Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 638
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(13): 3452-3466.e18, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34139176

RESUMEN

Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , COVID-19/inmunología , Línea Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Unión Proteica/inmunología , Dominios Proteicos/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero
2.
Cell ; 167(2): 382-396.e17, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27693356

RESUMEN

The inflammasome is an intracellular signaling complex, which on recognition of pathogens and physiological aberration, drives activation of caspase-1, pyroptosis, and the release of the pro-inflammatory cytokines IL-1ß and IL-18. Bacterial ligands must secure entry into the cytoplasm to activate inflammasomes; however, the mechanisms by which concealed ligands are liberated in the cytoplasm have remained unclear. Here, we showed that the interferon-inducible protein IRGB10 is essential for activation of the DNA-sensing AIM2 inflammasome by Francisella novicida and contributed to the activation of the LPS-sensing caspase-11 and NLRP3 inflammasome by Gram-negative bacteria. IRGB10 directly targeted cytoplasmic bacteria through a mechanism requiring guanylate-binding proteins. Localization of IRGB10 to the bacterial cell membrane compromised bacterial structural integrity and mediated cytosolic release of ligands for recognition by inflammasome sensors. Overall, our results reveal IRGB10 as part of a conserved signaling hub at the interface between cell-autonomous immunity and innate immune sensing pathways.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Francisella/inmunología , GTP Fosfohidrolasas/metabolismo , Infecciones por Bacterias Gramnegativas/inmunología , Interacciones Huésped-Patógeno/inmunología , Inflamasomas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Linfocitos B/inmunología , Caspasas/metabolismo , Caspasas Iniciadoras , Citosol/inmunología , Citosol/microbiología , GTP Fosfohidrolasas/genética , Infecciones por Bacterias Gramnegativas/microbiología , Inmunidad Celular , Inmunidad Innata , Inflamasomas/metabolismo , Ligandos , Ratones , Ratones Mutantes , Células Mieloides/inmunología , Linfocitos T/inmunología
3.
Nat Immunol ; 18(8): 899-910, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28604719

RESUMEN

Mammalian autophagy-related 8 (Atg8) homologs consist of LC3 proteins and GABARAPs, all of which are known to be involved in canonical autophagy. In contrast, the roles of Atg8 homologs in noncanonical autophagic processes are not fully understood. Here we show a unique role of GABARAPs, in particular gamma-aminobutyric acid (GABA)-A-receptor-associated protein-like 2 (Gabarapl2; also known as Gate-16), in interferon-γ (IFN-γ)-mediated antimicrobial responses. Cells that lacked GABARAPs but not LC3 proteins and mice that lacked Gate-16 alone were defective in the IFN-γ-induced clearance of vacuolar pathogens such as Toxoplasma. Gate-16 but not LC3b specifically associated with the small GTPase ADP-ribosylation factor 1 (Arf1) to mediate uniform distribution of interferon-inducible GTPases. The lack of GABARAPs reduced Arf1 activation, which led to formation of interferon-inducible GTPase-containing aggregates and hampered recruitment of interferon-inducible GTPases to vacuolar pathogens. Thus, GABARAPs are uniquely required for antimicrobial host defense through cytosolic distribution of interferon-inducible GTPases.


Asunto(s)
Factor 1 de Ribosilacion-ADP/inmunología , Autofagia/inmunología , Proteínas Portadoras/inmunología , Interferón gamma/inmunología , Proteínas Asociadas a Microtúbulos/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Familia de las Proteínas 8 Relacionadas con la Autofagia , Sistemas CRISPR-Cas , Proteínas Portadoras/metabolismo , Simulación por Computador , Proteínas del Citoesqueleto/inmunología , Proteínas del Citoesqueleto/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , GTP Fosfohidrolasas/inmunología , GTP Fosfohidrolasas/metabolismo , Edición Génica , Immunoblotting , Inmunoprecipitación , Interferón gamma/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo
4.
EMBO J ; 42(6): e112558, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36762431

RESUMEN

Moraxella catarrhalis is an important human respiratory pathogen and a major causative agent of otitis media and chronic obstructive pulmonary disease. Toll-like receptors contribute to, but cannot fully account for, the complexity of the immune response seen in M. catarrhalis infection. Using primary mouse bone marrow-derived macrophages to examine the host response to M. catarrhalis infection, our global transcriptomic and targeted cytokine analyses revealed activation of immune signalling pathways by both membrane-bound and cytosolic pattern-recognition receptors. We show that M. catarrhalis and its outer membrane vesicles or lipooligosaccharide (LOS) can activate the cytosolic innate immune sensor caspase-4/11, gasdermin-D-dependent pyroptosis, and the NLRP3 inflammasome in human and mouse macrophages. This pathway is initiated by type I interferon signalling and guanylate-binding proteins (GBPs). We also show that inflammasomes and GBPs, particularly GBP2, are required for the host defence against M. catarrhalis in mice. Overall, our results reveal an essential role for the interferon-inflammasome axis in cytosolic recognition and immunity against M. catarrhalis, providing new molecular targets that may be used to mitigate pathological inflammation triggered by this pathogen.


Asunto(s)
Caspasas , Inflamasomas , Ratones , Humanos , Animales , Caspasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Moraxella catarrhalis/metabolismo , Proteínas Portadoras , Inmunidad Innata
5.
Nat Immunol ; 16(5): 467-75, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25774715

RESUMEN

Inflammasomes are critical for mounting host defense against pathogens. The molecular mechanisms that control activation of the AIM2 inflammasome in response to different cytosolic pathogens remain unclear. Here we found that the transcription factor IRF1 was required for activation of the AIM2 inflammasome during infection with the Francisella tularensis subspecies novicida (F. novicida), whereas engagement of the AIM2 inflammasome by mouse cytomegalovirus (MCMV) or transfected double-stranded DNA did not require IRF1. Infection of F. novicida detected by the DNA sensor cGAS and its adaptor STING induced type I interferon-dependent expression of IRF1, which drove the expression of guanylate-binding proteins (GBPs); this led to intracellular killing of bacteria and DNA release. Our results reveal a specific requirement for IRF1 and GBPs in the liberation of DNA for sensing by AIM2 depending on the pathogen encountered by the cell.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Francisella tularensis/fisiología , Proteínas de Unión al GTP/metabolismo , Inflamasomas/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Tularemia/inmunología , Animales , Bacteriólisis/genética , Células Cultivadas , ADN/inmunología , ADN Bacteriano/genética , Regulación de la Expresión Génica/genética , Factor 1 Regulador del Interferón/genética , Interferón Tipo I/metabolismo , Ratones , Ratones Noqueados , Nucleotidiltransferasas/metabolismo
6.
Nat Immunol ; 16(5): 476-484, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25774716

RESUMEN

The AIM2 inflammasome detects double-stranded DNA in the cytosol and induces caspase-1-dependent pyroptosis as well as release of the inflammatory cytokines interleukin 1ß (IL-1ß) and IL-18. AIM2 is critical for host defense against DNA viruses and bacteria that replicate in the cytosol, such as Francisella tularensis subspecies novicida (F. novicida). The activation of AIM2 by F. novicida requires bacteriolysis, yet whether this process is accidental or is a host-driven immunological mechanism has remained unclear. By screening nearly 500 interferon-stimulated genes (ISGs) through the use of small interfering RNA (siRNA), we identified guanylate-binding proteins GBP2 and GBP5 as key activators of AIM2 during infection with F. novicida. We confirmed their prominent role in vitro and in a mouse model of tularemia. Mechanistically, these two GBPs targeted cytosolic F. novicida and promoted bacteriolysis. Thus, in addition to their role in host defense against vacuolar pathogens, GBPs also facilitate the presentation of ligands by directly attacking cytosolic bacteria.


Asunto(s)
Bacteriólisis , Proteínas de Unión al ADN/metabolismo , Francisella tularensis/fisiología , Proteínas de Unión al GTP/metabolismo , Inflamasomas/metabolismo , Tularemia/inmunología , Animales , Células Cultivadas , Citosol/microbiología , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Proteínas de Unión al GTP/genética , Humanos , Ratones , Ratones Noqueados , ARN Interferente Pequeño/genética
7.
Genes Cells ; 29(1): 17-38, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984375

RESUMEN

Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.


Asunto(s)
Toxoplasma , Toxoplasma/metabolismo , Fosforilación , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Vacuolas/metabolismo
8.
PLoS Pathog ; 19(1): e1011003, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603017

RESUMEN

Toxoplasma gondii (T. gondii) is a zoonotic apicomplexan parasite that is an important cause of clinical disability in humans. On a global scale, one third of the human population is infected with T. gondii. Mice and other small rodents are believed to be responsible for transmission of T. gondii to the domestic cat, its definitive host. Interferon-inducible Immunity-Related GTPases (IRG proteins) are important for control of murine T. gondii infections. Virulence differences between T. gondii strains are linked to polymorphic rhoptry proteins (ROPs) that cooperate to inactivate individual IRG family members. In particular, the pseudokinase ROP5 isoform B is critically important in laboratory strains of mice. We identified T. gondii ROP39 in complex with ROP5B and demonstrate its contribution to acute T. gondii virulence. ROP39 directly targets Irgb10 and inhibits homodimer formation of the GTPase leading to an overall reduction of IRG protein loading onto the parasitophorous vacuolar membrane (PVM). Maintenance of PVM integrity rescues the parasite from IRG protein-mediated clearance in vitro and in vivo. This study identifies a novel T. gondii effector that is important for specific inactivation of the IRG resistance system. Our data reveal that yet unknown T. gondii effectors can emerge from identification of direct interaction partners of ROP5B.


Asunto(s)
Parásitos , Toxoplasma , Toxoplasmosis , Animales , Ratones , Humanos , Gatos , Toxoplasma/metabolismo , Parásitos/metabolismo , Virulencia , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , GTP Fosfohidrolasas/metabolismo
9.
Int Immunol ; 36(5): 199-210, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38175650

RESUMEN

Toxoplasma gondii is a pathogenic protozoan parasite of the Apicomplexa family that affects approximately 30% of the world's population. Symptoms are usually mild in immunocompetent hosts, but it can pose significant health risks to immunosuppressed patients and pregnant women. Current treatment options are limited, and new therapies and vaccines are needed. The innate immune system is the first to recognize T. gondii infection and activates pro-inflammatory cytokines and chemokines to promote acquired immunity. The IL-12/IFN-γ axis is particularly important, and when this pathway is inhibited, infection becomes uncontrolled and lethal. In mice, receptors such as Toll-like receptor 11 (TLR11), TLR12, and chemokine receptors are involved in T. gondii recognition and the modulation of immune responses. In humans, where TLR11 and TLR12 are absent, other mechanisms have been reported as the innate immune sensing system in T. gondii infection. Immune cells activated in response to infection produce interleukin (IL)-12, which stimulates the proliferation of natural killer cells and T cells and promotes the production of interferon (IFN)-γ. Several IFN-γ-induced anti-T. gondii defense mechanisms inhibit parasite growth. These include nitric oxide (NO) production, indoleamine 2,3-dioxygenase, and the destruction of parasitophorous vacuoles by IFN-γ-inducible immunity related GTPase groups (IRGs and GBPs). Recent studies focusing on the diversity of IRGs in rodents and effector molecules in T. gondii suggest that host immune mechanisms and pathogen immune evasion mechanisms have co-evolved. Furthermore, it has been suggested that cysts are not simply dormant during chronic infection. This review summarizes recent findings on anti-T. gondii innate, adaptive, and cell-autonomous immune responses.


Asunto(s)
Toxoplasma , Toxoplasmosis , Humanos , Embarazo , Femenino , Ratones , Animales , Interleucina-12 , Inmunidad Celular , Proteínas Portadoras
10.
Int Immunol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895753

RESUMEN

The generation and maintenance of memory T cells are regulated by various factors, including cytokines. Previous studies have shown that IL-27 is produced during the early acute phase of Plasmodium chabaudi chabaudi AS (Pcc) infection and inhibits the development of Th1-type memory CD4+ T cells. However, whether IL-27 acts directly on its receptor on Plasmodium-specific CD4+ T cells or indirectly via its receptor on other immune cells remains unclear. We aimed to determine the role of IL-27 receptor signaling in different immune cell types in regulating the generation and phenotype of memory CD4+ T cells during Plasmodium infection. We utilized Plasmodium-specific TCR transgenic mice, PbT-II, and Il27rα-/- mice to assess the direct and indirect effects of IL-27 signaling on memory CD4+ T-cell generation. Mice were transferred with PbT-II or Il27rα-/- PbT-II cells and infected with Pcc. Conditional knockout mice lacking the IL-27 receptor in T cells or dendritic cells were employed to discern the specific immune cell types involved in IL-27 receptor signaling. High levels of memory in PbT-II cells with Th1-shift occurred only when both PbT-II and host cells lacked the IL-27 receptor, suggesting the predominant inhibitory role of IL-27 signaling in both cell types. Furthermore, IL-27 receptor signaling in T cells limited the number of memory CD4+ T cells, while signaling in both T and dendritic cells contributed to the Th1 dominance of memory CD4+ T cells. These findings underscore the complex cytokine signaling network regulating memory CD4+ T cells during Plasmodium infection.

11.
Curr Issues Mol Biol ; 46(2): 1398-1412, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38392208

RESUMEN

Some charged multivesicular body protein 2B (CHMP2B) mutations are associated with autosomal-dominant neurodegenerative frontotemporal dementia and/or amyotrophic lateral sclerosis type 7 (FTDALS7). The main aim of this study is to clarify the relationship between the expression of mutated CHMP2B protein displaying FTD symptoms and defective neuronal differentiation. First, we illustrate that the expression of CHMP2B with the Asp148Tyr (D148Y) mutation, which preferentially displays FTD phenotypes, blunts neurite process elongation in rat primary cortical neurons. Similar results were observed in the N1E-115 cell line, a model that undergoes neurite elongation. Second, these effects were also accompanied by changes in neuronal differentiation marker protein expression. Third, wild-type CHMP2B protein was indeed localized in the endosomal sorting complexes required to transport (ESCRT)-like structures throughout the cytoplasm. In contrast, CHMP2B with the D148Y mutation exhibited aggregation-like structures and accumulated in the Golgi body. Fourth, among currently known Golgi stress regulators, the expression levels of Hsp47, which has protective effects on the Golgi body, were decreased in cells expressing CHMP2B with the D148Y mutation. Fifth, Arf4, another Golgi stress-signaling molecule, was increased in mutant-expressing cells. Finally, when transfecting Hsp47 or knocking down Arf4 with small interfering (si)RNA, cellular phenotypes in mutant-expressing cells were recovered. These results suggest that CHMP2B with the D148Y mutation, acting through Golgi stress signaling, is negatively involved in the regulation of neuronal cell morphological differentiation, providing evidence that a molecule controlling Golgi stress may be one of the potential FTD therapeutic targets at the molecular and cellular levels.

12.
Br J Haematol ; 204(2): 492-496, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37822090

RESUMEN

Platelet hyperactivity often occurs in patients with coronavirus disease 2019 (COVID-19). However, it remains unclear how long platelet hyperactivity lasts after the acute phase, owing to a lack of follow-up studies. To elucidate the course of platelet hyperactivity, we serially measured platelet activity in patients with COVID-19 up to 40 days after hospital admission using an easily assessable haematology analyser that semi-quantitates platelet clumps on a scattergram. Our results showed that platelet hyperactivity persisted for at least 40 days even after acute inflammation subsided in most patients with COVID-19, regardless of disease severity. Persistent platelet hyperactivity may contribute to thromboembolic complications in post-COVID-19 patients.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Plaquetas , Estudios de Seguimiento
13.
Eur J Immunol ; 53(11): e2350455, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37471504

RESUMEN

Caspase activation results in pyroptosis, an inflammatory cell death that contributes to several inflammatory diseases by releasing inflammatory cytokines and cellular contents. Fusobacterium nucleatum is a periodontal pathogen frequently detected in human cancer and inflammatory bowel diseases. Studies have reported that F. nucleatum infection leads to NLRP3 activation and pyroptosis, but the precise activation process and disease association remain poorly understood. This study demonstrated that F. nucleatum infection exacerbates acute colitis in mice and activates pyroptosis through caspase-11-mediated gasdermin D cleavage in macrophages. Furthermore, F. nucleatum infection in colitis mice induces the enhancement of IL-1⍺ secretion from the colon, affecting weight loss and severe disease activities. Neutralization of IL-1⍺ protects F. nucleatum infected mice from severe colitis. Therefore, F. nucleatum infection facilitates inflammation in acute colitis with IL-1⍺ from colon tissue by activating noncanonical inflammasome through gasdermin D cleavage.


Asunto(s)
Colitis , Inflamasomas , Humanos , Animales , Ratones , Inflamasomas/metabolismo , Fusobacterium nucleatum/metabolismo , Gasderminas , Colitis/inducido químicamente , Caspasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
14.
Org Biomol Chem ; 22(20): 4077-4088, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38629338

RESUMEN

Photochromism through excited-state intermolecular proton transfer (ESInterPT) processes based on keto-enol tautomerization was found in phenazine-2,3-diol PD1 and its monoalkoxy derivative PD2 in a glassy matrix at 77 K: the colorless solutions of enol forms PD1-E and PD2-E at 298 K transformed into orange-colored solutions of keto forms PD1-K and PD2-K upon photoirradiation (λ = 385 nm) at 77 K. Furthermore, this report is the first to achieve the single-crystal X-ray structural analyses of phenazine-2,3-diol PD1 and its monoalkoxy derivative PD2, since the report on the synthesis of PD1 70 years ago. Indeed, it was found that PD1 and PD2 molecules exist in the keto form (PD1-K) and the enol form (PD2-E), respectively, in the crystal, and the neighboring PD1-K and PD2-E molecules are linked by one-dimensional intermolecular NH⋯O and OH⋯N hydrogen bonding, respectively. The fact suggests strongly that for PD1 and PD2, the formation of continuous intermolecular hydrogen bonding in aggregates such as in a glassy matrix at 77 K is involved in the keto-enol tautomerization of phenazine-2,3-diol derivatives based on ESInterPT. More interestingly, the color and the photoabsorption spectrum of the solids obtained by sublimation of crystals of PD2-E are similar to those for the crystals of PD1-K, indicating that the PD2 molecule exists in the keto form (PD2-K) in the solid of the sublimate. Therefore, this study provides a valuable insight for a greater understanding of the keto-enol tautomerization of diazaacene-diol derivatives and their photophysical properties in the solution and in the solid state.

15.
Adv Exp Med Biol ; 1444: 177-193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38467980

RESUMEN

T cells play a crucial role in adaptive immunity by recognizing and eliminating foreign pathogens and abnormal cells such as cancer cells. T cell receptor (TCR), which is expressed on the surface of T cells, recognizes and binds to specific antigens presented by major histocompatibility complex (MHC) molecules on antigen-presenting cells (APCs). This activation process leads to the proliferation and differentiation of T cells, allowing them to carry out their specific immune response functions. This chapter outlines the TCR signaling pathways that are common to different T cell subsets, as well as the recently elucidated TCR signaling pathway specific to CD8+ T cells and its role in controlling anti-Toxoplasma and anti-tumor immunity.


Asunto(s)
Neoplasias , Toxoplasma , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T , Inmunidad Adaptativa , Subgrupos de Linfocitos T
16.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34035171

RESUMEN

Immunoevasins are viral proteins that prevent antigen presentation on major histocompatibility complex (MHC) class I, thus evading host immune recognition. Hepatitis C virus (HCV) evades immune surveillance to induce chronic infection; however, how HCV-infected hepatocytes affect immune cells and evade immune recognition remains unclear. Herein, we demonstrate that HCV core protein functions as an immunoevasin. Its expression interfered with the maturation of MHC class I molecules catalyzed by the signal peptide peptidase (SPP) and induced their degradation via HMG-CoA reductase degradation 1 homolog, thereby impairing antigen presentation to CD8+ T cells. The expression of MHC class I in the livers of HCV core transgenic mice and chronic hepatitis C patients was impaired but was restored in patients achieving sustained virological response. Finally, we show that the human cytomegalovirus US2 protein, possessing a transmembrane region structurally similar to the HCV core protein, targets SPP to impair MHC class I molecule expression. Thus, SPP represents a potential target for the impairment of MHC class I molecules by DNA and RNA viruses.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Hepacivirus/fisiología , Evasión Inmune/fisiología , Animales , Presentación de Antígeno/inmunología , Línea Celular , Regulación hacia Abajo , Hepacivirus/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Ratones , Proteínas del Núcleo Viral/fisiología
17.
Pediatr Surg Int ; 40(1): 55, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347163

RESUMEN

PURPOSE: In this research, we analyzed the expression of serpinB9 in hepatoblastoma and investigated the factors which enhance its expression. METHOD: SerpinB9 expression in hepatoblastoma cell lines and macrophages co-cultured with each other or stimulated by anticancer agents was examined using RT-qPCR and western blotting. Immunohistochemistry for SerpinB9 in hepatoblastoma specimens was performed. Single-cell RNA-sequence data for hepatoblastoma from an online database were analyzed to investigate which types of cells express SerpinB9. RESULT: HepG2, a hepatoblastoma cell line, exhibited increased expression of SerpinB9 when indirectly co-cultured with macrophages. Immunohistochemistry for the specimens demonstrated that serpinB9 is positive not in hepatoblastoma cells but in macrophages. Single-cell RNA sequence analysis in tissues from hepatoblastoma patients showed that macrophages expressed SerpinB9 more than tumor cells did. Co-culture of macrophages with hepatoblastoma cell lines led to the enhanced expression of SerpinB9 in both macrophages and cell lines. Anticancer agents induced an elevation of SerpinB9 in hepatoblastomas cell lines. CONCLUSION: In hepatoblastoma, SerpinB9 is thought to be more highly expressed in macrophages and enhanced by interaction with hepatoblastoma cell.


Asunto(s)
Antineoplásicos , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Línea Celular , Hepatoblastoma/patología , Inmunohistoquímica , Neoplasias Hepáticas/patología , Microambiente Tumoral/genética
18.
EMBO J ; 38(13): e100926, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268602

RESUMEN

The guanylate binding protein (GBP) family of interferon-inducible GTPases promotes antimicrobial immunity and cell death. During bacterial infection, multiple mouse Gbps, human GBP2, and GBP5 support the activation of caspase-1-containing inflammasome complexes or caspase-4 which trigger pyroptosis. Whether GBPs regulate other forms of cell death is not known. The apicomplexan parasite Toxoplasma gondii causes macrophage death through unidentified mechanisms. Here we report that Toxoplasma-induced death of human macrophages requires GBP1 and its ability to target Toxoplasma parasitophorous vacuoles through its GTPase activity and prenylation. Mechanistically, GBP1 promoted Toxoplasma detection by AIM2, which induced GSDMD-independent, ASC-, and caspase-8-dependent apoptosis. Identical molecular determinants targeted GBP1 to Salmonella-containing vacuoles. GBP1 facilitated caspase-4 recruitment to Salmonella leading to its enhanced activation and pyroptosis. Notably, GBP1 could be bypassed by the delivery of Toxoplasma DNA or bacterial LPS into the cytosol, pointing to its role in liberating microbial molecules. GBP1 thus acts as a gatekeeper of cell death pathways, which respond specifically to infecting microbes. Our findings expand the immune roles of human GBPs in regulating not only pyroptosis, but also apoptosis.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Macrófagos/parasitología , Toxoplasma/patogenicidad , Toxoplasmosis/metabolismo , Caspasas Iniciadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Macrófagos/metabolismo , Prenilación de Proteína , Piroptosis , Células THP-1 , Toxoplasmosis/parasitología
19.
Eur J Immunol ; 52(2): 285-296, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34694641

RESUMEN

The upregulation of interferon (IFN)-inducible GTPases in response to pathogenic insults is vital to host defense against many bacterial, fungal, and viral pathogens. Several IFN-inducible GTPases play key roles in mediating inflammasome activation and providing host protection after bacterial or fungal infections, though their role in inflammasome activation after viral infection is less clear. Among the IFN-inducible GTPases, the expression of immunity-related GTPases (IRGs) varies widely across species for unknown reasons. Here, we report that IRGB10, but not IRGM1, IRGM2, or IRGM3, is required for NLRP3 inflammasome activation in response to influenza A virus (IAV) infection in mice. While IRGB10 functions to release inflammasome ligands in the context of bacterial and fungal infections, we found that IRGB10 facilitates endosomal maturation and nuclear translocation of IAV, thereby regulating viral replication. Corresponding with our in vitro results, we found that Irgb10-/- mice were more resistant to IAV-induced mortality than WT mice. The results of our study demonstrate a detrimental role of IRGB10 in host immunity in response to IAV and a novel function of IRGB10, but not IRGMs, in promoting viral translocation into the nucleus.


Asunto(s)
GTP Fosfohidrolasas/inmunología , Inflamasomas/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/inmunología , Replicación Viral/inmunología , Animales , GTP Fosfohidrolasas/genética , Inflamasomas/genética , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/genética , Replicación Viral/genética
20.
Chemistry ; 29(51): e202302027, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37369623

RESUMEN

The reaction of tetra(o-tolyl)diborane(4) with organic azides afforded three different compounds, diborylamines, diboryltriazenes, and B2 -hexazenes having a bicyclic B2 N6 ring system. The reaction with aryl azides gave diborylamines, while the reaction with 1 equiv. of alkyl azides furnished diboryltriazenes. In the case of the reaction with an excess amount of primary alkyl azide, a new heterocyclic B2 -hexazenes were obtained. The formation of the B2 N6 structure could be explained by one general reaction mechanism via the diboryltriazene intermediate according to the control experiments and DFT calculations. The B2 -hexazenes exhibited a strong fluorescence with a remarkably high fluorescent quantum yield of up to 96 %.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA