Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105536, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092149

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus. It causes mortality in neonatal piglets and is of growing concern because of its broad host range, including humans. To date, the mechanism of PDCoV infection remains poorly understood. Here, based on a genome-wide CRISPR screen of PDCoV-infected cells, we found that HSP90AB1 (heat shock protein 90 alpha family class B1) promotes PDCoV infection. Knockdown or KO of HSP90AB1 in LLC-PK cells resulted in a significantly suppressed PDCoV infection. Infected cells treated with HSP90 inhibitors 17-AAG and VER-82576 also showed a significantly suppressed PDCoV infection, although KW-2478, which does not affect the ATPase activity of HSP90AB1, had no effect on PDCoV infection. We found that HSP90AB1 interacts with the N, NS7, and NSP10 proteins of PDCoV. We further evaluated the interaction between N and HSP90AB1 and found that the C-tail domain of the N protein is the HSP90AB1-interacting domain. Further studies showed that HSP90AB1 protects N protein from degradation via the proteasome pathway. In summary, our results reveal a key role for HSP90AB1 in the mechanism of PDCoV infection and contribute to provide new host targets for PDCoV antiviral research.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Replicación Viral , Animales , Humanos , Deltacoronavirus , Especificidad del Huésped , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Porcinos , Células HEK293
2.
J Virol ; 98(5): e0195923, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38634598

RESUMEN

The role of Culex mosquitoes in the transmission of Japanese encephalitis virus (JEV) is crucial, yet the mechanisms of JEV infection in these vectors remain unclear. Previous research has indicated that various host factors participate in JEV infection. Herein, we present evidence that mosquito sialic acids enhance JEV infection both in vivo and in vitro. By treating mosquitoes and C6/36 cells with neuraminidase or lectin, the function of sialic acids is effectively blocked, resulting in significant inhibition of JEV infection. Furthermore, knockdown of the sialic acid biosynthesis genes in Culex mosquitoes also leads to a reduction in JEV infection. Moreover, our research revealed that sialic acids play a role in the attachment of JEV to mosquito cells, but not in its internalization. To further explore the mechanisms underlying the promotion of JEV attachment by sialic acids, we conducted immunoprecipitation experiments to confirm the direct binding of sialic acids to the last α-helix in JEV envelope protein domain III. Overall, our study contributes to a molecular comprehension of the interaction between mosquitoes and JEV and offers potential strategies for preventing the dissemination of flavivirus in natural environments.IMPORTANCEIn this study, we aimed to investigate the impact of glycoconjugate sialic acids on mosquito infection with Japanese encephalitis virus (JEV). Our findings demonstrate that sialic acids play a crucial role in enhancing JEV infection by facilitating the attachment of the virus to the cell membrane. Furthermore, our investigation revealed that sialic acids directly bind to the final α-helix in the JEV envelope protein domain III, thereby accelerating virus adsorption. Collectively, our results highlight the significance of mosquito sialic acids in JEV infection within vectors, contributing to a better understanding of the interaction between mosquitoes and JEV.


Asunto(s)
Culex , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Ácidos Siálicos , Acoplamiento Viral , Animales , Ratones , Línea Celular , Culex/virología , Culex/metabolismo , Virus de la Encefalitis Japonesa (Especie)/fisiología , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Encefalitis Japonesa/virología , Encefalitis Japonesa/metabolismo , Mosquitos Vectores/virología , Neuraminidasa/metabolismo , Neuraminidasa/genética , Ácidos Siálicos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Internalización del Virus
3.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791369

RESUMEN

Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.


Asunto(s)
Toxinas Bacterianas , Interleucina-8 , Infecciones por Pasteurella , Pasteurella multocida , Animales , Apoptosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/metabolismo , Caspasa 8/metabolismo , Caspasa 8/genética , Línea Celular , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Interleucina-8/metabolismo , Interleucina-8/genética , Pasteurella multocida/genética , Porcinos , Infecciones por Pasteurella/metabolismo , Infecciones por Pasteurella/veterinaria
4.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674155

RESUMEN

Different levels of EspP2 expression are seen in strains of Glaesserella parasuis with high and low pathogenicity. As a potential virulence factor for G. parasuis, the pathogenic mechanism of EspP2 in infection of host cells is not clear. To begin to elucidate the effect of EspP2 on virulence, we used G. parasuis SC1401 in its wild-type form and SC1401, which was made EspP2-deficient. We demonstrated that EspP2 causes up-regulation of claudin-1 and occludin expression, thereby promoting the adhesion of G. parasuis to host cells; EspP2-deficiency resulted in significantly reduced adhesion of G. parasuis to cells. Transcriptome sequencing analysis of EspP2-treated PK15 cells revealed that the Rap1 signaling pathway is stimulated by EspP2. Blocking this pathway diminished occludin expression and adhesion. These results indicated that EspP2 regulates the adhesion of Glaesserella parasuis via Rap1 signaling pathway.


Asunto(s)
Haemophilus parasuis , Transducción de Señal , Proteínas de Unión al GTP rap1 , Animales , Haemophilus parasuis/patogenicidad , Haemophilus parasuis/genética , Proteínas de Unión al GTP rap1/metabolismo , Proteínas de Unión al GTP rap1/genética , Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ocludina/metabolismo , Ocludina/genética , Claudina-1/metabolismo , Claudina-1/genética , Línea Celular , Porcinos
5.
Infect Immun ; 91(12): e0035123, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37930004

RESUMEN

Virulent Glaesserella parasuis may engender systemic infection characterized by fibrinous polyserositis and pneumonia. G. parasuis causes systemic disease through upper respiratory tract infection, but the mechanism has not been fully characterized. Tight junction (TJ) proteins maintain the integrity and impermeability of the epithelial barriers. In this work, we applied the recombinant cytolethal distending toxin (CDT) holotoxin and cdt-deficient mutants to assess whether CDT interacted with TJ proteins of airway tract cells. Our results indicated that CDT induced the TJ occludin (OCLN) expression in newborn pig tracheal epithelial cells within the first 3 hours of bacterial infection, followed by a significant decrease. Overexpression of OCLN in target cells made them more susceptible to G. parasuis adhesion, whereas ablation of OCLN expression by CRISPR/Cas 9 gene editing technology in target cells decreased their susceptibility to bacterial adhesion. In addition, CDT treatment could upregulate the OCLN levels in the lung tissue of C57/BL6 mice. In summary, highly virulent G. parasuis strain SC1401 stimulated the tight junction expression, resulting in higher bacterial adhesion to respiratory tract cells, and this process is closely related to CDT. Our results may provide novel insights into G. parasuis infection and CDT-mediated pathogenesis.


Asunto(s)
Adhesión Bacteriana , Infecciones por Haemophilus , Haemophilus parasuis , Pulmón , Ocludina , Animales , Ratones , Células Epiteliales/microbiología , Haemophilus parasuis/genética , Haemophilus parasuis/patogenicidad , Ocludina/genética , Ocludina/metabolismo , Porcinos , Regulación hacia Arriba , Infecciones por Haemophilus/metabolismo , Infecciones por Haemophilus/microbiología , Pulmón/microbiología , Ratones Endogámicos C57BL
6.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958833

RESUMEN

Porcine circoviruses (PCVs) are notorious for triggering severe diseases in pigs and causing serious economic losses to the swine industry. In the present study, we undertook a comprehensive approach for the investigation of PCV prevalence, including the phylogenetic analysis of obtained PCV sequences, the determination of major circulating genotypes and serological screening based on different recombinant Cap proteins with specific immunoreactivity. Epidemiological surveillance data indicate that PCV2d and PCV3a are widely distributed in Southwest China, while PCV4 has only sporadic circulation. Meanwhile, serological investigations showed high PCV2 antibody positivity in collected serum samples (>50%), followed by PCV4 (nearly 50%) and PCV3 (30-35%). The analysis supports different circulation patterns of PCV2, PCV3 and PCV4 and illustrates the PCV2/PCV3 genetic evolution characteristics on a nationwide basis. Taken together, our findings add up to the current understanding of PCV epidemiology and provide new tools and insight for PCV antiviral intervention.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Porcinos , Animales , Enfermedades de los Porcinos/epidemiología , Circovirus/genética , Filogenia , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/veterinaria , Infecciones por Circoviridae/diagnóstico , China/epidemiología , Genotipo
7.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37958953

RESUMEN

Transmissible gastroenteritis virus (TGEV) is an important swine enteric coronavirus causing viral diarrhea in pigs of all ages. Currently, the development of antiviral agents targeting host proteins to combat viral infection has received great attention. The heat shock protein 90 (HSP90) is a critical host factor and has important regulatory effects on the infection of various viruses. However, its roles in porcine coronavirus infection remain unclear. In this study, the effect of HSP90 on TGEV infection was evaluated. In addition, the influence of its inhibitor VER-82576 on proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) production induced by TGEV infection was further analyzed. The results showed that the knockdown of HSP90AB1 and HSP90 inhibitor VER-82576 treatment resulted in a reduction in TGEV M gene mRNA levels, the N protein level, and virus titers in a dose-dependent manner, while the knockdown of HSP90AA1 and KW-2478 treatment had no significant effect on TGEV infection. A time-of-addition assay indicated that the inhibitory effect of VER-82576 on TGEV infection mainly occurred at the early stage of viral replication. Moreover, the TGEV-induced upregulation of proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) expression was significantly inhibited by VER-82576. In summary, these findings indicated that HSP90AB1 is a host factor enhancing TGEV infection, and the HSP90 inhibitor VER-82576 could reduce TGEV infection and proinflammatory cytokine production, providing a new perspective for TGEV antiviral drug target design.


Asunto(s)
Gastroenteritis Porcina Transmisible , Virus de la Gastroenteritis Transmisible , Porcinos , Animales , Virus de la Gastroenteritis Transmisible/genética , Gastroenteritis Porcina Transmisible/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Interleucina-6/farmacología , Citocinas/genética , Citocinas/farmacología , Interleucina-12/farmacología
8.
Int J Mol Sci ; 24(10)2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37239984

RESUMEN

Glaesserella parasuis (G. parasuis.) is the etiological pathogen of Glässer's disease, which causes high economic losses to the pig industry. The heme-binding protein A precursor (HbpA) was a putative virulence-associated factor proposed to be potential subunit vaccine candidate in G. parasuis. In this study, three monoclonal antibodies (mAb) 5D11, 2H81, and 4F2 against recombinant HbpA (rHbpA) of G. parasuis SH0165 (serotype 5) were generated by fusing SP2/0-Ag14 murine myeloma cells and spleen cells from BALB/c mice immunized with the rHbpA. Indirect enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence assay (IFA) demonstrated that the antibody designated 5D11 showed a strong binding affinity with the HbpA protein and was chosen for subsequent experiments. The subtypes of the 5D11 were IgG1/κ chains. Western blot analysis showed that mAb 5D11 could react with all 15 serotype reference strains of G. parasuis. None of the other bacteria tested reacted with 5D11. In addition, a linear B-cell epitope recognized by 5D11 was identified by serial truncations of HbpA protein and then a series of truncated peptides were synthesized to define the minimal region that was required for mAb 5D11 binding. The 5D11 epitope was located on amino acids 324-LPQYEFNLEKAKALLA-339 by testing the 5D11 monoclonal for reactivity with 14 truncations. The minimal epitope 325-PQYEFNLEKAKALLA-339 (designated EP-5D11) was pinpointed by testing the mAb 5D11 for reactivity with a series of synthetic peptides of this region. The epitope was highly conserved among G. parasuis strains, confirmed by alignment analysis. These results indicated that mAb 5D11 and EP-5D11 might potentially be used to develop serological diagnostic tools for G. parasuis. Three-dimensional structural analysis revealed that amino acids of EP-5D11 were in close proximity and may be exposed on the surface of the HbpA protein.


Asunto(s)
Anticuerpos Monoclonales , Epítopos de Linfocito B , Animales , Ratones , Porcinos , Proteína Estafilocócica A , Péptidos , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo
9.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36077023

RESUMEN

The YfeA gene, belonging to the well-conserved ABC (ATP-binding cassette) transport system Yfe, encodes the substrate-binding subunit of the iron, zinc, and manganese transport system in bacteria. As a potential vaccine candidate in Glaesserella parasuis, the functional mechanisms of YfeA in the infection process remain obscure. In this study, vaccination with YfeA effectively protected the C56BL6 mouse against the G. parasuis SC1401 challenge. Bioinformatics analysis suggests that YfeA is highly conserved in G. parasuis, and its metal-binding sites have been strictly conserved throughout evolution. Stimulation of RAW 264.7 macrophages with YfeA verified that toll-like receptors (TLR) 2 and 4 participated in the positive transcription and expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. The activation of TLR2 and TLR4 utilized the MyD88/MAL and TRIF/TRAM pairs to initiate TLRs signaling. Furthermore, YfeA was shown to stimulate nuclear translocation of NF-κB and activated diverse mitogen-activated protein (MAP) kinase signaling cascades, which are specific to the secretion of particular cytokine(s) in murine macrophages. Separate blocking TLR2, TLR4, MAPK, and RelA (p65) pathways significantly decreased YfeA-induced pro-inflammatory cytokine production. In addition, YfeA-stimulated RAW 264.7 produces the pro-inflammatory hallmark, reactive oxygen species (ROS). In conclusion, our findings indicate that YfeA is a novel pro-inflammatory mediator in G. parasuis and induces TLR2 and TLR4-dependent pro-inflammatory activity in RAW 264.7 macrophages through P38, JNK-MAPK, and NF-κB signaling pathways.


Asunto(s)
Haemophilus parasuis , Proteínas de Unión Periplasmáticas , Animales , Citocinas/metabolismo , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
10.
Funct Integr Genomics ; 21(5-6): 695-707, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34676472

RESUMEN

Haemophilus (Glaesserella) parasuis is a commensal bacterium that causes Glässer's disease (GD) in swine. As a global transcriptional factor, CheY regulates the expression of hundreds of genes in H. parasuis. In this study, we measured changes in gene expression at the whole transcriptome level using RNAseq. We identified 2058 co-expressed genes, and found 624 differentially expressed genes (q < 0.05) in ΔcheY and SC1401. Several important GO annotations and signaling pathways were identified. RNA-seq results were assembled according to the reference genome, compared with the annotated gene model, and 12 new transcriptional regions were found. Finally, q-PCR results validated the RNA-seq results with 8 randomly selected genes. The present study indicated that CheY is mainly involved in the regulation of ABC transport, oxidative phosphorylation, and ß-Lactam resistance. We draw the regulatory network of CheY, which offers greater insight into the regulatory mechanism of CheY in H.parasuis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/genética , Eliminación de Gen , Haemophilus parasuis/genética , Haemophilus parasuis/metabolismo , Transcriptoma , Animales , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Porcinos/microbiología
11.
J Med Virol ; 93(11): 6100-6115, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34329499

RESUMEN

N6 -methyladenosine (m6 A) modification is the most common and reversible posttranscriptional modification of RNA in eukaryotes, which is mainly regulated by methyltransferase, demethylase, and specific binding protein. The replication of the virus and host immune response to the virus are affected by m6 A modification. In different kinds of viruses, m6 A modification has two completely opposite regulatory functions. This paper reviews the regulatory effects of m6 A modification on different viruses and provides a reference for studying the regulatory effects of RNA epitranscriptomic modification.


Asunto(s)
Adenosina/análogos & derivados , Virus/genética , Adenosina/metabolismo , Humanos , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Viral/genética
12.
BMC Vet Res ; 17(1): 177, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902574

RESUMEN

BACKGROUND: Staphylococcus aureus (S. aureus), especially methicillin-resistant Staphylococcus aureus (MRSA), is considered a common zoonotic pathogen, causing severe infections. The objective of this study was to investigate the antimicrobial susceptibility, resistance genes and molecular epidemiology among MRSA and methicillin-susceptible Staphylococcus aureus (MSSA) isolated from food animals in Sichuan Province, China. METHODS: This study was conducted on 236 S. aureus isolates. All isolates were subjected to antimicrobial susceptibility testing by using a standard microbroth dilution method. The Polymerase Chain Reaction (PCR) was performed to identify genes encoding the ß-lactams resistance (blaZ, mecA), macrolides (ermA, ermB, ermC) and aminoglycosides (aacA-aphD). The molecular structures and genomic relatedness of MRSA isolates were determined by staphylococcal chromosome cassette mec (SCCmec) typing and pulsed-field gel electrophoresis (PFGE), respectively. RESULTS: Among 236 isolates, 24 (10.17 %) were recognized as MRSA. MRSA isolates showed different resistance rates to 11 antimicrobials ranging from 33.33 to 100 %, while for MSSA isolates the rates varied from 8.02 to 91.51 %. Multi-drug resistance phenotype was found in all MRSA isolates. The ermC gene encoding macrolides-lincosamides-streptogramin B was the most prevalent gene detected in 87.29 % of the S. aureus isolates, followed by ermB (83.05 %), blaZ (63.98 %), aacA-aphD (44.07 %), ermA (11.44 %) and mecA (11.02 %) genes. The prevalence of resistance genes in MRSA isolates was significantly higher than that of MSSA. Regarding the molecular morphology, SCCmec III (12/24, 50 %) was the most common SCCmec type. Furthermore, the PFGE typing showed that 24 MRSA were divided into 15 cluster groups (A to O), the major pulsotype J encompassed 25 % of MRSA isolates. CONCLUSIONS: The S. aureus isolates from food animals in Sichuan province of China have severe antimicrobials resistance with various resistance genes, especially MRSA isolates. Additionally, the genetic pool of MRSA isolates is diverse and complex, and further investigation is necessary.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/genética , Animales , Antibacterianos/farmacología , Bovinos , Pollos , China/epidemiología , Farmacorresistencia Bacteriana/genética , Patos , Meticilina/farmacología , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana/veterinaria , Epidemiología Molecular , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Porcinos
13.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768788

RESUMEN

Senescence in mesenchymal stem cells (MSCs) not only hinders the application of MSCs in regenerative medicine but is also closely correlated with biological aging and the development of degenerative diseases. In this study, we investigated the anti-aging effects of curcumin (Cur) on canine bone marrow-derived MSCs (cBMSCs), and further elucidated the potential mechanism of action based on the modulation of autophagy. cBMSCs were expanded in vitro with standard procedures to construct a cell model of premature senescence. Our evidence indicates that compared with the third passage of cBMSCs, many typical senescence-associated phenotypes were observed in the sixth passage of cBMSCs. Cur treatment can improve cBMSC survival and retard cBMSC senescence according to observations that Cur (1 µM) treatment can improve the colony-forming unit-fibroblasts (CFU-Fs) efficiency and upregulated the mRNA expression of pluripotent transcription factors (SOX-2 and Nanog), as well as inhibiting the senescence-associated beta-galactosidase (SA-ß-gal) activities and mRNA expression of the senescence-related markers (p16 and p21) and pro-inflammatory molecules (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)). Furthermore, Cur (0.1 µM~10 µM) was observed to increase autophagic activity, as identified by upregulation of microtubule-associated protein 1 light chain 3 (LC3), unc51-like autophagy-activating kinase-1 (ULK1), autophagy-related gene (Atg) 7 and Atg12, and the generation of type II of light chain 3 (LC3-II), thereby increasing autophagic vacuoles and acidic vesicular organelles, as well as causing a significant decrease in the p62 protein level. Moreover, the autophagy activator rapamycin (RAP) and Cur were found to partially ameliorate the senescent features of cBMSCs, while the autophagy inhibitor 3-methyladenine (3-MA) was shown to aggravate cBMSCs senescence and Cur treatment was able to restore the suppressed autophagy and counteract 3-MA-induced cBMSC senescence. Hence, our study highlights the important role of Cur-induced autophagy and its effects for ameliorating cBMSC senescence and provides new insight for delaying senescence and improving the therapeutic potential of MSCs.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Curcumina/farmacología , Células Madre Mesenquimatosas/metabolismo , Animales , Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/fisiología , Senescencia Celular/fisiología , China , Curcumina/metabolismo , Perros , Femenino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
14.
Biologicals ; 63: 74-80, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31753578

RESUMEN

The traditional vaccine strains, such as LaSota, do not completely prevent the shedding of NDV. An ideal vaccine which could not only prevent the clinical signs, but significantly reduce the shedding of NDV is urgently needed for the eradication of ND. In this study, an NDV isolate APMV-1/Chicken/China (SC)/PT3/2016 (hereafter referred as PT3) was identified as a class Ⅰ NDV and a lentogenic strain. The antigenic relationship between PT3 and 3 other NDV strains, including vaccine strain LaSota and 2 prevalent genotype Ⅶd and Ⅵb strains were analyzed. The protective efficacy of PT3 and LaSota against challenge with genotype Ⅶd and Ⅵb strains were assessed. The antigenic analysis result showed that 4 strains belong to the single serotype and the PT3 antiserum exhibited the highest HI titer against 3 other NDV strains. The results of protective efficacy showed that both of LaSota and PT3 could provide 100% survivability for infected chickens. However, PT3 performed better in inducing higher humoral responses and reducing virus shedding than the LaSota strain. Lentogenic strains from Class I NDV appear to be promising vaccine candidates for the control of ND, and allows for the easy discrimination of field NDV and vaccine strains.


Asunto(s)
Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Proteínas Aviares/inmunología , Pollos , Enfermedad de Newcastle/inmunología , Enfermedad de Newcastle/patología , Virus de la Enfermedad de Newcastle/clasificación , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/patología
15.
BMC Microbiol ; 19(1): 113, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138125

RESUMEN

BACKGROUND: Trichosporon is the dominant genus of epidermal fungi in giant pandas (Ailuropoda melanoleuca) and causes local and deep infections. To provide the information needed for the diagnosis and treatment of trichosporosis in giant pandas, the sequence of ITS, D1/D2, and IGS1 loci in 29 isolates of Trichosporon spp. which were isolated from the body surface of giant pandas were combination to investigate interspecies identification and genotype. Morphological development was examined via slide culture. Additionally, mice were infected by skin inunction, intraperitoneal injection, and subcutaneous injection for evaluation of pathogenicity. RESULTS: The twenty-nine isolates of Trichosporon spp. were identified as 11 species, and Trichosporon jirovecii and T. asteroides were the commonest species. Four strains of T. laibachii and one strain of T. moniliiforme were found to be of novel genotypes, and T. jirovecii was identified to be genotype 1. T. asteroides had the same genotype which involved in disseminated trichosporosis. The morphological development processes of the Trichosporon spp. were clearly different, especially in the processes of single-spore development. Pathogenicity studies showed that 7 species damaged the liver and skin in mice, and their pathogenicity was stronger than other 4 species. T. asteroides had the strongest pathogenicity and might provoke invasive infection. The pathological characteristics of liver and skin infections caused by different Trichosporon spp. were similar. CONCLUSIONS: Multiple species of Trichosporon were identified on the skin surface of giant panda, which varied in morphological development and pathogenicity. Combination of ITS, D1/D2, and IGS1 loci analysis, and morphological development process can effectively identify the genotype of Trichosporon spp.


Asunto(s)
ADN de Hongos/genética , Trichosporon/clasificación , Trichosporon/patogenicidad , Tricosporonosis/microbiología , Ursidae/microbiología , Animales , Femenino , Técnicas de Genotipaje , Hígado/microbiología , Masculino , Ratones , Filogenia , Piel/microbiología , Especificidad de la Especie , Trichosporon/genética , Trichosporon/aislamiento & purificación
16.
Microb Pathog ; 134: 103596, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31212036

RESUMEN

To establish infection in the host, pathogens have evolved sophisticated systems to cope with environmental conditions and to protect cells against host immunity. TolC is the outer membrane channel component of type 1 secretion systems and multidrug efflux pumps that plays critical roles during the infection process in many pathogens. However, little is known about the exact roles of TolC1 in the pathogenicity of A. pleuropneumoniae, an etiological agent of the porcine contagious pleuropneumoniae that causes severe respiratory disease. In this study, deletion of tolC1 causes apparent ultrastructural defects in A. pleuropneumoniae cell examined by transmission electron microscopy. The tolC1 mutant is hypersensitivity to oxidative, osmotic and acid challenges by in vitro stress assays. Analysis on secreted proteins shows that the excretion of ApxIIA and an ApxIVA-like protein, ApxIVA-S, is abolished in the absence of TolC1. This result confirms the essential role of TolC1 in the secretion of Apx toxins and this is the first identification of an ApxIVA-like protein in in vitro culture of A. pleuropneumoniae. Besides, disruption of TolC1 leads to a significant attenuation of virulence in mice by an intraperitoneal route of A. pleuropneumoniae. The basis for the attenuation is further investigated using a mouse intranasal infection model, which reveals an impaired ability to colonize and induce lesions in the lungs for the loss of TolC1 of A. pleuropneumoniae. In conclusion, our findings demonstrate significant roles of TolC1 in facilitating bacterial survival in hostile conditions, maximum colonization as well as pathogenicity during the infection of A. pleuropneumoniae.


Asunto(s)
Infecciones por Actinobacillus/microbiología , Actinobacillus pleuropneumoniae/fisiología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Factores de Virulencia/metabolismo , Infecciones por Actinobacillus/patología , Actinobacillus pleuropneumoniae/citología , Actinobacillus pleuropneumoniae/patogenicidad , Animales , Proteínas de la Membrana Bacteriana Externa/clasificación , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Genes MDR , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Pulmón/microbiología , Pulmón/patología , Ratones , Presión Osmótica , Estrés Oxidativo , Proteoma/análisis , Proteoma/aislamiento & purificación , Proteínas Recombinantes , Estrés Fisiológico , Transcriptoma , Sistemas de Secreción Tipo I/química , Sistemas de Secreción Tipo I/genética , Sistemas de Secreción Tipo I/metabolismo , Virulencia , Factores de Virulencia/genética
17.
Microb Pathog ; 134: 103565, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31158493

RESUMEN

Haemophilus parasuis (H. parasuis) is rather difficult to manipulate genetically due to the diversity of restriction-modification systems and other mechanisms harbored by various isolates. This prevents exogenous plasmids from replicating in this species and hinders research efforts focused on transcriptional regulators in this bacterium. In this study, we generated a convenient promoter reporter system based on gene knock-in method using natural transformation in H. parasuis. Gene knock-in has proven useful as a powerful tool facilitating identification and studying the transcription activities of regulators under a variety of conditions that favor gene transcription or expression from an incorporated promoter. The vectors, pDK-K and pDK-G, carrying promoterless reporter lacZ gene and two homologous sequences flanking a knock-in site, may have some advantages over the extensively used plasmid-bearing reporter system in other bacteria in stability and ease of genetic manipulation in H. parasuis. The knock-in site was positioned at a site occupied by flanking genes that were both hypothetical and had the same transcription orientation, thus the expression of the reversely cloned promoter-lacZ fusion wouldn't be affected by the upstream promoter on the chromosome. The expression activity of lacZ gene under the transcriptional activation of a 300 bp promoter-proximal segment of cyaA, crp or comA genes in H. parasuis was separately validated using X-gal and o-nitrophenyl-ß-d-galactoside(ONPG) as substrates. The derivatives harboring promoter-lacZ fusion segments showed significantly higher ß-galactosidase activity levels than the promoterlessones both in TSB++ broth and on TSA++ plate as screened either by X-gal method or the standard Miller method. We also used pDK vector to further certify that the cyaA promoter is inducible and whose transcriptional levels were in correlation with the growth kinetics of the bacteria in TSB++. With this system, gene knock-in method based on natural transformation in H. parasuis proved to be useful in identifying transcriptional regulation of a certain promoter.


Asunto(s)
Expresión Génica , Genes Reporteros/genética , Haemophilus parasuis/genética , Plásmidos/genética , Regiones Promotoras Genéticas/genética , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Vectores Genéticos , Genoma Bacteriano , Inestabilidad Genómica , Cinética , Operón Lac , Elementos Reguladores de la Transcripción/genética , Transformación Bacteriana , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
18.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739611

RESUMEN

The Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus prevalent in east and southeast Asia, the Western Pacific, and northern Australia. Since viruses are obligatory intracellular pathogens, the dynamic processes of viral entry, replication, and assembly are dependent on numerous host-pathogen interactions. Efforts to identify JEV-interacting host factors are ongoing because their identification and characterization remain incomplete. Three enzymatic activities of flavivirus non-structural protein 3 (NS3), including serine protease, RNA helicase, and triphosphatase, play major roles in the flaviviruses lifecycle. To identify cellular factors that interact with NS3, we screened a human brain cDNA library using a yeast two-hybrid assay, and identified eight proteins that putatively interact with NS3: COPS5, FBLN5, PPP2CB, CRBN, DNAJB6, UBE2N, ZNF350, and GPR137B. We demonstrated that the DnaJ heat shock protein family (Hsp40) member B6 (DNAJB6) colocalizes and interacts with NS3, and has a negative regulatory function in JEV replication. We also show that loss of DNAJB6 function results in significantly increased viral replication, but does not affect viral binding or internalization. Moreover, the time-course of DNAJB6 disruption during JEV infection varies in a viral load-dependent manner, suggesting that JEV targets this host chaperone protein for viral benefit. Deciphering the modes of NS3-interacting host proteins functions in virion production will shed light on JEV pathogenic mechanisms and may also reveal new avenues for antiviral therapeutics.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/metabolismo , Encefalitis Japonesa/virología , Proteínas del Choque Térmico HSP40/metabolismo , Interacciones Huésped-Patógeno , Chaperonas Moleculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Línea Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno/genética , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , ARN Helicasas/metabolismo , Serina Endopeptidasas/metabolismo , Técnicas del Sistema de Dos Híbridos , Internalización del Virus
19.
Arch Virol ; 163(5): 1351-1355, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29411136

RESUMEN

Previously, we isolated the Japanese encephalitis virus (JEV) strain SCYA201201. In this study, we passed the SCYA201201 strain in Syrian baby hamster kidney (BHK-21) cells 120 times to obtain the SCYA201201-0901 strain, which exhibited an attenuated phenotype in mice. Comparison of SCYA201201-0901 amino acid sequences with those of other JEV strains revealed a single mutation, I176R, in the E coding region. Using reverse genetic technology, we provide evidence that this single E-I176R mutation does not affect virus growth in BHK-21 cells but significantly decreases JEV neurovirulence in mice. This study provides critical information for understanding the molecular mechanism of JEV attenuation.


Asunto(s)
Encéfalo/virología , Virus de la Encefalitis Japonesa (Especie)/crecimiento & desarrollo , Virus de la Encefalitis Japonesa (Especie)/genética , Mutación , Animales , Encéfalo/patología , Línea Celular , Cricetinae , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Encefalitis Japonesa/virología , Riñón/citología , Riñón/virología , Ratones , Sistemas de Lectura Abierta , Genética Inversa , Proteínas del Envoltorio Viral/genética , Virulencia/genética , Replicación Viral/genética
20.
Virus Genes ; 54(3): 424-431, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29605839

RESUMEN

Genotype I Japanese encephalitis virus (JEV) strain SCYA201201 was previously isolated from brain tissues of aborted piglets. In this study, we obtained an attenuated SCYA201201-0901 strain by serial passage of strain SCYA201201-1 in Syrian baby hamster kidney cells, combined with multiple plaque purifications and selection for virulence in mice. We investigated the genetic changes associated with attenuation by comparing the entire genomes of SCYA201201-0901 and SCYA201201-1. Sequence comparisons identified 14 common amino acid substitutions in the coding region, with two nucleotide point mutations in the 5'-untranslated region (UTR) and another three in the 3'-UTR, which differed between the attenuated and virulent strains. In addition, a total of 13 silent nucleotide mutations were found after attenuation. These substitutions, alone or in combination, may be responsible for the attenuated phenotype of the SCYA201201-0901 strain in mice. This information will contribute to our understanding of attenuation and of the molecular basis of virulence in genotype I strains such as SCYA201201-0901, as well as aiding the development of safer JEV vaccines.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Animales , Encéfalo/virología , Cricetinae , Encefalitis Japonesa/virología , Femenino , Genoma Viral , Genotipo , Mesocricetus , Ratones Endogámicos BALB C , ARN Viral , Pase Seriado , Porcinos , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA