Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(3): e202303082, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37880199

RESUMEN

Molecule-based magnetic materials are useful candidates as the spin qubit due to their long coherence time and high designability. The anisotropy of the g-values of the metal complexes can be utilized to access the individual spin of the metal complexes, making it possible to achieve the scalable molecular spin qubit. For this goal, it is important to evaluate the effect of g-value anisotropy on the magnetic relaxation behaviour. This study reports the slow magnetic relaxation behaviour of chromium nitride (CrN2+ ) porphyrinato complex (1), which is structurally and magnetically similar with the vanadyl (VO2+ ) porphyrinato complex (2) which is known as the excellent spin qubit. Detailed analyses for vibrational and dynamical magnetism of 1 and 2 revealed that g-value anisotropy accelerates magnetic relaxations greater than the internal magnetic field from nuclear spin does. These results provide a design criterion for construction of multiple spin qubit based on g-tensor engineering.

2.
Chemistry ; 30(12): e202304202, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38146235

RESUMEN

With the aim of creating Cu(II) spin qubits in a rigid metal-organic framework (MOF), this work demonstrates a doping of 5 %, 2 %, 1 %, and 0.1 % mol of Cu(II) ions into a perovskite-type MOF [CH6 N3 ][ZnII (HCOO)3 ]. The presence of dopant Cu(II) sites are confirmed with anisotropic g-factors (gx =2.07, gy =2.12, and gz =2.44) in the S=1/2 system by experimentally and theoretically. Magnetic dynamics indicate the occurrence of a slow magnetic relaxation via the direct and Raman processes under an applied field, with a relaxation time (τ) of 3.5 ms (5 % Cu), 9.2 ms (2 % Cu), and 15 ms (1 % Cu) at 1.8 K. Furthermore, pulse-ESR spectroscopy reveals spin qubit properties with a spin-spin relaxation (phase memory) time (T2 ) of 0.21 µs (2 %Cu), 0.39 µs (1 %Cu), and 3.0 µs (0.1 %Cu) at 10 K as well as Rabi oscillation between MS =±1/2 spin sublevels. T2 above microsecond is achieved for the first time in the Cu(II)-doped MOFs. It can be observed at submicrosecond around 50 K. These spin relaxations are very sensitive to the magnetic dipole interactions relating with cross-relaxation between the Cu(II) sites and can be tuned by adjusting the dopant concentration.

3.
Nano Lett ; 23(1): 213-219, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36585948

RESUMEN

The spintronic properties of magnetic molecules have attracted significant scientific attention. Special emphasis has been placed on the qubit for quantum information processing. The single-molecule magnet bis(phthalocyaninato (Pc)) Tb(III) (TbPc2) is one of the best examined cases in which the delocalized π-radical electron spin of the Pc ligand plays the key role in reading and intermediating the localized Tb spin qubits. We utilized the electron spin resonance (ESR) technique implemented on a scanning tunneling microscope (STM) and use it to measure local the ESR of a single TbPc2 molecule decoupled from the Cu(100) substrate by a two-monolayer NaCl film to identify the π-radical spin. We detected the ESR signal at the ligand positions under the resonance condition expected for an S = 1/2 spin. The results reveal that the π-radical electron is delocalized within the ligands and exhibits intramolecular coupling susceptible to the chemical environment.

4.
Nano Lett ; 23(15): 6900-6906, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37505070

RESUMEN

We demonstrate that an intercalated Co atom in superconductor NbSe2 could control the magnetic interaction between the adsorbed magnetic molecule of TbPc2 and the NbSe2 substrate. An intercalated Co atom enhances the magnetic interaction between the NbSe2 and the TbPc2 spin to cause Kondo resonance at the TbPc2 position, a spin-singlet state formed by the itinerary electron. By applying a surface-normal magnetic field, we change the molecule's spin direction from the initial one directed to the Co atom to the surface normal. The change appears as a split Kondo resonance at the TbPc2, one of which is enhanced at the Tb site, which disappears when the outer magnetic field normal to the surface is applied and never appears, even if we return B to 0 T. The phenomenon suggests that the intercalated magnetic atoms can control the magnetic interaction between a magnetic molecule and the superconductor NbSe2.

5.
J Am Chem Soc ; 145(26): 14288-14297, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37196226

RESUMEN

Assembling conductive or magnetic heterostructures by bulk inorganic materials is important for making functional electronic or spintronic devices, such as semiconductive p-doped and n-doped silicon for P-N junction diodes, alternating ferromagnetic and nonmagnetic conductive layers used in giant magnetoresistance (GMR). Nonetheless, there have been few demonstrations of conductive or magnetic heterostructures made by discrete molecules. It is of fundamental interest to prepare and investigate heterostructures based on molecular conductors or molecular magnets, such as single-molecule magnets (SMMs). Herein, we demonstrate the fabrication of a series of molecular heterostructures composed of (TTF)2M(pdms)2 (TTF = tetrathiafulvalene, M = Co(II), Zn(II), Ni(II), H2pdms = 1,2-bis(methanesulfonamido)benzene) multiple building blocks through a well-controlled step-by-step electrocrystallization growth process, where the Co(pdms)2, Ni(pdms)2, and Zn(pdms)2 anionic complex is a SMM, paramagnetic, and diamagnetic molecule, respectively. Magnetic and SMM properties of the heterostructures were characterized and compared to the parentage (TTF)2Co(pdms)2 complex. This study presents the first methodology for creating molecule-based magnetic heterostructural systems by electrocrystallization.

6.
Small ; 19(32): e2301966, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37178437

RESUMEN

The combination of single-ion magnets (SIMs) and metal-organic frameworks (MOFs) is expected to produce new quantum materials. The principal issue to be solved in this regard is the development of new strategies for the synthesis of SIM-MOFs. This work demonstrates a new simple strategy for the synthesis of SIM-MOFs where a diamagnetic MOF is used as the framework into which the SIM sites are doped. 1, 0.5, and 0.2 mol% of the Co(II) ions are doped into the Zn(II) sites of [CH6 N3 ][ZnII (HCOO)3 ]. The doped Co(II) sites in the MOFs perform as SIM with a positive D term of zero-field splitting. The longest magnetic relaxation time is 150 ms (0.2 mol% Co) at 1.8 K under a static field of 0.1 T. Temperature dependency of the relaxation time suggests suppressing magnetic relaxation by reduction of spin-spin interaction upon doping in the rigid framework. Thus, this work represents a proof of concept for the creation of a single-ion doped magnet in the MOF. This simple synthetic strategy will be widely applied for the creation of quantum magnetic materials.

7.
Chemistry ; 29(13): e202203421, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36479715

RESUMEN

Di-nuclear citrate complexes, [CH6 N3 ]2 [M2 (citH)2 (H2 O)4 ] ⋅ 2H2 O (citH4 =citric acid; M=FeII (Fe-2), CoII (Co-2), and NiII (Ni-2)), are synthesized. The ligand, citH3- , is deprotonated only at the three carboxy groups, which is different from the previously reported tetra-nuclear structures with cit4- ligands. Magnetic measurements reveal that these complexes have intramolecular ferromagnetism with J=∼0 cm-1 (Ni-2), 0.02 cm-1 (Co-2), and 0.04 cm-1 (Fe-2). Co-2 and Fe-2 show slow magnetic relaxation, and are field-induced SMMs with activation energy of spin-reversal Ueff =27 cm-1 (Co-2) and 4.2 cm-1 (Fe-2). Density functional theory calculations indicate that the uniaxial anisotropy along the z-axis of each metal ion center forms the pseudo-serial arrangement, leading to intramolecular ferromagnetism via the magnetic dipole interaction. This work demonstrates the creation of ferromagnetic SMMs by the magnetic dipole engineering of 3d di-nuclear metal ion centers.

8.
Chemistry ; 29(44): e202300554, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37249393

RESUMEN

The field of anion supramolecular chemistry has received more and more attention in recent years. Anions with diverse types and geometries have been widely used for the synthesis of ionic spin crossover (SCO) complexes. This review is devoted to anion effects on the molecular, supramolecular structures and magnetic properties of discrete SCO compounds. Firstly, typical anions used in the synthesis of these compounds are briefly summarized according to their various geometries. This is followed by a collection of representative examples of anion-based SCO compounds, whose SCO properties are analyzed in terms of supramolecular interactions, geometry and charge of anions. In the third part, anion effects on SCO complexes of different kinds of metal centers and ligands are outlined and finally remarks on the synthesis new type of ionic SCO complexes in the future are described.

9.
Chemphyschem ; 24(4): e202200618, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36287210

RESUMEN

We report the water adsorption/desorption behavior and dynamic magnetic properties of the Pt-Cl chain complex [{[Pt(en)2 ][PtCl2 (en)2 ]}3 ][{(MnCl5 )Cl3 }2 ] ⋅ 12H2 O (1). Upon heating 1 in a vacuum, we obtained the dehydrated form [{[Pt(en)2 ][PtCl2 (en)2 ]}3 ][{(MnCl5 )Cl3 }2 ] (1DH). The framework structures of 1 and 1DH are identical, and both complexes underwent slow magnetic relaxation. However, the magnetic relaxation times for 1DH were shorter than those for 1, meaning that the dynamic magnetic properties were controlled upon water vapor adsorption/desorption. From detailed analyses of the dynamic magnetic behavior, a phonon-bottleneck effect contributes to the magnetic relaxation processes. We discuss the mechanism for the changes in the magnetic relaxation processes upon dehydration in terms of the heat capacity and thermal conductivity.

10.
Phys Chem Chem Phys ; 25(7): 5459-5467, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36748343

RESUMEN

The use of molecular spins as quantum bits is fascinating because it offers a wide range of strategies through chemical modifications. In this regard, it is very interesting to search for organic radical ions that have small spin-orbit coupling values. On the other hand, the feature of the magnetic relaxation of π-organic radical ions is rarely exploited due to the difficulty of spin dilution, and π-stacking interaction. In this study, we focus on N,N',N''-tris(2,6-dimethylphenyl)benzenetriimide (BTI-xy), where three xylene moieties connected to the imide groups cover the π-plane of the BTI core. As a result, BTI-xy radical anions without π-stacking interaction were obtained. This led to the slow magnetization relaxation, which is reported for the first time in organic radicals. Furthermore, the relaxation times in a solution state revealed the importance of spin interaction.

11.
Chem Soc Rev ; 51(22): 9262-9339, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36315281

RESUMEN

The unique properties of natural tetrapyrrolic compounds have inspired the rapid growth of research interest in the design and synthesis of artificial porphyrinoids and their metal complexes as a basis of modern functional materials. A special role in the design of such materials is played by sandwich complexes formed by tetrapyrrolic macrocycles with rare earth elements, especially lanthanides. The development of synthetic approaches to the functionalization of tetrapyrrolic compounds and their rare earth complexes has facilitated the intensive development of new applications over the last decade. As a way of expanding the functionalities of rare earth complexes, sophisticated examples have been obtained, including mixed-ligand complexes, π-extended analogues, covalently linked and fused sandwiches, complexes with less-common tetrapyrrols, sandwiches with non-tetrapyrrolic macrocycles and even complexes containing up to six stacked ligands. This review intends to offer a general overview of the preparation of such sophisticated REE tetrapyrrolic sandwiches over the last decade as well as emphasizes the current challenges and perspectives of their application in areas such as single-molecule magnetism (SMM), organic field-effect transistors (OFET), conductive materials and nonlinear optics (NLO).


Asunto(s)
Complejos de Coordinación , Elementos de la Serie de los Lantanoides , Metales de Tierras Raras , Complejos de Coordinación/química , Ligandos
12.
Eur Respir J ; 59(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34446463

RESUMEN

BACKGROUND: Successful recovery from acute lung injury requires inhibition of neutrophil influx and clearance of apoptotic neutrophils. However, the mechanisms underlying recovery remain unclear. We investigated the ameliorative effects of vascular endothelial growth factor (VEGF)-C/VEGF receptor 3 (VEGFR-3) signalling in macrophages in lipopolysaccharide (LPS)-induced lung injury. METHODS: LPS was intranasally injected into wild-type and transgenic mice. Gain and loss of VEGF-C/VEGFR-3 signalling function experiments employed adenovirus-mediated intranasal delivery of VEGF-C (Ad-VEGF-C vector) and soluble VEGFR-3 (sVEGFR-3) or anti-VEGFR-3 blocking antibodies and mice with a deletion of VEGFR-3 in myeloid cells. RESULTS: The early phase of lung injury was significantly alleviated by the overexpression of VEGF-C with increased levels of bronchoalveolar lavage (BAL) fluid interleukin-10 (IL-10), but worsened in the later phase by VEGFR-3 inhibition upon administration of Ad-sVEGFR-3 vector. Injection of anti-VEGFR-3 antibodies to mice in the resolution phase inhibited recovery from lung injury. The VEGFR-3-deleted mice had a shorter survival time than littermates and more severe lung injury in the resolution phase. Alveolar macrophages in the resolution phase digested most of the extrinsic apoptotic neutrophils and VEGF-C/VEGFR-3 signalling increased efferocytosis via upregulation of integrin αv in the macrophages. We also found that incubation with BAL fluid from acute respiratory distress syndrome (ARDS) patients, but not from controls, decreased VEGFR-3 expression and the efficiency of IL-10 expression and efferocytosis in human monocyte-derived macrophages. CONCLUSIONS: VEGF-C/VEGFR-3 signalling in macrophages ameliorates experimental lung injury. This mechanism may also provide an explanation for ARDS resolution.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/metabolismo , Animales , Humanos , Interleucina-10/efectos adversos , Interleucina-10/metabolismo , Lipopolisacáridos , Macrófagos Alveolares/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
13.
Chemphyschem ; 23(6): e202200120, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35244957

RESUMEN

The front cover artwork is provided by Prof. Masahiro Yamashita's group at Tohoku University and designed by Dr. Laurent Guérin at University of Rennes 1. The image illustrates that the atomic structure of a 2D charge density wave can be revealed although the planes associated to this local 2D order are randomly stacked preventing the use of conventional structure determination techniques. Read the full text of the Research Article at 10.1002/cphc.202100857.

14.
Chemphyschem ; 23(6): e202100857, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35083834

RESUMEN

Many solids, particularly low-dimensional systems, exhibit charge density waves (CDWs). In one dimension, charge density waves are well understood, but in two dimensions, their structure and their origin are difficult to reveal. Herein, the 2D charge-density-wave atomic structure and stabilization mechanism in the bromide-bridged Pd compound [Pd(cptn)2 Br]Br2 (cptn=1R,2R-diaminocyclopentane) is investigated by means of single-crystal X-ray diffraction employing the 3D-Δpair distribution function (3D-ΔPDF) method. Analysis of the diffuse scattering using 3D-ΔPDF shows that a 2D-CDW is stabilized by a hydrogen-bonding network between Br- counteranion and the amine (NH2 ) group of the cptn in-plane ligand, and that 3D ordering is prevented due to a weak plane to plane correlation. We extract the effective displacements of the atoms describing the atomic structure quantitatively and discuss the stabilization mechanism of the 2D-CDW. Our study provides a method to identify and measure the key interaction responsible for the dimensionality and stability of the CDW that can help further progress of rational design.

15.
Inorg Chem ; 61(25): 9504-9513, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35695034

RESUMEN

Halogen-bridged linear chain metal complexes (MX-Chains) are fascinating compounds that have a quasi-one-dimensional (1D) electronic system. In this study, we synthesized the first Ni-based MX-Chain compound having hydroxy groups, i.e., [Ni(dabdOH)2Br]Br2·[Ni(dabdOHx)2Br]0.5·(2-PrOH)0.25·(MeOH)0.25 (1·solvent, x = ∼0.6, dabdOH = (2S,3S)-2,3-diaminobutane-1,4-diol). Single-crystal X-ray diffraction revealed that the MX-Chains in 1·solvent formed sheets and single-chain structures in the superlattice. It suggested an MH-like state, whereas the polarized reflection and Raman spectra suggested a CDW-like state. Magnetic and electron spin resonance measurements revealed that both high-spin Ni(II) (∼15%) and low-spin Ni(III) (∼85%) sites are present in the chain structures, i.e., the metal sites show mixed valency. Therefore, we concluded that 1·solvent adopts an intermediate state between the MH and CDW states. Moreover, a single crystal of 1·solvent exhibited semiconductive characteristics along the chain direction. This finding represents a new structural and electronic state of 1D electronic systems as well as MX-Chains.

16.
Inorg Chem ; 61(35): 14067-14074, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36006962

RESUMEN

In condensed matter, phase separation is strongly related to ferroelasticity, ferroelectricity, ferromagnetism, electron correlation, and crystallography. These ferroics are important for nano-electronic devices such as non-volatile memory. However, the quantitative information regarding the lattice (atomic) structure at the border of phase separation is unclear in many cases. Thus, to design electronic devices at the molecular level, a quantitative electron-lattice relationship must be established. Herein, we elucidated a PdII-PdIV/PdIII-PdIII phase transition and phase separation mechanism for [Pd(cptn)2Br]Br2 (cptn = 1R,2R-diaminocyclopentane), propagated through a hydrogen-bonding network. Although the Pd···Pd distance was used to determine the electronic state, the differences in the Pd···Pd distance and the optical gap between Mott-Hubbard (MH) and charge-density-wave (CDW) states were only 0.012 Å and 0.17 eV, respectively. The N-H···Br···H-N hydrogen-bonding network functioned as a jack, adjusting the structural difference dynamically, and allowing visible ferroelastic phase transition/separation in a fluctuating N2 gas flow. Additionally, the effect of the phase separation on the spin susceptibility and electrical conductivity were clarified to represent the quasi-epitaxial crystals among CDW-MH states. These results indicate that the phase transitions and separations could be controlled via atomic and molecular level modifications, such as the addition of hydrogen bonding.

17.
Phys Chem Chem Phys ; 24(13): 7978-7982, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35311875

RESUMEN

Current-voltage characteristics and dielectric properties were studied in bromo-bridged one-dimensional compounds, [Pd(en)2Br](Suc-C5)2·H2O, exhibiting mixed-valence and averaged valence (MV-AV) phase transition. In the AV phase, clear nonlinear current-voltage characteristics were observed. This phenomenon was explained by the thermally induced electron-hole separation assisted by an electric field. This mechanism was supported by the dielectric properties of [Pd(en)2Br](Suc-Cn)2·H2O (n = 5 and 6).

18.
Angew Chem Int Ed Engl ; 61(34): e202206428, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35676224

RESUMEN

The chemical carrier doping of molecular Mott insulators has been poorly investigated to date due to its difficulty. In this study, iodine doping of a molecular Mott insulator, lithium phthalocyanine crystallized in the x-form (x-LiPc), was performed to obtain metallic x-LiPcI. Crystal structure analysis revealed that iodine atoms penetrated channels of x-LiPc and formed one-dimensional chains. The Raman spectroscopy of x-LiPcI indicated the existence of linear I5 - , demonstrating a transition from a half-filled band of the Mott insulating state to a 2/5-filled band of the metallic state. Electrical resistivity measurements confirmed the metallic nature of x-LiPcI, whereas a thermally activated behavior was observed for pristine x-LiPc. Furthermore, the x-LiPc Mott insulator was reproduced by dedoping iodine from x-LiPcI, suggesting that the electronic state can be reversibly tuned between the Mott insulating and metallic states by chemical doping and dedoping.

19.
J Am Chem Soc ; 143(25): 9543-9550, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34156240

RESUMEN

Cooperation between single-molecule magnets and electrical conductivity holds promise for preparing high-density magnetic devices; however, there are only a few reports so far. Here we report a 4f-π-based molecular hybrid, k-(ET)5Dy(NCS)7(KCl)0.5 (1) (ET = bis(ethylenedithio)tetrathiafulvalene, NCS- = thiocyanate), which undergoes slow relaxation of the magnetization and electrical conductivity. Unlike common ET-based conductive salts, K+ ions were intercalated into ET layers and coordinated with ET radicals. We found that the ET charges were sensitive to temperature, resulting in rich conductive phases at 75-300 K. In particular, the upturn in conductivity with a clear hysteresis loop was explained by the formation of partially oxidized states with charges close to 0.5+, which accounts for a metallic state. From the results of electronic structure calculations, the hole concentration increased to 125 K, which is consistent with a partially oxidized state upon cooling. The weak antiferromagnetic interactions accompanied by a dual magnetic relaxation process below 4 K are closely associated with the weak 4f-π interactions.

20.
J Am Chem Soc ; 143(13): 4891-4895, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33656871

RESUMEN

Single-molecule magnets exhibit magnetic bistabililties at the molecular level, making them promising for molecule-based spintronics due to high magnetic densities. The incorporation of SMM behavior and electrical conductivity in one compound is rare because these two physical properties often do not operate in the same temperature range, which further hinders their use in practical applications. Here we present an organic-inorganic molecular hybrid, ß″-(BEDO-TTF)3[Co(pdms)2]·(MeCN)(H2O)2 (BO3) (BEDO-TTF = bis(ethylenedioxy)tetrathiafulvalene and H2pdms = 1,2-bis(methanesulfonamido)benzene), which manifests both metallic conduction (electrical conductivity up to 1000 S cm-1 at 12 K under 2.0 gigapascal pressure) and SMM behavior in the temperature range 12-26 K for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA