Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1441: 947-961, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884763

RESUMEN

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease (CHD) with underdevelopment of left-sided heart structures. While previously uniformly fatal, surgical advances now provide highly effective palliation that allows most HLHS patients to survive their critical CHD. Nevertheless, there remains high morbidity and mortality with high risk of heart failure. As hemodynamic compromise from restricted aortic blood flow has been suggested to underlie the poor LV growth, this suggests the possibility of prenatal fetal intervention to recover LV growth. As such interventions have yielded ambiguous results, the optimization of therapy will require more mechanistic insights into the developmental etiology for HLHS. Clinical studies have shown high heritability for HLHS, with an oligogenic etiology indicated in conjunction with genetic heterogeneity. This is corroborated with the recent recovery of mutant mice with HLHS. With availability-induced pluripotent stem cell (iPSC)-derived cardiomyocytes from HLHS mice and patients, new insights have emerged into the cellular and molecular etiology for the LV hypoplasia in HLHS. Cell proliferation defects were observed in conjunction with metaphase arrest and the disturbance of Hippo-YAP signaling. The left-sided restriction of the ventricular hypoplasia may result from epigenetic perturbation of pathways regulating left-right patterning. These findings suggest new avenues for fetal interventions with therapies using existing drugs that target the Hippo-YAP pathway and/or modulate epigenetic regulation.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome del Corazón Izquierdo Hipoplásico , Transducción de Señal , Síndrome del Corazón Izquierdo Hipoplásico/genética , Síndrome del Corazón Izquierdo Hipoplásico/patología , Síndrome del Corazón Izquierdo Hipoplásico/metabolismo , Síndrome del Corazón Izquierdo Hipoplásico/fisiopatología , Animales , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Células Madre Pluripotentes Inducidas/metabolismo
2.
Nature ; 521(7553): 520-4, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25807483

RESUMEN

Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births; the incidence of CHD is up to tenfold higher in human fetuses. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk. Here we report findings from a recessive forward genetic screen in fetal mice, showing that cilia and cilia-transduced cell signalling have important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole-exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia-transduced cell signalling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signalling. Surprisingly, many CHD genes encoded interacting proteins, suggesting that an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note that the pathways identified show overlap with CHD candidate genes recovered in CHD patients, suggesting that they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and >8,000 incidental mutations have been sperm archived, creating a rich public resource for human disease modelling.


Asunto(s)
Cilios/patología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Animales , Cilios/diagnóstico por imagen , Cilios/genética , Cilios/fisiología , Análisis Mutacional de ADN , Electrocardiografía , Exoma/genética , Genes Recesivos , Pruebas Genéticas , Cardiopatías Congénitas/diagnóstico por imagen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Transducción de Señal , Ultrasonografía
3.
PLoS Genet ; 12(2): e1005821, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26918822

RESUMEN

Heterotaxy, a birth defect involving left-right patterning defects, and primary ciliary dyskinesia (PCD), a sinopulmonary disease with dyskinetic/immotile cilia in the airway are seemingly disparate diseases. However, they have an overlapping genetic etiology involving mutations in cilia genes, a reflection of the common requirement for motile cilia in left-right patterning and airway clearance. While PCD is a monogenic recessive disorder, heterotaxy has a more complex, largely non-monogenic etiology. In this study, we show mutations in the novel dynein gene DNAH6 can cause heterotaxy and ciliary dysfunction similar to PCD. We provide the first evidence that trans-heterozygous interactions between DNAH6 and other PCD genes potentially can cause heterotaxy. DNAH6 was initially identified as a candidate heterotaxy/PCD gene by filtering exome-sequencing data from 25 heterotaxy patients stratified by whether they have airway motile cilia defects. dnah6 morpholino knockdown in zebrafish disrupted motile cilia in Kupffer's vesicle required for left-right patterning and caused heterotaxy with abnormal cardiac/gut looping. Similarly DNAH6 shRNA knockdown disrupted motile cilia in human and mouse respiratory epithelia. Notably a heterotaxy patient harboring heterozygous DNAH6 mutation was identified to also carry a rare heterozygous PCD-causing DNAI1 mutation, suggesting a DNAH6/DNAI1 trans-heterozygous interaction. Furthermore, sequencing of 149 additional heterotaxy patients showed 5 of 6 patients with heterozygous DNAH6 mutations also had heterozygous mutations in DNAH5 or other PCD genes. We functionally assayed for DNAH6/DNAH5 and DNAH6/DNAI1 trans-heterozygous interactions using subthreshold double-morpholino knockdown in zebrafish and showed this caused heterotaxy. Similarly, subthreshold siRNA knockdown of Dnah6 in heterozygous Dnah5 or Dnai1 mutant mouse respiratory epithelia disrupted motile cilia function. Together, these findings support an oligogenic disease model with broad relevance for further interrogating the genetic etiology of human ciliopathies.


Asunto(s)
Síndrome de Heterotaxia/genética , Síndrome de Kartagener/genética , Animales , Dineínas Axonemales/genética , Dineínas Axonemales/metabolismo , Tipificación del Cuerpo , Cilios/fisiología , Embrión no Mamífero , Técnicas de Silenciamiento del Gen , Heterocigoto , Humanos , Macrófagos del Hígado/patología , Ratones Noqueados , Mutación , ARN Interferente Pequeño/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Pediatr Cardiol ; 39(6): 1069-1081, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29569026

RESUMEN

Hypoplastic left heart syndrome (HLHS) is one of the most lethal congenital heart defects, and remains clinically challenging. While surgical palliation allows most HLHS patients to survive their critical heart disease with a single-ventricle physiology, many will suffer heart failure, requiring heart transplantation as the only therapeutic course. Current paradigm suggests HLHS is largely of hemodynamic origin, but recent findings from analysis of the first mouse model of HLHS showed intrinsic cardiomyocyte proliferation and differentiation defects underlying the left ventricular (LV) hypoplasia. The findings of similar defects of lesser severity in the right ventricle suggest this could contribute to the heart failure risks in surgically palliated HLHS patients. Analysis of 8 independent HLHS mouse lines showed HLHS is genetically heterogeneous and multigenic in etiology. Detailed analysis of the Ohia mouse line accompanied by validation studies in CRISPR gene-targeted mice revealed a digenic etiology for HLHS. Mutation in Sap130, a component of the HDAC repressor complex, was demonstrated to drive the LV hypoplasia, while mutation in Pcdha9, a protocadherin cell adhesion molecule played a pivotal role in the valvular defects associated with HLHS. Based on these findings, we propose a new paradigm in which complex CHD such as HLHS may arise in a modular fashion, mediated by multiple mutations. The finding of intrinsic cardiomyocyte defects would suggest hemodynamic intervention may not rescue LV growth. The profound genetic heterogeneity and oligogenic etiology indicated for HLHS would suggest that the genetic landscape of HLHS may be complex and more accessible in clinical studies built on a familial study design.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico/genética , Mutación , Miocitos Cardíacos/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Modelos Animales de Enfermedad , Ecocardiografía Doppler en Color , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/patología , Síndrome del Corazón Izquierdo Hipoplásico/fisiopatología , Ratones , Ratones Mutantes
5.
PLoS Biol ; 11(11): e1001720, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24302887

RESUMEN

Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular , Cilios/fisiología , Proteínas del Citoesqueleto/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Polaridad Celular , Células Cultivadas , Análisis Mutacional de ADN , Adhesiones Focales/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Transporte de Proteínas , Septinas/metabolismo , Imagen de Lapso de Tiempo , Vía de Señalización Wnt , Pez Cebra
6.
Nat Genet ; 39(8): 1013-7, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17603482

RESUMEN

Noonan syndrome is characterized by short stature, facial dysmorphia and a wide spectrum of congenital heart defects. Mutations of PTPN11, KRAS and SOS1 in the RAS-MAPK pathway cause approximately 60% of cases of Noonan syndrome. However, the gene(s) responsible for the remainder are unknown. We have identified five different mutations in RAF1 in ten individuals with Noonan syndrome; those with any of four mutations causing changes in the CR2 domain of RAF1 had hypertrophic cardiomyopathy (HCM), whereas affected individuals with mutations leading to changes in the CR3 domain did not. Cells transfected with constructs containing Noonan syndrome-associated RAF1 mutations showed increased in vitro kinase and ERK activation, and zebrafish embryos with morpholino knockdown of raf1 demonstrated the need for raf1 for the development of normal myocardial structure and function. Thus, our findings implicate RAF1 gain-of-function mutations as a causative agent of a human developmental disorder, representing a new genetic mechanism for the activation of the MAPK pathway.


Asunto(s)
Mutación Missense , Síndrome de Noonan/genética , Proteínas Proto-Oncogénicas c-raf/genética , Animales , Línea Celular , Línea Celular Transformada , Femenino , Corazón/embriología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Miocardio/metabolismo , Estructura Terciaria de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Am J Med Genet A ; 167A(9): 2188-96, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25914204

RESUMEN

Ciliopathies such as cranioectodermal dysplasia, Sensenbrenner syndrome, short-rib polydactyly, and Jeune syndrome are associated with respiratory complications arising from rib cage dysplasia. While such ciliopathies have been demonstrated to involve primary cilia defects, we show motile cilia dysfunction in the airway of a patient diagnosed with cranioectodermal dysplasia. While this patient had mild thoracic dystrophy not requiring surgical treatment, there was nevertheless newborn respiratory distress, restrictive airway disease with possible obstructive airway involvement, repeated respiratory infections, and atelectasis. High-resolution videomicroscopy of nasal epithelial biopsy showed immotile/dyskinetic cilia and nasal nitric oxide was reduced, both of which are characteristics of primary ciliary dyskinesia, a sinopulmonary disease associated with mucociliary clearance defects due to motile cilia dysfunction in the airway. Exome sequencing analysis of this patient identified compound heterozygous mutations in WDR35, but no mutations in any of the 30 known primary ciliary dyskinesia genes or other cilia-related genes. Given that WDR35 is only known to be required for primary cilia function, we carried out WDR35 siRNA knockdown in human respiratory epithelia to assess the role of WDR35 in motile cilia function. This showed WDR35 deficiency disrupted ciliogenesis in the airway, indicating WDR35 is also required for formation of motile cilia. Together, these findings suggest patients with WDR35 mutations have an airway mucociliary clearance defect masked by their restrictive airway disease.


Asunto(s)
Huesos/anomalías , Cilios/genética , Craneosinostosis/genética , Displasia Ectodérmica/genética , Enfermedades Respiratorias/genética , Niño , Proteínas del Citoesqueleto , Proteínas Hedgehog , Heterocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Mutación/genética , Proteínas/genética
8.
Development ; 138(2): 339-48, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21177346

RESUMEN

The pharyngeal apparatus is a transient structure that gives rise to the thymus and the parathyroid glands and also contributes to the development of arteries and the cardiac outflow tract. A typical developmental disorder of the pharyngeal apparatus is the 22q11 deletion syndrome (22q11DS), for which Tbx1 is responsible. Here, we show that Ripply3 can modulate Tbx1 activity and plays a role in the development of the pharyngeal apparatus. Ripply3 expression is observed in the pharyngeal ectoderm and endoderm and overlaps with strong expression of Tbx1 in the caudal pharyngeal endoderm. Ripply3 suppresses transcriptional activation by Tbx1 in luciferase assays in vitro. Ripply3-deficient mice exhibit abnormal development of pharyngeal derivatives, including ectopic formation of the thymus and the parathyroid gland, as well as cardiovascular malformation. Corresponding with these defects, Ripply3-deficient embryos show hypotrophy of the caudal pharyngeal apparatus. Ripply3 represses Tbx1-induced expression of Pax9 in luciferase assays in vitro, and Ripply3-deficient embryos exhibit upregulated Pax9 expression. Together, our results show that Ripply3 plays a role in pharyngeal development, probably by regulating Tbx1 activity.


Asunto(s)
Región Branquial/embriología , Región Branquial/metabolismo , Proteínas Represoras/fisiología , Proteínas de Dominio T Box/metabolismo , Animales , Secuencia de Bases , Región Branquial/anomalías , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Cartilla de ADN/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción PAX9 , Factores de Transcripción Paired Box/genética , Fenotipo , Embarazo , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Proteínas de Dominio T Box/antagonistas & inhibidores , Proteínas de Dominio T Box/genética
9.
bioRxiv ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38464057

RESUMEN

Poor neurodevelopment is often observed with congenital heart disease (CHD), especially with mutations in chromatin modifiers. Here analysis of mice with hypoplastic left heart syndrome (HLHS) arising from mutations in Sin3A associated chromatin modifier Sap130 , and adhesion protein Pcdha9, revealed neurodevelopmental and neurobehavioral deficits reminiscent of those in HLHS patients. Microcephaly was associated with impaired cortical neurogenesis, mitotic block, and increased apoptosis. Transcriptional profiling indicated dysregulated neurogenesis by REST, altered CREB signaling regulating memory and synaptic plasticity, and impaired neurovascular coupling modulating cerebral blood flow. Many neurodevelopmental/neurobehavioral disease pathways were recovered, including autism and cognitive impairment. These same pathways emerged from genome-wide DNA methylation and Sap130 chromatin immunoprecipitation sequencing analyses, suggesting epigenetic perturbation. Mice with Pcdha9 mutation or forebrain-specific Sap130 deletion without CHD showed learning/memory deficits and autism-like behavior. These novel findings provide mechanistic insights indicating the adverse neurodevelopment in HLHS may involve cell autonomous/nonautonomous defects and epigenetic dysregulation and suggest new avenues for therapy.

10.
Circulation ; 125(18): 2232-42, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22499950

RESUMEN

BACKGROUND: Patients with congenital heart disease (CHD) and heterotaxy show high postsurgical morbidity/mortality, with some developing respiratory complications. Although this finding is often attributed to the CHD, airway clearance and left-right patterning both require motile cilia function. Thus, airway ciliary dysfunction (CD) similar to that of primary ciliary dyskinesia (PCD) may contribute to increased respiratory complications in heterotaxy patients. METHODS AND RESULTS: We assessed 43 CHD patients with heterotaxy for airway CD. Videomicrocopy was used to examine ciliary motion in nasal tissue, and nasal nitric oxide (nNO) was measured; nNO level is typically low with PCD. Eighteen patients exhibited CD characterized by abnormal ciliary motion and nNO levels below or near the PCD cutoff values. Patients with CD aged >6 years show increased respiratory symptoms similar to those seen in PCD. Sequencing of all 14 known PCD genes in 13 heterotaxy patients with CD, 12 without CD, 10 PCD disease controls, and 13 healthy controls yielded 0.769, 0.417, 1.0, and 0.077 novel variants per patient, respectively. One heterotaxy patient with CD had the PCD causing DNAI1 founder mutation. Another with hyperkinetic ciliary beat had 2 mutations in DNAH11, the only PCD gene known to cause hyperkinetic beat. Among PCD patients, 2 had known PCD causing CCDC39 and CCDC40 mutations. CONCLUSIONS: Our studies show that CHD patients with heterotaxy have substantial risk for CD and increased respiratory disease. Heterotaxy patients with CD were enriched for mutations in PCD genes. Future studies are needed to assess the potential benefit of prescreening and prophylactically treating heterotaxy patients for CD.


Asunto(s)
Trastornos de la Motilidad Ciliar/epidemiología , Cardiopatías Congénitas/epidemiología , Síndrome de Heterotaxia/epidemiología , Anomalías del Sistema Respiratorio/epidemiología , Adolescente , Adulto , Dineínas Axonemales/genética , Pruebas Respiratorias , Niño , Preescolar , Trastornos de la Motilidad Ciliar/genética , Proteínas del Citoesqueleto , Femenino , Cardiopatías Congénitas/genética , Síndrome de Heterotaxia/genética , Humanos , Lactante , Masculino , Microscopía por Video , Persona de Mediana Edad , Mutación , Óxido Nítrico/análisis , Prevalencia , Proteínas/genética , Anomalías del Sistema Respiratorio/genética , Adulto Joven
11.
J Cardiovasc Dev Dis ; 10(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36975863

RESUMEN

Hypoplastic left heart syndrome (HLHS) is a complex congenital heart disease characterized by hypoplasia of left-sided heart structures. The developmental basis for restriction of defects to the left side of the heart in HLHS remains unexplained. The observed clinical co-occurrence of rare organ situs defects such as biliary atresia, gut malrotation, or heterotaxy with HLHS would suggest possible laterality disturbance. Consistent with this, pathogenic variants in genes regulating left-right patterning have been observed in HLHS patients. Additionally, Ohia HLHS mutant mice show splenic defects, a phenotype associated with heterotaxy, and HLHS in Ohia mice arises in part from mutation in Sap130, a component of the Sin3A chromatin complex known to regulate Lefty1 and Snai1, genes essential for left-right patterning. Together, these findings point to laterality disturbance mediating the left-sided heart defects associated with HLHS. As laterality disturbance is also observed for other CHD, this suggests that heart development integration with left-right patterning may help to establish the left-right asymmetry of the cardiovascular system essential for efficient blood oxygenation.

12.
Pharmaceutics ; 15(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37631321

RESUMEN

BACKGROUND: Amiodarone is underutilized due to significant off-target toxicities. We hypothesized that targeted delivery to the heart would lead to the lowering of the dose by utilizing a cardiomyocyte-targeting peptide (CTP), a cell-penetrating peptide identified by our prior phage display work. METHODS: CTP was synthesized thiolated at the N-terminus, conjugated to amiodarone via Schiff base chemistry, HPLC purified, and confirmed with MALDI/TOF. The stability of the conjugate was assessed using serial HPLCs. Guinea pigs (GP) were injected intraperitoneally daily with vehicle (7 days), amiodarone (7 days; 80 mg/kg), CTP-amiodarone (5 days; 26.3 mg/kg), or CTP (5 days; 17.8 mg/kg), after which the GPs were euthanized, and the hearts were excised and perfused on a Langendorff apparatus with Tyrode's solution and blebbistatin (5 µM) to minimize the contractions. Voltage (RH237) and Ca2+-indicator dye (Rhod-2/AM) were injected, and fluorescence from the epicardium split and was captured by two cameras at 570-595 nm for the cytosolic Ca2+ and 610-750 nm wavelengths for the voltage. Subsequently, the hearts were paced at 250 ms with programmed stimulation to measure the changes in the conduction velocities (CV), action potential duration (APD), and Ca2+ transient durations at 90% recovery (CaTD90). mRNA was extracted from all hearts, and RNA sequencing was performed with results compared to the control hearts. RESULTS: The CTP-amiodarone remained stable for up to 21 days at 37 °C. At ~1/15th of the dose of amiodarone, the CTP-amiodarone decreased the CV in hearts significantly compared to the control GPs (0.92 ± 0.05 vs. 1.00 ± 0.03 ms, p = 0.0007), equivalent to amiodarone alone (0.87 ± 0.08 ms, p = 0.0003). Amiodarone increased the APD (192 ± 5 ms vs. 175 ± 8 ms for vehicle, p = 0.0025), while CTP-amiodarone decreased it significantly (157 ± 16 ms, p = 0.0136), similar to CTP alone (155 ± 13 ms, p = 0.0039). Both amiodarone and CTP-amiodarone significantly decreased the calcium transients compared to the controls. CTP-amiodarone and CTP decreased the CaTD90 to an extent greater than amiodarone alone (p < 0.001). RNA-seq showed that CTP alone increased the expression of DHPR and SERCA2a, while it decreased the expression of the proinflammatory genes, NF-kappa B, TNF-α, IL-1ß, and IL-6. CONCLUSIONS: Our data suggest that CTP can deliver amiodarone to cardiomyocytes at ~1/15th the total molar dose of the amiodarone needed to produce a comparable slowing of CVs. The ability of CTP to decrease the AP durations and CaTD90 may be related to its increase in the expression of Ca-handling genes, which merits further study.

13.
bioRxiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37214919

RESUMEN

Background: Amiodarone is underutilized due to significant off-target toxicities. We hypothesized that targeted delivery to the heart would lead to lowering of dose by utilizing a cardiomyocyte targeting peptide (CTP), a cell penetrating peptide identified by our prior phage display work. Methods: CTP was synthesized thiolated at the N-terminus, conjugated to amiodarone via Schiff base chemistry, HPLC purified and confirmed with MALDI/TOF. Stability of the conjugate was assessed using serial HPLCs. Guinea pigs (GP) were injected intraperitoneally daily with vehicle (7 days), amiodarone (7 days; 80mg/Kg), CTP-amiodarone (5 days;26.3mg/Kg), or CTP (5 days; 17.8mg/Kg), after which GPs were euthanized, hearts excised, perfused on a Langendorff apparatus with Tyrode's solution and blebbistatin (5µM) to minimize contractions. Voltage (RH237) and Ca 2+ -indicator dye (Rhod-2/AM) were injected, fluorescence from the epicardium split and focused on two cameras capturing at 570-595nm for cytosolic Ca 2+ and 610-750nm wavelengths for voltage. Subsequently, hearts were paced at 250ms with programmed stimulation to measure changes in conduction velocities (CV), action potential duration (APD) and Ca 2+ transient durations at 90% recovery (CaTD 90 ). mRNA was extracted from all hearts and RNA sequencing performed with results compared to control hearts. Results: CTP-amiodarone remained stable for up to 21 days at 37°C. At ∼1/15 th of the dose of amiodarone, CTP-amiodarone decreased CV in hearts significantly compared to control GPs (0.92±0.05 vs. 1.00±0.03m/s, p=0.0007), equivalent to amiodarone alone (0.87±0.08ms, p=0.0003). Amiodarone increased APD (192±5ms vs. 175±8ms for vehicle, p=0.0025), while CTP-amiodarone decreased it significantly (157±16ms, p=0.0136) similar to CTP alone (155±13ms, p=0.0039). Both amiodarone and CTP-amiodarone significantly decreased calcium transients compared to controls. CTP-amiodarone and CTP decreased CaTD 90 to an extent greater than amiodarone alone (p<0.001). RNA-seq showed that CTP alone increased the expression of DHPR and SERCA2a, while decreasing expression of proinflammatory genes NF-kappa B, TNF-α, IL-1ß, and IL-6. Conclusions: Our data suggests that CTP can deliver amiodarone to cardiomyocytes at ∼1/15 th the total molar dose of amiodarone needed to produce comparable slowing of CVs. The ability of CTP to decrease AP durations and CaTD 90 may be related to its increase in expression of Ca-handling genes, and merits further study.

14.
bioRxiv ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37131609

RESUMEN

Left-right patterning disturbance can cause severe birth defects, but it remains least understood of the three body axes. We uncovered an unexpected role for metabolic regulation in left-right patterning. Analysis of the first spatial transcriptome profile of left-right patterning revealed global activation of glycolysis, accompanied by right-sided expression of Bmp7 and genes regulating insulin growth factor signaling. Cardiomyocyte differentiation was left-biased, which may underlie the specification of heart looping orientation. This is consistent with known Bmp7 stimulation of glycolysis and glycolysis suppression of cardiomyocyte differentiation. Liver/lung laterality may be specified via similar metabolic regulation of endoderm differentiation. Myo1d , found to be left-sided, was shown to regulate gut looping in mice, zebrafish, and human. Together these findings indicate metabolic regulation of left-right patterning. This could underlie high incidence of heterotaxy-related birth defects in maternal diabetes, and the association of PFKP, allosteric enzyme regulating glycolysis, with heterotaxy. This transcriptome dataset will be invaluable for interrogating birth defects involving laterality disturbance.

15.
Proc Natl Acad Sci U S A ; 106(23): 9280-5, 2009 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-19470456

RESUMEN

A number of nuclear complexes modify chromatin structure and operate as functional units. However, the in vivo role of each component within the complexes is not known. ATP-dependent chromatin remodeling complexes form several types of protein complexes, which reorganize chromatin structure cooperatively with histone modifiers. Williams syndrome transcription factor (WSTF) was biochemically identified as a major subunit, along with 2 distinct complexes: WINAC, a SWI/SNF-type complex, and WICH, an ISWI-type complex. Here, WSTF(-/-) mice were generated to investigate its function in chromatin remodeling in vivo. Loss of WSTF expression resulted in neonatal lethality, and all WSTF(-/-) neonates and approximately 10% of WSTF(+/-) neonates suffered cardiovascular abnormalities resembling those found in autosomal-dominant Williams syndrome patients. Developmental analysis of WSTF(-/-) embryos revealed that Gja5 gene regulation is aberrant from E9.5, conceivably because of inappropriate chromatin reorganization around the promoter regions where essential cardiac transcription factors are recruited. In vitro analysis in WSTF(-/-) mouse embryonic fibroblast (MEF) cells also showed impaired transactivation functions of cardiac transcription activators on the Gja5 promoter, but the effects were reversed by overexpression of WINAC components. Likewise in WSTF(-/-) MEF cells, recruitment of Snf2h, an ISWI ATPase, to PCNA and cell survival after DNA damage were both defective, but were ameliorated by overexpression of WICH components. Thus, the present study provides evidence that WSTF is shared and is a functionally indispensable subunit of the WICH complex for DNA repair and the WINAC complex for transcriptional control.


Asunto(s)
Ensamble y Desensamble de Cromatina , Factores de Transcripción/metabolismo , Animales , Anomalías Cardiovasculares/genética , Anomalías Cardiovasculares/metabolismo , Células Cultivadas , Reparación del ADN , Replicación del ADN , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Expresión Génica , Ratones , Factores de Transcripción/genética
17.
World J Pediatr Congenit Heart Surg ; 13(5): 565-570, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36053093

RESUMEN

Hypoplastic left heart syndrome (HLHS) is a relatively rare severe congenital heart defect (CHD) closely linked to other left ventricular outflow tract (LVOT) lesions including bicuspid aortic valve (BAV), one of the most common heart defects. While HLHS, BAV, and other LVOT lesions have a strong genetic underpinning, their genetic etiology remains poorly understood. Findings from a large-scale mouse mutagenesis screen showed HLHS has a multigenic etiology and is genetically heterogenous, explaining difficulties in identifying the genetic causes of HLHS. In Ohia mice, HLHS shows incomplete penetrance. Some mice exhibited small LV with normal aorta, and others a normal LV with hypoplastic aorta, indicating the LV hypoplasia is not hemodynamically driven. In Ohia mutants, HLHS was found to have a digenic modular construction, with mutation in a chromatin modifier causing the small LV phenotype and mutation in Pcdha9 causing the aorta/aortic valve hypoplasia. The Pcdha9 mutation alone can cause BAV, and in the human genome two common deletion copy number variants spanning PCDHA7-10 are associated with BAV. Hence the digenic etiology of HLHS can account for the close association of HLHS, a rare CHD, with BAV, one of the most common CHD. Functional analysis of Ohia HLHS heart tissue showed severe mitochondrial dysfunction in the small LV, while the normal size RV is also affected but milder, suggesting possible role in vulnerability of surgically palliated HLHS patients to heart failure. These findings suggest insights into the genetics of HLHS may yield new therapies for improving outcome for patients with HLHS.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Cardiopatías Congénitas , Síndrome del Corazón Izquierdo Hipoplásico , Animales , Válvula Aórtica/anomalías , Válvula Aórtica/cirugía , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/genética , Síndrome del Corazón Izquierdo Hipoplásico/cirugía , Ratones , Mutación
18.
Cell Stem Cell ; 29(5): 840-855.e7, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395180

RESUMEN

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease with 30% mortality from heart failure (HF) in the first year of life, but the cause of early HF remains unknown. Induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CM) from patients with HLHS showed that early HF is associated with increased apoptosis, mitochondrial respiration defects, and redox stress from abnormal mitochondrial permeability transition pore (mPTP) opening and failed antioxidant response. In contrast, iPSC-CM from patients without early HF showed normal respiration with elevated antioxidant response. Single-cell transcriptomics confirmed that early HF is associated with mitochondrial dysfunction accompanied with endoplasmic reticulum (ER) stress. These findings indicate that uncompensated oxidative stress underlies early HF in HLHS. Importantly, mitochondrial respiration defects, oxidative stress, and apoptosis were rescued by treatment with sildenafil to inhibit mPTP opening or TUDCA to suppress ER stress. Together these findings point to the potential use of patient iPSC-CM for modeling clinical heart failure and the development of therapeutics.


Asunto(s)
Cardiopatías Congénitas , Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Antioxidantes/metabolismo , Cardiopatías Congénitas/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/metabolismo , Estrés Oxidativo
19.
Res Sq ; 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34816257

RESUMEN

Cell penetrating peptides are unique, 5-30 amino acid long peptides that are able to breach cell membrane barriers and carry cargoes intracellularly in a functional form. Our prior work identified a synthetic, non-naturally occurring 12-amino acid long peptide that we termed cardiac targeting peptide (CTP: APWHLSSQYSRT) due to its ability to transduce cardiomyocytes in vivo. Studies looking into its mechanism of transduction identified two lung targeting peptides (LTPs), S7A (APWHLSAQYSRT) and R11A (APWHLSSQYSAT). These peptides robustly transduced human bronchial epithelial cell lines in vitro and mouse lung tissue in vivo. This uptake occurred independently of clathrin mediated endocytosis. Biodistribution studies of R11A showed peak uptake at 15 minutes with uptake in liver but not kidneys, indicating primarily a hepatobiliary mode of excretion. Cyclic version of both peptides was ~100-fold more efficient in permeating cells than their linear counterparts. As proof of principle, we conjugated anti-spike and anti-envelope SARS-CoV-2 siRNAs to cyclized R11A and demonstrate anti-viral efficacy in vitro. Our work presented here identifies two novel lung-specific cell penetrating peptides that could potentially deliver myriad therapeutic cargoes to lung tissue.

20.
Am J Med Genet A ; 149A(10): 2216-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19725129

RESUMEN

Here we report on a patient with multiple lentigines, hypertelorism, short stature, arachnodactyly, scoliosis, dissecting aneurysm, hypertrophic cardiomyopathy and developmental delay, and a family history of Marfan syndrome. The patient is affected with both Marfan and LEOPARD syndromes. Mutational screening of the FBN1 gene showed a c.1464T>A (p.C488X) mutation and screening of the PTPN11 gene showed a c.836A>G (p.Y279C) mutation. We conclude that each mutation contributed independently to individual features in the ocular and cardiovascular systems, although short stature was more significantly influenced by the p.Y279C change in PTPN11 rather than the mutation in FBN1. To our knowledge, this is the first report of mutations in both FBN1 and PTPN11 with combined phenotypes of Marfan and LEOPARD syndromes.


Asunto(s)
Síndrome LEOPARD/complicaciones , Síndrome LEOPARD/genética , Síndrome de Marfan/complicaciones , Síndrome de Marfan/genética , Adulto , Análisis Mutacional de ADN , Resultado Fatal , Fibrilina-1 , Fibrilinas , Genotipo , Humanos , Masculino , Proteínas de Microfilamentos/genética , Linaje , Fenotipo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA