Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Genes Dev ; 34(11-12): 767-784, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381628

RESUMEN

Liver regeneration and metabolism are highly interconnected. Here, we show that hepatocyte-specific ablation of RNA polymerase II (Pol II)-associated Gdown1 leads to down-regulation of highly expressed genes involved in plasma protein synthesis and metabolism, a concomitant cell cycle re-entry associated with induction of cell cycle-related genes (including cyclin D1), and up-regulation of p21 through activation of p53 signaling. In the absence of p53, Gdown1-deficient hepatocytes show a severe dysregulation of cell cycle progression, with incomplete mitoses, and a premalignant-like transformation. Mechanistically, Gdown1 is associated with elongating Pol II on the highly expressed genes and its ablation leads to reduced Pol II recruitment to these genes, suggesting that Pol II redistribution may facilitate hepatocyte re-entry into the cell cycle. These results establish an important physiological function for a Pol II regulatory factor (Gdown1) in the maintenance of normal liver cell transcription through constraints on cell cycle re-entry of quiescent hepatocytes.


Asunto(s)
Ciclo Celular/genética , Regulación hacia Abajo/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Animales , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Genes p53/genética , Hepatocitos , Hígado/citología , Hígado/metabolismo , Transducción de Señal/genética
2.
Nature ; 543(7646): 568-572, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28297718

RESUMEN

The vertebrate-conserved RNA-binding protein DND1 is required for the survival of primordial germ cells (PGCs), as well as the suppression of germ cell tumours in mice. Here we show that in mice DND1 binds a UU(A/U) trinucleotide motif predominantly in the 3' untranslated regions of mRNA, and destabilizes target mRNAs through direct recruitment of the CCR4-NOT deadenylase complex. Transcriptomic analysis reveals that the extent of suppression is dependent on the number of DND1-binding sites. This DND1-dependent mRNA destabilization is required for the survival of mouse PGCs and spermatogonial stem cells by suppressing apoptosis. The spectrum of target RNAs includes positive regulators of apoptosis and inflammation, and modulators of signalling pathways that regulate stem-cell pluripotency, including the TGFß superfamily, all of which are aberrantly elevated in DND1-deficient PGCs. We propose that the induction of the post-transcriptional suppressor DND1 synergizes with concurrent transcriptional changes to ensure precise developmental transitions during cellular differentiation and maintenance of the germ line.


Asunto(s)
Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Espermatogonias/citología , Células Madre/citología , Factores de Transcripción/metabolismo , Regiones no Traducidas 3'/genética , Animales , Apoptosis/genética , Secuencia de Bases , Sitios de Unión , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Silenciador del Gen , Humanos , Inflamación/genética , Masculino , Ratones , Complejos Multiproteicos/química , Proteínas de Neoplasias/deficiencia , Motivos de Nucleótidos , Células Madre Pluripotentes/citología , Unión Proteica , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ribonucleasas/química , Transducción de Señal/genética , Espermatogonias/metabolismo , Células Madre/metabolismo , Transcripción Genética/genética , Factor de Crecimiento Transformador beta/genética
3.
Nature ; 534(7607): 387-90, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27281218

RESUMEN

Developmental specification of germ cells lies at the heart of inheritance, as germ cells contain all of the genetic and epigenetic information transmitted between generations. The critical developmental event distinguishing germline from somatic lineages is the differentiation of primordial germ cells (PGCs), precursors of sex-specific gametes that produce an entire organism upon fertilization. Germ cells toggle between uni- and pluripotent states as they exhibit their own 'latent' form of pluripotency. For example, PGCs express a number of transcription factors in common with embryonic stem (ES) cells, including OCT4 (encoded by Pou5f1), SOX2, NANOG and PRDM14 (refs 2, 3, 4). A biochemical mechanism by which these transcription factors converge on chromatin to produce the dramatic rearrangements underlying ES-cell- and PGC-specific transcriptional programs remains poorly understood. Here we identify a novel co-repressor protein, CBFA2T2, that regulates pluripotency and germline specification in mice. Cbfa2t2(-/-) mice display severe defects in PGC maturation and epigenetic reprogramming. CBFA2T2 forms a biochemical complex with PRDM14, a germline-specific transcription factor. Mechanistically, CBFA2T2 oligomerizes to form a scaffold upon which PRDM14 and OCT4 are stabilized on chromatin. Thus, in contrast to the traditional 'passenger' role of a co-repressor, CBFA2T2 functions synergistically with transcription factors at the crossroads of the fundamental developmental plasticity between uni- and pluripotency.


Asunto(s)
Células Germinativas/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Células Germinativas/citología , Células Germinativas/patología , Humanos , Masculino , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Unión Proteica , Proteínas de Unión al ARN , Proteínas Represoras/química , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Factores de Transcripción/metabolismo
4.
Mol Cell ; 52(6): 805-18, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24268575

RESUMEN

Transitions between pluripotent and differentiated states are marked by dramatic epigenetic changes. Cellular differentiation is tightly linked to X chromosome inactivation (XCI), whereas reprogramming to induced pluripotent stem cells (iPSCs) is associated with X chromosome reactivation (XCR). XCR reverses the silent state of the inactive X, occurring in mouse blastocysts and germ cells. In spite of its importance, little is known about underlying mechanisms. Here, we examine the role of the long noncoding Tsix RNA and the germline factor, PRDM14. In blastocysts, XCR is perturbed by mutation of either Tsix or Prdm14. In iPSCs, XCR is disrupted only by PRDM14 deficiency, which also affects iPSC derivation and maintenance. We show that Tsix and PRDM14 directly link XCR to pluripotency: first, PRDM14 represses Rnf12 by recruiting polycomb repressive complex 2; second, Tsix enables PRDM14 to bind Xist. Thus, our study provides functional and mechanistic links between cellular and X chromosome reprogramming.


Asunto(s)
Blastocisto/metabolismo , Reprogramación Celular , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Inactivación del Cromosoma X , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Proteínas de Unión al ADN , Implantación del Embrión , Femenino , Regulación del Desarrollo de la Expresión Génica , Genotipo , Masculino , Ratones , Ratones Noqueados , Fenotipo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transfección , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
EMBO J ; 32(3): 340-53, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23241950

RESUMEN

Genome-wide DNA demethylation, including the erasure of genome imprints, in primordial germ cells (PGCs) is a critical first step to creating a totipotent epigenome in the germ line. We show here that, contrary to the prevailing model emphasizing active DNA demethylation, imprint erasure in mouse PGCs occurs in a manner largely consistent with replication-coupled passive DNA demethylation: PGCs erase imprints during their rapid cycling with little de novo or maintenance DNA methylation potential and no apparent major chromatin alterations. Our findings necessitate the re-evaluation of and provide novel insights into the mechanism of genome-wide DNA demethylation in PGCs.


Asunto(s)
Metilación de ADN/fisiología , Genoma/genética , Impresión Genómica/genética , Células Germinativas/fisiología , Modelos Biológicos , Animales , Secuencia de Bases , Western Blotting , Proteínas Potenciadoras de Unión a CCAAT , Ciclo Celular/fisiología , Proliferación Celular , Cromatina/fisiología , Metilación de ADN/genética , Cartilla de ADN/genética , Replicación del ADN/fisiología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes , Cinética , Ratones , Análisis por Micromatrices , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADN , Ubiquitina-Proteína Ligasas
6.
RNA ; 20(7): 1090-102, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24860013

RESUMEN

Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed.


Asunto(s)
Perfilación de la Expresión Génica , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Adulto , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Familia de Multigenes , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , ARN/genética , Homología de Secuencia de Aminoácido , Transcriptoma
7.
Reproduction ; 139(6): 931-42, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20371640

RESUMEN

The specification of germ cell fate in development initiates mechanisms essential for the perpetuation of genetic information across the generations. Recent studies in mice have shown that germ cell specification requires at least three key molecular/cellular events: repression of the somatic program, re-acquisition of potential pluripotency, and an ensuing genome-wide epigenetic reprogramming. Moreover, a signaling and transcriptional principle governing these processes has been identified, raising the possibility of inducing the germ cell fate precisely from pluripotent stem cells in culture. These advances will in turn serve as a basis to explore the mechanism of germ cell specification in other mammals, including humans. The recapitulation of germ cell development in humans in culture will provide unprecedented opportunities to understand the basis of the propagation of our genome, both under normal and diseased conditions.


Asunto(s)
Epigénesis Genética , Células Germinativas/citología , Ratones , Transducción de Señal/fisiología , Transcripción Genética/fisiología , Animales , Blastocisto/citología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Células Germinativas/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Ratones/embriología , Células Madre Pluripotentes
8.
Reproduction ; 139(2): 381-93, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19861488

RESUMEN

Mutations of RNA-binding proteins such as NANOS3, TIAL1, and DND1 in mice have been known to result in the failure of survival and/or proliferation of primordial germ cells (PGCs) soon after their fate is specified (around embryonic day (E) 8.0), leading to the infertility of these animals. However, the mechanisms of actions of these RNA-binding proteins remain largely unresolved. As a foundation to explore the role of these RNA-binding proteins in germ cells, we established a novel transgenic reporter strain that expresses NANOS3 fused with EGFP under the control of Nanos3 regulatory elements. NANOS3-EGFP exhibited exclusive expression in PGCs as early as E7.25, and continued to be expressed in female germ cells until around E14.5 and in male germ cells throughout the fetal period with declining expression levels after E16.5. NANOS3-EGFP resumed strong expression in postnatal spermatogonia and continued to be expressed in undifferentiated spermatogonial cells in adults. Importantly, the Nanos3-EGFP transgene rescued the sterile phenotype of Nanos3 homozygous mutants, demonstrating the functional equivalency of NANOS3-EGFP with endogenous NANOS3. We found that throughout germ cell development, a predominant amount of NANOS3-EGFP co-localized with TIAL1 (also known as TIAR) and phosphorylated eukaryotic initiation factor 2alpha, markers for the stress granules, whereas a fraction of it showed co-localization with DCP1A, a marker for the processing bodies. On the other hand, NANOS3-EGFP did not co-localize with Tudor domain-containing protein 1, a marker for the intermitochondrial cements, in spermatogenic cells. These findings unveil the presence of distinct posttranscriptional regulations in PGCs soon after their specification, for which RNA-binding proteins such as NANOS3 and TIAL1 would play critical functions.


Asunto(s)
Linaje de la Célula , Óvulo/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Espermatozoides/metabolismo , Animales , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Endorribonucleasas , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genotipo , Edad Gestacional , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Infertilidad/genética , Infertilidad/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Fenotipo , Fosforilación , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Dev Cell ; 39(1): 87-103, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27642137

RESUMEN

Specification of primordial germ cells (PGCs) activates epigenetic reprogramming for totipotency, the elucidation of which remains a fundamental challenge. Here, we uncover regulatory principles for DNA methylation reprogramming during in vitro PGC specification, in which mouse embryonic stem cells (ESCs) are induced into epiblast-like cells (EpiLCs) and then PGC-like cells (PGCLCs). While ESCs reorganize their methylome to form EpiLCs, PGCLCs essentially dilute the EpiLC methylome at constant, yet different, rates between unique sequence regions and repeats. ESCs form hypomethylated domains around pluripotency regulators for their activation, whereas PGCLCs create demethylation-sensitive domains around developmental regulators by accumulating abundant H3K27me3 for their repression. Loss of PRDM14 globally upregulates methylation and diminishes the hypomethylated domains, but it preserves demethylation-sensitive domains. Notably, female ESCs form hypomethylated lamina-associated domains, while female PGCLCs effectively reverse such states into a more normal configuration. Our findings illuminate the unique orchestration of DNA methylation and histone modification reprogramming during PGC specification.


Asunto(s)
Reprogramación Celular/genética , Metilación de ADN/genética , Células Germinativas/citología , Células Germinativas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Histonas/metabolismo , Metaboloma , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Unión al ARN , Factores de Transcripción/metabolismo , Transcripción Genética
10.
Cell Stem Cell ; 12(3): 368-82, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23333148

RESUMEN

In serum, mouse embryonic stem cells (mESCs) fluctuate between a naive inner cell mass (ICM)-like state and a primed epiblast-like state, but when cultured with inhibitors of the mitogen-activated protein kinase (MAPK) and glycogen synthase kinase 3 pathways (2i), they are harnessed exclusively in a distinct naive pluropotent state, the ground state, that more faithfully recapitulates the ICM. Understanding the mechanism underlying this naive pluripotent state will be critical for realizing the full potential of ESCs. We show here that PRDM14, a PR-domain-containing transcriptional regulator, ensures naive pluripotency through a dual mechanism: antagonizing activation of the fibroblast growth factor receptor (FGFR) signaling by the core pluripotency transcriptional circuitry, and repressing expression of de novo DNA methyltransferases that modify the epigenome to a primed epiblast-like state. PRDM14 exerts these effects by recruiting polycomb repressive complex 2 (PRC2) specifically to key targets and repressing their expression.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Animales , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN , Epigenómica , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica , Proteínas de Unión al ARN , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-23125014

RESUMEN

Germ cell development creates totipotency through genetic as well as epigenetic regulation of the genome function. Primordial germ cells (PGCs) are the first germ cell population established during development and are immediate precursors for both the oocytes and spermatogonia. We here summarize recent findings regarding the mechanism of PGC development in mice. We focus on the transcriptional and signaling mechanism for PGC specification, potential pluripotency, and epigenetic reprogramming in PGCs and strategies for the reconstitution of germ cell development using pluripotent stem cells in culture. Continued studies on germ cell development may lead to the generation of totipotency in vitro, which should have a profound influence on biological science as well as on medicine.


Asunto(s)
Diferenciación Celular/fisiología , Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Germinativas/citología , Células Germinativas/fisiología , Transducción de Señal/fisiología , Animales , Ratones
12.
Cell Cycle ; 7(22): 3514-8, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19001867

RESUMEN

Germ cell specification in mice, which generates primordial germ cells (PGCs), the common source of the oocytes and spermatozoa, from the epiblast, integrates three key events: repression of the somatic program, re-acquisition of potential pluripotency, and genome-wide epigenetic reprogramming. A PR-domain containing protein, Blimp1 (also known as Prdm1), has been identified as a critical factor for PGC specification. Using a highly representative single-cell microarray technology, we identified a complex but highly ordered genome-wide transcription dynamics associated with PGC specification. This analysis not only demonstrated a dominant role of Blimp1 for the repression of the genes normally downregulated in PGCs relative to their somatic neighbors, but also revealed the presence of gene expression programs initiating independently from Blimp1. Among such programs, we identified Prdm14, another PR-domain containing protein, as a key regulator for the re-acquisition of potential pluripotency and genome-wide epigenetic reprogramming. The launch of the germ cell lineage in mice, therefore, is orchestrated by two independently acquired, PR domain-containing transcriptional regulators, Blimp1 and Prdm14.


Asunto(s)
Linaje de la Célula/genética , Células Germinativas/citología , Factores de Transcripción/fisiología , Animales , Proteínas de Unión al ADN , Epigénesis Genética , Perfilación de la Expresión Génica , Genómica , Ratones , Células Madre Pluripotentes/citología , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas de Unión al ARN
13.
Nat Genet ; 40(8): 1016-22, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18622394

RESUMEN

Specification of germ cell fate is fundamental in development and heredity. Recent evidence indicates that in mice, specification of primordial germ cells (PGCs), the common source of both oocytes and spermatozoa, occurs through the integration of three key events: repression of the somatic program, reacquisition of potential pluripotency and ensuing genome-wide epigenetic reprogramming. Here we provide genetic evidence that Prdm14, a PR domain-containing transcriptional regulator with exclusive expression in the germ cell lineage and pluripotent cell lines, is critical in two of these events, the reacquisition of potential pluripotency and successful epigenetic reprogramming. In Prdm14 mutants, the failure of these two events manifests even in the presence of Prdm1 (also known as Blimp1), a key transcriptional regulator for PGC specification. Our combined evidence demonstrates that Prdm14 defines a previously unknown genetic pathway, initiating independently from Prdm1, for ensuring the launching of the mammalian germ cell lineage.


Asunto(s)
Células Germinativas/citología , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Proteínas de Unión al ADN , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Redes Reguladoras de Genes , Células Germinativas/metabolismo , Masculino , Ratones , Proteínas de Unión al ARN , Factores de Transcripción/genética
14.
Development ; 134(14): 2627-38, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17567665

RESUMEN

We previously reported that primordial germ cells (PGCs) in mice erase genome-wide DNA methylation and histone H3 lysine9 dimethylation (H3K9me2), and instead acquire high levels of tri-methylation of H3K27 (H3K27me3) during their migration, a process that might be crucial for the re-establishment of potential totipotency in the germline. We here explored a cellular dynamics associated with this epigenetic reprogramming. We found that PGCs undergo erasure of H3K9me2 and upregulation of H3K27me3 in a progressive, cell-by-cell manner, presumably depending on their developmental maturation. Before or concomitant with the onset of H3K9 demethylation, PGCs entered the G2 arrest of the cell cycle, which apparently persisted until they acquired high H3K27me3 levels. Interestingly, PGCs exhibited repression of RNA polymerase II-dependent transcription, which began after the onset of H3K9me2 reduction in the G2 phase and tapered off after the acquisition of high-level H3K27me3. The epigenetic reprogramming and transcriptional quiescence were independent from the function of Nanos3. We found that before H3K9 demethylation, PGCs exclusively repress an essential histone methyltransferase, GLP, without specifically upregulating histone demethylases. We suggest the possibility that active repression of an essential enzyme and subsequent unique cellular dynamics ensures successful implementation of genome-wide epigenetic reprogramming in migrating PGCs.


Asunto(s)
Epigénesis Genética , Células Germinativas/fisiología , Animales , Linaje de la Célula , Movimiento Celular , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fase G2 , Células Germinativas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/biosíntesis , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Metilación , Ratones , Oxidorreductasas N-Desmetilantes/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteína Metiltransferasas , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/metabolismo , Células Madre/metabolismo , Células Madre/fisiología , Factores de Transcripción/metabolismo , Activación Transcripcional
15.
Intervirology ; 48(2-3): 104-11, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15812182

RESUMEN

OBJECTIVE: Recently, HCV subgenomic RNA that replicates in vitro in a certain cell line have been elucidated. Since the 5' end of the genome of positive strand RNA viruses is often modified with a cap structure or a covalently linked protein, we have assessed structural feature of the HCV genome obtained from Huh7 cells in which HCV subgenomic RNA has been shown to efficiently self-replicate. METHODS: HCV subgenomic RNA was obtained from the Huh7 and was analyzed for its 5' end. RESULTS: Phosphorylation of the genomic RNA by polynucleotide kinase was observed only after treatment with phosphatase. The labeling efficiency of the genome with polynucleotide kinase was not enhanced by treatment with pyrophosphatase. CONCLUSION: It is suggested that the 5' end of HCV genomic RNA obtained from HCV replicon cells is not modified except phosphorylation. Furthermore, analysis of the 5' end of the HCV RNA obtained from the HCV subgenome self-replicating cells revealed the presence of two types of subgenomic RNA that contained either guanylate or adenylate at the 5' end. This result indicates that the 5' end of the subgenome in Huh7 cells is redundant and there is no significant evolutionary advantage between the two genomes.


Asunto(s)
Genoma Viral , Hepacivirus/genética , ARN Viral/química , Replicón , Adenosina Monofosfato/análisis , Línea Celular Tumoral , Guanosina Monofosfato/análisis , Hepacivirus/fisiología , Hepatocitos/virología , Humanos , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Pirofosfatasas/metabolismo , ARN Viral/metabolismo , Replicación Viral
16.
Virology ; 331(2): 407-17, 2005 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-15629783

RESUMEN

Hepatitis C virus (HCV) is one of the major causative agents of liver diseases, such as liver inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Using an efficient HCV subgenomic replicon system, we demonstrate that transforming growth factor-beta (TGF-beta) suppresses viral RNA replication and protein expression from the HCV replicon. We further show that the anti-viral effect of this cytokine is associated with cellular growth arrest in a manner dependent on Smad signaling, not mitogen-activated protein kinase (MAPK) signaling. These results suggest a novel insight into the mechanisms of liver diseases caused by HCV.


Asunto(s)
Hepacivirus/efectos de los fármacos , Replicón/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Hepacivirus/fisiología , Humanos , Plásmidos/genética , Replicación Viral
17.
J Biol Chem ; 278(50): 50301-8, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-12963739

RESUMEN

The molecular mechanism of hepatitis C virus(HCV) RNA replication is still unknown. Recently, a cell culture system in which the HCV subgenomic replicon is efficiently replicated and maintained for a long period in Huh-7 cells has been established. Taking advantage of this replicon system, we detected the activity to synthesize the subgenomic RNA in the digitonin-permeabilized replicon cells. To elucidate how and where this viral RNA replicates in the cells, we monitored the activity for HCV RNA synthesis in the permeabilized replicon cells under several conditions. We obtained results suggesting that HCV replication complexes functioning to synthesize the replicon RNA are protected from access of nuclease and proteinase by possible cellular lipid membranes. We also found that a large part of the replicon RNA, including newly synthesized RNA, was present in such a membranous structure but a large part of each NS protein was not. A small part of each NS protein that was resistant to the proteinase action was shown to contribute sufficiently to the synthesis of HCV subgenomic RNA in the permeabilized replicon cells. These results suggested that a major subcellular site of HCV genome replication is probably compartmentalized by lipid membranes and that only a part of each NS protein forms the active replication complex in the replicon cells.


Asunto(s)
Membrana Celular/metabolismo , Genoma Viral , Hepacivirus/metabolismo , Proteínas no Estructurales Virales/química , Replicación Viral , Northern Blotting , Western Blotting , Línea Celular Tumoral , Digitonina/farmacología , Endopeptidasa K/farmacología , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Indicadores y Reactivos/farmacología , Metabolismo de los Lípidos , Microscopía Fluorescente , Hibridación de Ácido Nucleico , Plásmidos/metabolismo , ARN Viral/metabolismo , Transcripción Genética , Proteínas no Estructurales Virales/metabolismo
18.
Hepatology ; 38(5): 1282-8, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14578868

RESUMEN

Persistent infection of hepatitis C virus (HCV) is a major cause of liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Searching for a substance with anti-HCV potential, we examined the effects of a variety of compounds on HCV replication using a HCV subgenomic replicon cell culture system. Consequently, the immunosuppressant cyclosporin A (CsA) was found to have a suppressive effect on the HCV replicon RNA level and HCV protein expression in these cells. CsA also inhibited multiplication of the HCV genome in a cultured human hepatocyte cell line infected with HCV using HCV-positive plasma. This anti-HCV activity of CsA appeared to be independent of its immunosuppressive function. In conclusion, our results suggest that CsA may represent a new approach for the development of anti-HCV therapy.


Asunto(s)
Ciclosporina/farmacología , Genoma Viral , Hepacivirus/fisiología , Hepatocitos/virología , Inmunosupresores/farmacología , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Línea Celular , Hepacivirus/efectos de los fármacos , Hepacivirus/metabolismo , Humanos , Interferón gamma/metabolismo , ARN/antagonistas & inhibidores , Replicón/genética , Transducción de Señal , Proteínas Virales/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA