Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Neurosci ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360566

RESUMEN

Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally. Expected final online publication date for the Annual Review of Neuroscience, Volume 47 is July 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
Proc Natl Acad Sci U S A ; 119(37): e2207433119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36074819

RESUMEN

A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.


Asunto(s)
Vías Auditivas , Núcleo Coclear , Células Ciliadas Auditivas , Proteínas con Homeodominio LIM , Neurogénesis , Ganglio Espiral de la Cóclea , Factores de Transcripción , Animales , Vías Auditivas/embriología , Cóclea/embriología , Cóclea/inervación , Núcleo Coclear/embriología , Células Ciliadas Auditivas/fisiología , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/fisiología , Ratones , Neurogénesis/genética , Ganglio Espiral de la Cóclea/enzimología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
3.
Proc Natl Acad Sci U S A ; 119(36): e2206708119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36044551

RESUMEN

The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death of the cell. The release of Ca2+ from the ryanodine receptors 2 (RyR2) on the sarcoplasmic reticulum (SR) at mitochondria-SR microdomains serves as the critical communication to match energy production to meet metabolic demands. Therefore, we tested the hypothesis that alterations in the mitochondria-SR connectomics contribute to SAN dysfunction in HF. We took advantage of a mouse model of chronic pressure overload-induced HF by transverse aortic constriction (TAC) and a SAN-specific CRISPR-Cas9-mediated knockdown of mitofusin-2 (Mfn2), the mitochondria-SR tethering GTPase protein. TAC mice exhibited impaired cardiac function with HF, cardiac fibrosis, and profound SAN dysfunction. Ultrastructural imaging using electron microscope (EM) tomography revealed abnormal mitochondrial structure with increased mitochondria-SR distance. The expression of Mfn2 was significantly down-regulated and showed reduced colocalization with RyR2 in HF SAN cells. Indeed, SAN-specific Mfn2 knockdown led to alterations in the mitochondria-SR microdomains and SAN dysfunction. Finally, disruptions in the mitochondria-SR microdomains resulted in abnormal mitochondrial Ca2+ handling, alterations in localized protein kinase A (PKA) activity, and impaired mitochondrial function in HF SAN cells. The current study provides insights into the role of mitochondria-SR microdomains in SAN automaticity and possible therapeutic targets for SAN dysfunction in HF patients.


Asunto(s)
Conectoma , Insuficiencia Cardíaca , Mitocondrias Cardíacas , Retículo Sarcoplasmático , Síndrome del Seno Enfermo , Nodo Sinoatrial , Animales , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Ratones , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/patología , Síndrome del Seno Enfermo/patología , Síndrome del Seno Enfermo/fisiopatología , Nodo Sinoatrial/fisiopatología
4.
J Neurosci ; 40(44): 8556-8572, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33020216

RESUMEN

Organelle crosstalk is vital for cellular functions. The propinquity of mitochondria, ER, and plasma membrane promote regulation of multiple functions, which include intracellular Ca2+ flux, and cellular biogenesis. Although the purposes of apposing mitochondria and ER have been described, an understanding of altered organelle connectomics related to disease states is emerging. Since inner ear outer hair cell (OHC) degeneration is a common trait of age-related hearing loss, the objective of this study was to investigate whether the structural and functional coupling of mitochondria with subsurface cisternae (SSC) was affected by aging. We applied functional and structural probes to equal numbers of male and female mice with a hearing phenotype akin to human aging. We discovered the polarization of cristae and crista junctions in mitochondria tethered to the SSC in OHCs. Aging was associated with SSC stress and decoupling of mitochondria with the SSC, mitochondrial fission/fusion imbalance, a remarkable reduction in mitochondrial and cytoplasmic Ca2+ levels, reduced K+-induced Ca2+ uptake, and marked plasticity of cristae membranes. A model of structure-based ATP production predicts profound energy stress in older OHCs. This report provides data suggesting that altered membrane organelle connectomics may result in progressive hearing loss.


Asunto(s)
Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva/patología , Mitocondrias/patología , Adenosina Trifosfato/biosíntesis , Envejecimiento/fisiología , Animales , Calcio/metabolismo , Conectoma , Citoplasma/metabolismo , Retículo Endoplásmico/patología , Metabolismo Energético/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Plasticidad Neuronal/efectos de los fármacos , Potasio/farmacología
5.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919542

RESUMEN

We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix-loop-helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstream target Neurod1, to cross-regulate Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 expression for interactions with Atoh1. Upregulation of Atoh1 following Neurod1 loss changes some vestibular neurons' fate into "hair cells", highlighting the significant interplay between the bHLH genes. Further work showed that replacing Atoh1 by Neurog1 rescues some hair cells from complete absence observed in Atoh1 null mutants, suggesting that bHLH genes can partially replace one another. The inhibition of Atoh1 by Neurod1 is essential for proper neuronal cell fate, and in the absence of Neurod1, Atoh1 is upregulated, resulting in the formation of "intraganglionic" HCs. Additional genes, such as Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b, play a role in the auditory system. Finally, both Lmx1a and Lmx1b genes are essential for the cochlear organ of Corti, spiral ganglion neuron, and cochlear nuclei formation. We integrate the mammalian auditory system development to provide comprehensive insights beyond the limited perception driven by singular investigations of cochlear neurons, cochlear hair cells, and cochlear nuclei. A detailed analysis of gene expression is needed to understand better how upstream regulators facilitate gene interactions and mammalian auditory system development.


Asunto(s)
Células Ciliadas Auditivas/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cóclea/citología , Cóclea/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Neurogénesis/genética , Neurogénesis/fisiología , Factores de Transcripción/genética
6.
Proc Natl Acad Sci U S A ; 112(8): 2575-80, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25675481

RESUMEN

The developmental rehearsal for the debut of hearing is marked by massive changes in the membrane properties of hair cells (HCs) and spiral ganglion neurons (SGNs). Whereas the underlying mechanisms for the developing HC transition to mature stage are understood in detail, the maturation of SGNs from hyperexcitable prehearing to quiescent posthearing neurons with broad dynamic range is unknown. Here, we demonstrated using pharmacological approaches, caged-Ca(2+) photolysis, and gramicidin patch recordings that the prehearing SGN uses Ca(2+)-activated Cl(-) conductance to depolarize the resting membrane potential and to prime the neurons in a hyperexcitable state. Immunostaining of the cochlea preparation revealed the identity and expression of the Ca(2+)-activated Cl(-) channel transmembrane member 16A (TMEM16A) in SGNs. Moreover, null deletion of TMEM16A reduced the Ca(2+)-activated Cl(-) currents and action potential firing in SGNs. To determine whether Cl(-) ions and TMEM16A are involved in the transition between pre- and posthearing features of SGNs we measured the intracellular Cl(-) concentration [Cl(-)]i in SGNs. Surprisingly, [Cl(-)]i in SGNs from prehearing mice was ∼90 mM, which was significantly higher than posthearing neurons, ∼20 mM, demonstrating discernible altered roles of Cl(-) channels in the developing neuron. The switch in [Cl(-)]i stems from delayed expression of the development of intracellular Cl(-) regulating mechanisms. Because the Cl(-) channel is the only active ion-selective conductance with a reversal potential that lies within the dynamic range of SGN action potentials, developmental alteration of [Cl(-)]i, and hence the equilibrium potential for Cl(-) (ECl), transforms pre- to posthearing phenotype.


Asunto(s)
Canales de Cloruro/metabolismo , Potenciales de la Membrana , Neuronas/fisiología , Ganglio Espiral de la Cóclea/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Anoctamina-1 , Anoctaminas , Calcio/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Canales de Cloruro/antagonistas & inhibidores , Cloruros/metabolismo , Femenino , Audición/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones Noqueados , Neuronas/efectos de los fármacos , Fenotipo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Ganglio Espiral de la Cóclea/efectos de los fármacos , Simportadores/metabolismo , Cotransportadores de K Cl
7.
J Physiol ; 595(7): 2271-2284, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27779751

RESUMEN

KEY POINTS: Ion channels are transmembrane proteins that are synthesized within the cells but need to be trafficked to the cell membrane for the channels to function. Small-conductance, Ca2+ -activated K+ channels (SK, KCa 2) are unique subclasses of K+ channels that are regulated by Ca2+ inside the cells; they are expressed in human atrial myocytes and responsible for shaping atrial action potentials. We have previously shown that interacting proteins of SK2 channels are important for channel trafficking to the membrane. Using total internal reflection fluorescence (TIRF) and confocal microscopy, we studied the mechanisms by which the surface membrane localization of SK2 (KCa 2.2) channels is regulated by their interacting proteins. Understanding the mechanisms of SK channel trafficking may provide new insights into the regulation controlling the repolarization of atrial myocytes. ABSTRACT: The normal function of ion channels depends critically on the precise subcellular localization and the number of channel proteins on the cell surface membrane. Small-conductance, Ca2+ -activated K+ channels (SK, KCa 2) are expressed in human atrial myocytes and are responsible for shaping atrial action potentials. Understanding the mechanisms of SK channel trafficking may provide new insights into the regulation controlling the repolarization of atrial myocytes. We have previously demonstrated that the C- and N-termini of SK2 channels interact with the actin-binding proteins α-actinin2 and filamin A, respectively. However, the roles of the interacting proteins on SK2 channel trafficking remain incompletely understood. Using total internal reflection fluorescence (TIRF) microscopy, we studied the mechanisms of surface membrane localization of SK2 (KCa 2.2) channels. When SK2 channels were co-expressed with filamin A or α-actinin2, the membrane fluorescence intensity of SK2 channels increased significantly. We next tested the effects of primaquine and dynasore on SK2 channels expression. Treatment with primaquine significantly reduced the membrane expression of SK2 channels. In contrast, treatment with dynasore failed to alter the surface membrane expression of SK2 channels. Further investigations using constitutively active or dominant-negative forms of Rab GTPases provided additional insights into the distinct roles of the two cytoskeletal proteins on the recycling processes of SK2 channels from endosomes. α-Actinin2 facilitated recycling of SK2 channels from both early and recycling endosomes while filamin A probably aids the recycling of SK2 channels from recycling endosomes.


Asunto(s)
Actinina/fisiología , Filaminas/fisiología , Miocitos Cardíacos/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Endosomas/metabolismo , Células HEK293 , Atrios Cardíacos/citología , Humanos , Hidrazonas/farmacología , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Primaquina/farmacología
8.
J Biol Chem ; 291(5): 2499-509, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26515070

RESUMEN

Calmodulin (CaM), a Ca(2+)-sensing protein, is constitutively bound to IQ domains of the C termini of human Kv7 (hKv7, KCNQ) channels to mediate Ca(2+)-dependent reduction of Kv7 currents. However, the mechanism remains unclear. We report that CaM binds to two isoforms of the hKv7.4 channel in a Ca(2+)-independent manner but that only the long isoform (hKv7.4a) is regulated by Ca(2+)/CaM. Ca(2+)/CaM mediate reduction of the hKv7.4a channel by decreasing the channel open probability and altering activation kinetics. We took advantage of a known missense mutation (G321S) that has been linked to progressive hearing loss to further examine the inhibitory effects of Ca(2+)/CaM on the Kv7.4 channel. Using multidisciplinary techniques, we demonstrate that the G321S mutation may destabilize CaM binding, leading to a decrease in the inhibitory effects of Ca(2+) on the channels. Our study utilizes an expression system to dissect the biophysical properties of the WT and mutant Kv7.4 channels. This report provides mechanistic insights into the critical roles of Ca(2+)/CaM regulation of the Kv7.4 channel under physiological and pathological conditions.


Asunto(s)
Calmodulina/química , Regulación de la Expresión Génica , Canales de Potasio KCNQ/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células CHO , Calcio/química , Cricetinae , Cricetulus , Electrofisiología , Epítopos/química , Humanos , Inmunoprecipitación , Iones , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Mutación Missense , Técnicas de Placa-Clamp , Unión Proteica , Isoformas de Proteínas/química , Homología de Secuencia de Aminoácido
9.
Proc Natl Acad Sci U S A ; 111(27): 9989-94, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24951510

RESUMEN

For an excitable cell to function properly, a precise number of ion channel proteins need to be trafficked to distinct locations on the cell surface membrane, through a network and anchoring activity of cytoskeletal proteins. Not surprisingly, mutations in anchoring proteins have profound effects on membrane excitability. Ca(2+)-activated K(+) channels (KCa2 or SK) have been shown to play critical roles in shaping the cardiac atrial action potential profile. Here, we demonstrate that filamin A, a cytoskeletal protein, augments the trafficking of SK2 channels in cardiac myocytes. The trafficking of SK2 channel is Ca(2+)-dependent. Further, the Ca(2+) dependence relies on another channel-interacting protein, α-actinin2, revealing a tight, yet intriguing, assembly of cytoskeletal proteins that orchestrate membrane expression of SK2 channels in cardiac myocytes. We assert that changes in SK channel trafficking would significantly alter atrial action potential and consequently atrial excitability. Identification of therapeutic targets to manipulate the subcellular localization of SK channels is likely to be clinically efficacious. The findings here may transcend the area of SK2 channel studies and may have implications not only in cardiac myocytes but in other types of excitable cells.


Asunto(s)
Calcio/metabolismo , Filaminas/metabolismo , Proteínas de la Membrana/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Potenciales de Acción , Animales , Animales Recién Nacidos , Filaminas/genética , Células HEK293 , Atrios Cardíacos/metabolismo , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética
10.
J Biol Chem ; 290(8): 4663-4676, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25538241

RESUMEN

Cav1.3 L-type Ca(2+) channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpinned by our previous demonstration of atrial fibrillation in a Cav1.3 null mutant mouse model. Indeed, a recent study has confirmed the critical roles of Cav1.3 in the human heart (Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nürnberg, G., Ali, A., Ahmad, I., Sinnegger-Brauns, M. J., Brandt, N., Engel, J., Mangoni, M. E., Farooq, M., Khan, H. U., Nürnberg, P., Striessnig, J., and Bolz, H. J. (2011) Nat. Neurosci. 14, 77-84). These studies suggest that detailed knowledge of Cav1.3 may have broad therapeutic ramifications in the treatment of cardiac arrhythmias. Here, we tested the hypothesis that there is a functional cross-talk between the Cav1.3 channel and a small conductance Ca(2+)-activated K(+) channel (SK2), which we have documented to be highly expressed in human and mouse atrial myocytes. Specifically, we tested the hypothesis that the C terminus of Cav1.3 may translocate to the nucleus where it functions as a transcriptional factor. Here, we reported for the first time that the C terminus of Cav1.3 translocates to the nucleus where it functions as a transcriptional regulator to modulate the function of Ca(2+)-activated K(+) channels in atrial myocytes. Nuclear translocation of the C-terminal domain of Cav1.3 is directly regulated by intracellular Ca(2+). Utilizing a Cav1.3 null mutant mouse model, we demonstrate that ablation of Cav1.3 results in a decrease in the protein expression of myosin light chain 2, which interacts and increases the membrane localization of SK2 channels.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Miocitos Cardíacos/metabolismo , Transcripción Genética/fisiología , Transporte Activo de Núcleo Celular/fisiología , Animales , Canales de Calcio Tipo L/genética , Miosinas Cardíacas/biosíntesis , Miosinas Cardíacas/genética , Núcleo Celular/genética , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Humanos , Ratones , Ratones Noqueados , Miocitos Cardíacos/citología , Cadenas Ligeras de Miosina/biosíntesis , Cadenas Ligeras de Miosina/genética , Estructura Terciaria de Proteína
11.
J Neurosci ; 34(21): 7383-93, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24849370

RESUMEN

Spiral ganglion neurons (SGNs) of the eighth nerve serve as the bridge between hair cells and the cochlear nucleus. Hair cells use Cav1.3 as the primary channel for Ca(2+) inflow to mediate transmitter release. In contrast, SGNs are equipped with multiple Ca(2+) channels to mediate Ca(2+)-dependent functions. We examined directly the role of Cav1.3 channels in SGNs using Cav1.3-deficient mice (Cav1.3(-/-)). We revealed a surprising finding that SGNs functionally express the cardiac-specific Cav1.2, as well as neuronal Cav1.3 channels. We show that evoked action potentials recorded from SGNs show a significant decrease in the frequency of firing in Cav1.3(-/-) mice compared with wild-type (Cav1.3(+/+)) littermates. Although Cav1.3 is the designated L-type channel in neurons, whole-cell currents recorded in isolated SGNs from Cav1.3(-/-) mice showed a surprising remnant current with sensitivity toward the dihydropyridine (DHP) agonist and antagonist, and a depolarization shift in the voltage-dependent activation compared with that in the Cav1.3(+/+) mice. Indeed, direct measurement of the elementary properties of Ca(2+) channels, in Cav1.3(+/+) neurons, confirmed the existence of two DHP-sensitive single-channel currents, with distinct open probabilities and conductances. We demonstrate that the DHP-sensitive current in Cav1.3(-/-) mice is derived from Cav1.2 channel activity, providing for the first time, to our knowledge, functional data for the expression of Cav1.2 currents in neurons. Finally, using shRNA gene knockdown methodology, and histological analyses of SGNs from Cav1.2(+/-) and Cav1.3(+/-) mice, we were able to establish the differential roles of Cav1.2 and Cav1.3 in SGNs.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Ganglio Espiral de la Cóclea/citología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Canales de Calcio Tipo L/genética , Cóclea/fisiología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Moduladores del Transporte de Membrana/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Tubulina (Proteína)/metabolismo
12.
J Biol Chem ; 289(24): 16802-13, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24727472

RESUMEN

The KCNE3 ß-subunit interacts with and regulates the voltage-dependent gating, kinetics, and pharmacology of a variety of Kv channels in neurons. Because a single neuron may express multiple KCNE3 partners, it is impossible to predict the overall functional relevance of the single transmembrane domain peptide on the pore-forming K(+) channel subunits with which it associates. In the inner ear, the role of KCNE3 is undefined, despite its association with Meniere disease and tinnitus. To gain insights on the functional significance of KCNE3 in auditory neurons, we examined the properties of spiral ganglion neurons (SGNs) in Kcne3 null mutant neurons relative to their age-matched controls. We demonstrate that null deletion of Kcne3 abolishes characteristic wide variations in the resting membrane potentials of SGNs and yields age-dependent alterations in action potential and firing properties of neurons along the contour of the cochlear axis, in comparison with age-matched wild-type neurons. The properties of basal SGNs were markedly altered in Kcne3(-/-) mice compared with the wild-type controls; these include reduced action potential latency, amplitude, and increased firing frequency. Analyses of the underlying conductance demonstrate that null mutation of Kcne3 results in enhanced outward K(+) currents, which is sufficient to explain the ensuing membrane potential changes. Additionally, we have demonstrated that KCNE3 may regulate the activity of Kv4.2 channels in SGNs. Finally, there were developmentally mediated compensatory changes that occurred such that, by 8 weeks after birth, the electrical properties of the null mutant neurons were virtually indistinguishable from the wild-type neurons, suggesting that ion channel remodeling in auditory neurons progresses beyond hearing onset.


Asunto(s)
Potenciales de la Membrana , Canales de Potasio con Entrada de Voltaje/metabolismo , Células Receptoras Sensoriales/metabolismo , Ganglio Espiral de la Cóclea/citología , Factores de Edad , Animales , Células Cultivadas , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Canales de Potasio con Entrada de Voltaje/genética , Células Receptoras Sensoriales/fisiología , Ganglio Espiral de la Cóclea/crecimiento & desarrollo
13.
Circ Res ; 112(12): 1567-76, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23609114

RESUMEN

RATIONALE: Adenylyl cyclase (AC) represents one of the principal molecules in the ß-adrenergic receptor signaling pathway, responsible for the conversion of ATP to the second messenger, cAMP. AC types 5 (ACV) and 6 (ACVI) are the 2 main isoforms in the heart. Although highly homologous in sequence, these 2 proteins play different roles during the development of heart failure. Caveolin-3 is a scaffolding protein, integrating many intracellular signaling molecules in specialized areas called caveolae. In cardiomyocytes, caveolin is located predominantly along invaginations of the cell membrane known as t-tubules. OBJECTIVE: We take advantage of ACV and ACVI knockout mouse models to test the hypothesis that there is distinct compartmentalization of these isoforms in ventricular myocytes. METHODS AND RESULTS: We demonstrate that ACV and ACVI isoforms exhibit distinct subcellular localization. The ACVI isoform is localized in the plasma membrane outside the t-tubular region and is responsible for ß1-adrenergic receptor signaling-mediated enhancement of the L-type Ca(2+) current (ICa,L) in ventricular myocytes. In contrast, the ACV isoform is localized mainly in the t-tubular region where its influence on ICa,L is restricted by phosphodiesterase. We further demonstrate that the interaction between caveolin-3 with ACV and phosphodiesterase is responsible for the compartmentalization of ACV signaling. CONCLUSIONS: Our results provide new insights into the compartmentalization of the 2 AC isoforms in the regulation of ICa,L in ventricular myocytes. Because caveolae are found in most mammalian cells, the mechanism of ß- adrenergic receptor and AC compartmentalization may also be important for ß-adrenergic receptor signaling in other cell types.


Asunto(s)
Adenilil Ciclasas/metabolismo , Canales de Calcio Tipo L/metabolismo , Ventrículos Cardíacos/enzimología , Miocitos Cardíacos/enzimología , Adenilil Ciclasas/deficiencia , Adenilil Ciclasas/genética , Agonistas Adrenérgicos beta/farmacología , Secuencia de Aminoácidos , Animales , Canales de Calcio Tipo L/efectos de los fármacos , Caveolina 3/metabolismo , Membrana Celular/enzimología , Simulación por Computador , Técnica del Anticuerpo Fluorescente , Ventrículos Cardíacos/efectos de los fármacos , Isoenzimas , Isoproterenol/farmacología , Potenciales de la Membrana , Ratones , Ratones Noqueados , Microscopía Confocal , Datos de Secuencia Molecular , Miocitos Cardíacos/efectos de los fármacos , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Transducción de Señal
14.
J Neurosci ; 33(36): 14601-6, 2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24005310

RESUMEN

The extracellular potential of excitable and nonexcitable cells with respect to ground is ∼0 mV. One of the known exceptions in mammals is the cochlear duct, where the potential is ∼80-100 mV, called the endocochlear potential (EP). The EP serves as the "battery" for transduction of sound, contributing toward the sensitivity of the auditory system. The stria vascularis (StV) of the cochlear duct is the station where the EP is generated, but the cell-specific roles in the StV are ill defined. Using the intermediate cell (IC)-specific tyrosinase promoter, under the control of diphtheria toxin (DT), we eliminated and/or halted differentiation of neural crest melanocytes after migration to the StV. The ensuing adult transgenic mice are profoundly deaf. Additionally, the EP was abolished. Expression of melanocyte early marker and Kir4.1 in ICs precedes the onset of pigment synthesis. Activation of DT leads to loss of ICs. Finally, in accord with the distinct embryology of retinal pigmented cells, transgenic mice with toxigenic ablation of neural crest-derived melanocytes have intact visual responses. We assert that the tyrosinase promoter is the distinct target for genetic manipulation of IC-specific genes.


Asunto(s)
Sordera/genética , Toxina Diftérica/genética , Estría Vascular/citología , Transgenes/genética , Potenciales de Acción , Animales , Diferenciación Celular , Toxina Diftérica/metabolismo , Melanocitos/citología , Melanocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monofenol Monooxigenasa/genética , Cresta Neural/citología , Cresta Neural/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Regiones Promotoras Genéticas , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Estría Vascular/metabolismo , Estría Vascular/fisiología , Visión Ocular/genética
15.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38378628

RESUMEN

Altered expression of peripheral myelin protein 22 (PMP22) results in demyelinating peripheral neuropathy. PMP22 exhibits a highly restricted tissue distribution with marked expression in the myelinating Schwann cells of peripheral nerves. Auditory and vestibular Schwann cells and the afferent neurons also express PMP22, suggesting a unique role in hearing and balancing. Indeed, neuropathic patients diagnosed with PMP22-linked hereditary neuropathies often present with auditory and balance deficits, an understudied clinical complication. To investigate the mechanism by which abnormal expression of PMP22 may cause auditory and vestibular deficits, we studied gene-targeted PMP22-null mice. PMP22-null mice exhibit an unsteady gait, have difficulty maintaining balance, and live for only ∼3-5 weeks relative to unaffected littermates. Histological analysis of the inner ear revealed reduced auditory and vestibular afferent nerve myelination and profound Na+ channel redistribution without PMP22. Yet, Na+ current density was unaltered, in stark contrast to increased K+ current density. Atypical postsynaptic densities and a range of neuronal abnormalities in the organ of Corti were also identified. Analyses of auditory brainstem responses (ABRs) and vestibular sensory-evoked potential (VsEP) revealed that PMP22-null mice had auditory and vestibular hypofunction. These results demonstrate that PMP22 is required for hearing and balance, and the protein is indispensable for the formation and maintenance of myelin in the peripheral arm of the eighth nerve. Our findings indicate that myelin abnormalities and altered signal propagation in the peripheral arm of the auditory nerve are likely causes of auditory deficits in patients with PMP22-linked neuropathies.


Asunto(s)
Enfermedades Desmielinizantes , Proteínas de la Mielina , Animales , Humanos , Ratones , Enfermedades Desmielinizantes/metabolismo , Ratones Noqueados , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Células de Schwann/metabolismo
16.
Nat Commun ; 15(1): 526, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228630

RESUMEN

The inner ear is the hub where hair cells (HCs) transduce sound, gravity, and head acceleration stimuli to the brain. Hearing and balance rely on mechanosensation, the fastest sensory signals transmitted to the brain. The mechanoelectrical transducer (MET) channel is the entryway for the sound-balance-brain interface, but the channel-complex composition is not entirely known. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as MET-complex components. The Pz channels, expressed in HC stereocilia, and cell lines are co-localized and co-assembled with MET complex partners. Mice expressing non-functional Pz1 and Pz2 at the ROSA26 locus have impaired auditory and vestibular traits that can only be explained if the Pzs are integral to the MET complex. We suggest that Pz subunits constitute part of the MET complex and that interactions with other MET complex components yield functional MET units to generate HC MET currents.


Asunto(s)
Oído Interno , Células Ciliadas Auditivas Internas , Animales , Ratones , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas/metabolismo , Estereocilios/metabolismo , Oído Interno/metabolismo , Audición , Mecanotransducción Celular , Mamíferos/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo
17.
J Neurosci ; 32(11): 3712-25, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22423092

RESUMEN

Evolution has transformed a simple ear with few vestibular maculae into a complex three-dimensional structure consisting of nine distinct endorgans. It is debatable whether the sensory epithelia underwent progressive segregation or emerged from distinct sensory patches. To address these uncertainties we examined the morphological and functional phenotype of trans-differentiated rat hair cells to reveal their primitive or endorgan-specific origins. Additionally, it is uncertain how Atoh1-mediated trans-differentiated hair cells trigger the processes that establish their neural ranking from the vestibulocochlear ganglia. We have demonstrated that the morphology and functional expression of ionic currents in trans-differentiated hair cells resemble those of "ancestral" hair cells, even at the lesser epithelia ridge aspects of the cochlea. The structures of stereociliary bundles of trans-differentiated hair cells were in keeping with cells in the vestibule. Functionally, the transient expression of Na⁺ and I(h) currents initiates and promotes evoked spikes. Additionally, Ca²âº current was expressed and underwent developmental changes. These events correlate well with the innervation of ectopic hair cells. New "born" hair cells at the abneural aspects of the cochlea are innervated by spiral ganglion neurons, presumably under the tropic influence of chemoattractants. The disappearance of inward currents coincides well with the attenuation of evoked electrical activity, remarkably recapitulating the development of hair cells. Ectopic hair cells underwent stepwise changes in the magnitude and kinetics of transducer currents. We propose that Atoh1 mediates trans-differentiation of morphological and functional "ancestral" hair cells that are likely to undergo diversification in an endorgan-specific manner.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Transdiferenciación Celular/fisiología , Células Ciliadas Auditivas/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Cóclea/citología , Cóclea/crecimiento & desarrollo , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
18.
J Neurosci ; 32(46): 16314-30, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23152615

RESUMEN

Whereas prehearing spiral ganglion neurons (SGNs) rely faithfully on outputs from spontaneously active developing hair cells, the electrical phenotypes of posthearing neurons are shaped by distinct rapid and graded receptor potentials from hair cells. To date, technical difficulties in isolation of fragile posthearing neurons from the rigid bony labyrinth of the inner ear have hindered analyses of the electrical phenotype of SGNs. Therefore, we have recently developed new strategies to isolate posthearing mouse SGNs for functional analyses. Here, we describe the coarse and fine properties of Ca(2+) currents, which sculpt the firing properties of posthearing SGNs. Murine SGNs express multiple Ca(2+) channel currents to enable diverse functions. We have demonstrated that suppression of Ca(2+) currents results in significant hyperpolarization of the resting membrane potential (rmp) of basal SGNs, suggesting that Ca(2+) influx primes rmp for excitation. In contrast, removal of external Ca(2+) has modest effects on rmp of apical SGNs. The blockade of Ca(2+) currents with a mixture of specific blockers attenuates spontaneously active SGNs. Paradoxically, different subtypes of Ca(2+) currents, such as R-type currents, may activate resting outward conductances since blockage of the current results in depolarization of rmp. In keeping with whole-cell current data, single-channel records revealed multiple diverse Ca(2+) channels in SGNs. Additionally, there were differential expressions of distinct Ca(2+) current densities in the apicobasal contour of the adult cochlea. This report provides invaluable insights into Ca(2+)-dependent processes in adult SGNs.


Asunto(s)
Canales de Calcio/fisiología , Neuronas/fisiología , Ganglio Espiral de la Cóclea/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Femenino , Audición/fisiología , Inmunohistoquímica , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/efectos de los fármacos
19.
J Neurophysiol ; 110(8): 1751-64, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23864368

RESUMEN

Developmental plasticity in spiral ganglion neurons (SGNs) ensues from profound alterations in the functional properties of the developing hair cell (HC). For example, prehearing HCs are spontaneously active. However, at the posthearing stage, HC membrane properties transition to graded receptor potentials. The dendrotoxin (DTX)-sensitive Kv1 channel subunits (Kv1.1, 1.2, and 1.6) shape the firing properties and membrane potential of SGNs, and the expression of the channel undergoes developmental changes. Because of the stochastic nature of Kv subunit heteromultimerization, it has been difficult to determine physiologically relevant subunit-specific interactions and their functions in the underlying mechanisms of Kv1 channel plasticity in SGNs. Using Kcna2 null mutant mice, we demonstrate a surprising paradox in changes in the membrane properties of SGNs. The resting membrane potential of Kcna2(-/-) SGNs was significantly hyperpolarized compared with that of age-matched wild-type (WT) SGNs. Analyses of outward currents in the mutant SGNs suggest an apparent approximately twofold increase in outward K(+) currents. We show that in vivo and in vitro heteromultimerization of Kv1.2 and Kv1.4 α-subunits underlies the striking and unexpected alterations in the properties of SGNs. The results suggest that heteromeric interactions of Kv1.2 and Kv1.4 dominate the defining features of Kv1 channels in SGNs.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv1.4/metabolismo , Multimerización de Proteína , Ganglio Espiral de la Cóclea/fisiología , Potenciales de Acción , Animales , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv1.4/genética , Potenciales de la Membrana , Ratones , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/crecimiento & desarrollo
20.
Brain Sci ; 13(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37626546

RESUMEN

The development of the central auditory system, including the auditory cortex and other areas involved in processing sound, is shaped by genetic and environmental factors, enabling infants to learn how to speak. Before explaining hearing in humans, a short overview of auditory dysfunction is provided. Environmental factors such as exposure to sound and language can impact the development and function of the auditory system sound processing, including discerning in speech perception, singing, and language processing. Infants can hear before birth, and sound exposure sculpts their developing auditory system structure and functions. Exposing infants to singing and speaking can support their auditory and language development. In aging humans, the hippocampus and auditory nuclear centers are affected by neurodegenerative diseases such as Alzheimer's, resulting in memory and auditory processing difficulties. As the disease progresses, overt auditory nuclear center damage occurs, leading to problems in processing auditory information. In conclusion, combined memory and auditory processing difficulties significantly impact people's ability to communicate and engage with their societal essence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA