RESUMEN
Tumor necrosis factor (TNF)-induced receptor-interacting serine/threonine protein kinase 1 (RIPK1)-mediated cell death, including apoptosis and necroptosis, is increasingly recognized as a major driver of inflammatory diseases. Cell death checkpoints normally suppress RIPK1 kinase to safeguard the organism from its detrimental consequences. However, the mechanisms licensing RIPK1 kinase activity when a protective checkpoint is disabled remain unclear. Here, we identified S-palmitoylation as a licensing modification for RIPK1 kinase. TNF induces RIPK1 palmitoylation, mediated by DHHC5 and dependent on K63-linked ubiquitination of RIPK1, which enhances RIPK1 kinase activity by promoting the homo-interaction of its kinase domain and promotes cell death upon cell death checkpoint blockade. Furthermore, DHHC5 is amplified by fatty acid in the livers of mice with metabolic dysfunction-associated steatohepatitis, contributing to increased RIPK1 cytotoxicity observed in this condition. Our findings reveal that ubiquitination-dependent palmitoylation licenses RIPK1 kinase activity to induce downstream cell death signaling and suggest RIPK1 palmitoylation as a feasible target for inflammatory diseases.
RESUMEN
Cell death in human diseases is often a consequence of disrupted cellular homeostasis. If cell death is prevented without restoring cellular homeostasis, it may lead to a persistent dysfunctional and pathological state. Although mechanisms of cell death have been thoroughly investigated1-3, it remains unclear how homeostasis can be restored after inhibition of cell death. Here we identify TRADD4-6, an adaptor protein, as a direct regulator of both cellular homeostasis and apoptosis. TRADD modulates cellular homeostasis by inhibiting K63-linked ubiquitination of beclin 1 mediated by TRAF2, cIAP1 and cIAP2, thereby reducing autophagy. TRADD deficiency inhibits RIPK1-dependent extrinsic apoptosis and proteasomal stress-induced intrinsic apoptosis. We also show that the small molecules ICCB-19 and Apt-1 bind to a pocket on the N-terminal TRAF2-binding domain of TRADD (TRADD-N), which interacts with the C-terminal domain (TRADD-C) and TRAF2 to modulate the ubiquitination of RIPK1 and beclin 1. Inhibition of TRADD by ICCB-19 or Apt-1 blocks apoptosis and restores cellular homeostasis by activating autophagy in cells with accumulated mutant tau, α-synuclein, or huntingtin. Treatment with Apt-1 restored proteostasis and inhibited cell death in a mouse model of proteinopathy induced by mutant tau(P301S). We conclude that pharmacological targeting of TRADD may represent a promising strategy for inhibiting cell death and restoring homeostasis to treat human diseases.
Asunto(s)
Apoptosis/efectos de los fármacos , Homeostasis/efectos de los fármacos , Proteína de Dominio de Muerte Asociada a Receptor de TNF/antagonistas & inhibidores , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo , Animales , Autofagia/efectos de los fármacos , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/metabolismo , Beclina-1/química , Beclina-1/metabolismo , Bortezomib/antagonistas & inhibidores , Bortezomib/farmacología , Línea Celular , Humanos , Proteína Huntingtina/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Masculino , Ratones , Modelos Moleculares , Ovillos Neurofibrilares/metabolismo , Proteoma/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/química , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína de Dominio de Muerte Asociada a Receptor de TNF/química , Proteína de Dominio de Muerte Asociada a Receptor de TNF/deficiencia , Factor 2 Asociado a Receptor de TNF/metabolismo , Ubiquitinación , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismoRESUMEN
Functional characterization of cancer risk-associated single nucleotide polymorphism (SNP) identified by genome-wide association studies (GWAS) has become a big challenge. To identify the regulatory risk SNPs that can lead to transcriptional misregulation, we performed parallel reporter gene assays with both alleles of 213 prostate cancer risk-associated GWAS SNPs in 22Rv1 cells. We disclosed 32 regulatory SNPs that exhibited different regulatory activities with two alleles. For one of the regulatory SNPs, rs684232, we found that the variation altered chromatin binding of transcription factor FOXA1 on the DNA region and led to aberrant gene expression of VPS53, FAM57A, and GEMIN4, which play vital roles in prostate cancer malignancy. Our findings reveal the roles and underlying mechanism of rs684232 in prostate cancer progression and hold great promise in benefiting prostate cancer patients with prognostic prediction and target therapies.
Asunto(s)
Factor Nuclear 3-alfa del Hepatocito/metabolismo , Proteínas de la Membrana/genética , Antígenos de Histocompatibilidad Menor/genética , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas de Transporte Vesicular/genética , Línea Celular Tumoral , Cromatina/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata/metabolismo , Análisis de Secuencia de ARN , Análisis de SupervivenciaRESUMEN
In free space optical communication, a beacon light loses too much energy after a long-distance transmission and faces strong interference from background light. The beacon light illuminated on a quadrant detector (QD) is so weak that the output signal-to-noise ratio (SNR) of a QD is very low, which leads to a significant decrease in the accuracy of the direct position detection method. To solve this problem, an improved light spot position detecting method is proposed. Since the background light and the dark current noise are white noise, we could consider concentrating the energy of QD output signal at a certain frequency point to enhance the output SNR. Therefore, a cosine signal is used to modulate the intensity of a beacon light at the transmitting end. Then the QD output photocurrents are also cosine signals with the same frequency as the modulating signal. Putting the photocurrent signals into a cross-correlation operation with a reference signal, which is the same as the modulating signal, can enhance the QD output SNR at a certain frequency point. Unfortunately, the result of the classical cross-correlation is attenuated with increasing delay. It is hard to detect the amplitude of the classical cross-correlation result. So, we used cyclic cross-correlation to obtain a stable correlation result to detect its amplitude accurately. The experiment results show that even when the QD output SNR is less than -17 dB, the detection root-mean-square error of the proposed method is 0.0092 mm, which is a quarter of the direct position detection method. Moreover, this method only needs a small amount of data to accomplish the calculation and is especially suitable for real-time spot position detection.
RESUMEN
A novel, stereoselective approach towards rosuvastatin calcium from the known (S)-homoallylic alcohol has been developed. The synthesis is highlighted by a regio- and stereocontrolled ICl-induced intramolecular cyclization of chiral homoallylic carbonate to deliver the C6-formyl statin side chain with a syn-1,3-diol moiety. An improved synthesis of the rosuvastatin pyrimidine core moiety is also included. Moreover, this methodology is useful in the asymmetric synthesis of structural variants of statins such as pitavastatin calcium and atorvastatin calcium and their related analogs.
Asunto(s)
Cloruros/química , Yodo/química , Rosuvastatina Cálcica/síntesis química , Ciclización , Estructura Molecular , Rosuvastatina Cálcica/química , EstereoisomerismoRESUMEN
An efficient and concise asymmetric synthesis of pitavastatin calcium (1) starting from commercially available (S)-epichlorohydrin is described. A convergent C1 + C6 route allowed for the assembly of the pitavastatin C7 side chain via a Wittig reaction between phosphonium salt 2 and the enantiomerically pure C6-formyl side chain 3. The 1,3-syn-diol acetal motif in 3 was established with excellent stereo control by a diastereoselective bismuth-promoted two-component hemiacetal/oxa-Michael addition reaction of (S)-α,ß-unsaturated ketone 4 with acetaldehyde.
Asunto(s)
Acetales/química , Bismuto/química , Calcio/química , Cetonas/química , Quinolinas/química , Catálisis , Modelos Químicos , Estructura Molecular , Estereoisomerismo , TemperaturaRESUMEN
Defects in the prelamin A processing enzyme caused by loss-of-function mutations in the ZMPSTE24 gene are responsible for a spectrum of progeroid disorders characterized by the accumulation of farnesylated prelamin A. Here we report that defective prelamin A processing triggers nuclear RIPK1-dependent signalling that leads to necroptosis and inflammation. We show that accumulated prelamin A recruits RIPK1 to the nucleus to facilitate its activation upon tumour necrosis factor stimulation in ZMPSTE24-deficient cells. Kinase-activated RIPK1 then promotes RIPK3-mediated MLKL activation in the nucleus, leading to nuclear envelope disruption and necroptosis. This signalling relies on prelamin A farnesylation, which anchors prelamin A to nuclear envelope to serve as a nucleation platform for necroptosis. Genetic inactivation of necroptosis ameliorates the progeroid phenotypes in Zmpste24-/- mice. Our findings identify an unconventional nuclear necroptosis pathway resulting from ZMPSTE24 deficiency with pathogenic consequences in progeroid disorder and suggest RIPK1 as a feasible target for prelamin A-associated progeroid disorders.
Asunto(s)
Lamina Tipo A , Necroptosis , Animales , Ratones , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Nutritional status and pyroptosis are important for host defence against infections. However, the molecular link that integrates nutrient sensing into pyroptosis during microbial infection is unclear. Here, using metabolic profiling, we found that Yersinia pseudotuberculosis infection results in a significant decrease in intracellular glucose levels in macrophages. This leads to activation of the glucose and energy sensor AMPK, which phosphorylates the essential kinase RIPK1 at S321 during caspase-8-mediated pyroptosis. This phosphorylation inhibits RIPK1 activation and thereby restrains pyroptosis. Boosting the AMPK-RIPK1 cascade by glucose deprivation, AMPK agonists, or RIPK1-S321E knockin suppresses pyroptosis, leading to increased susceptibility to Y. pseudotuberculosis infection in mice. Ablation of AMPK in macrophages or glucose supplementation in mice is protective against infection. Thus, we reveal a molecular link between glucose sensing and pyroptosis, and unveil a mechanism by which Y. pseudotuberculosis reduces glucose levels to impact host AMPK activation and limit host pyroptosis to facilitate infection.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucosa , Macrófagos , Piroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Yersinia pseudotuberculosis , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidad , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Infecciones por Yersinia pseudotuberculosis/microbiología , Infecciones por Yersinia pseudotuberculosis/metabolismo , Ratones Endogámicos C57BLRESUMEN
Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis.