after injury. CONCLUSIONS: Formyl peptides both activate and desensitize neutrophils. Formyl peptide receptor-1 blockade prevents desensitization, potentially both diminishing systemic inflammatory response syndrome and protecting the host against secondary infection after tissue trauma or primary infection.
Asunto(s)
Proteínas Mitocondriales/inmunología , Activación Neutrófila/inmunología , Receptores de Formil Péptido/antagonistas & inhibidores , Animales , Ciclosporina/farmacología , Humanos , Lesión Pulmonar/fisiopatología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Infecciones del Sistema Respiratorio/fisiopatologíaRESUMEN
Plasmin generation in trauma patients has wide-ranging effects, from breakdown of clots to remodeling the extracellular matrix. An evolving recognition of plasmin as a critical effector molecule in various inflammatory signals and pathways has rendered the study of plasmin(ogen) and its regulation by upstream activators and downstream targets and inhibitors key to understanding the inflammatory responses to trauma. Tranexamic acid, a widely available lysine analogue medication on the World Health Organization's list of essential medicines, has rapidly become one of the most commonly implemented adjunct treatments for bleeding after traumatic injury in clinical practice. In this article, we review the effects, both anti- and proinflammatory, of tranexamic acid, with a focus on the injured trauma patient.
Asunto(s)
Antifibrinolíticos/uso terapéutico , Fibrinólisis/efectos de los fármacos , Ácido Tranexámico/uso terapéutico , Antifibrinolíticos/farmacología , Humanos , Transducción de Señal , Ácido Tranexámico/farmacologíaRESUMEN
Preparedness measures for the anticipated surge of coronavirus disease 2019 (COVID-19) cases within eastern Massachusetts included the establishment of alternate care sites (field hospitals). Boston Hope hospital was set up within the Boston Convention and Exhibition Center to provide low-acuity care for COVID-19 patients and to support local healthcare systems. However, early recognition of the need to provide higher levels of care, or critical care for the potential deterioration of patients recovering from COVID-19, prompted the development of a hybrid acute care-intensive care unit. We describe our experience of implementing rapid response capabilities of this innovative ad hoc unit. Combining quality improvement tools for hazards detection and testing through in situ simulation successfully identified several operational hurdles. Through rapid continuous analysis and iterative change, we implemented appropriate mitigation strategies and established rapid response and rescue capabilities. This study provides a framework for future planning of high-acuity services within a unique field hospital setting.
Asunto(s)
Betacoronavirus , Simulación por Computador/normas , Infecciones por Coronavirus/terapia , Análisis de Modo y Efecto de Fallas en la Atención de la Salud/normas , Equipo Hospitalario de Respuesta Rápida/normas , Unidades de Cuidados Intensivos/normas , Neumonía Viral/terapia , Boston/epidemiología , COVID-19 , Infecciones por Coronavirus/epidemiología , Cuidados Críticos/métodos , Cuidados Críticos/normas , Análisis de Modo y Efecto de Fallas en la Atención de la Salud/métodos , Humanos , Pandemias , Neumonía Viral/epidemiología , Desarrollo de Programa/métodos , Desarrollo de Programa/normas , Mejoramiento de la Calidad/normas , SARS-CoV-2RESUMEN
In this issue of Molecular Cell, Yata et al. (2012) show that the mitotic kinase and cell-cycle regulator Plk1 can directly stimulate the DNA repair process, providing a potential mechanism of crosstalk between DNA repair and cell-cycle signaling.
Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Humanos , Quinasa Tipo Polo 1RESUMEN
DNA damage activates a signalling network that blocks cell-cycle progression, recruits DNA repair factors and/or triggers senescence or programmed cell death. Alterations in chromatin structure are implicated in the initiation and propagation of the DNA damage response. Here we further investigate the role of chromatin structure in the DNA damage response by monitoring ionizing-radiation-induced signalling and response events with a high-content multiplex RNA-mediated interference screen of chromatin-modifying and -interacting genes. We discover that an isoform of Brd4, a bromodomain and extra-terminal (BET) family member, functions as an endogenous inhibitor of DNA damage response signalling by recruiting the condensin II chromatin remodelling complex to acetylated histones through bromodomain interactions. Loss of this isoform results in relaxed chromatin structure, rapid cell-cycle checkpoint recovery and enhanced survival after irradiation, whereas functional gain of this isoform compacted chromatin, attenuated DNA damage response signalling and enhanced radiation-induced lethality. These data implicate Brd4, previously known for its role in transcriptional control, as an insulator of chromatin that can modulate the signalling response to DNA damage.