Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001866

RESUMEN

Mitochondrial and synaptic dysfunction are pathological features of brain aging and cognitive decline. Synaptic mitochondria are vital for meeting the high energy demands of synaptic transmission. However, little is known about the link between age-related metabolic changes and the integrity of synaptic mitochondria. To this end, we investigate the mechanisms of advanced glycation endproducts (AGEs)-mediated mitochondrial and synaptic stress and evaluate the strategies to eliminate these toxic metabolites. Using aged brain and novel transgenic mice overexpressing neuronal glyoxalase 1 (GLO1), we comprehensively analyzed alterations in accumulation/buildup of AGEs and related metabolites in synaptic mitochondria and the association of AGE levels with mitochondrial function. We demonstrate for the first time that synaptic mitochondria are an early and major target of AGEs and the related toxic metabolite methylglyoxal (MG), a precursor of AGEs. MG/AGEs-insulted synaptic mitochondria exhibit deterioration of mitochondrial and synaptic function. Such accumulation of MG/AGEs positively correlated with mitochondrial perturbation and oxidative stress in aging brain. Importantly, clearance of AGEs-related metabolites by enhancing neuronal GLO1, a key enzyme for detoxification/of AGEs, reduces synaptic mitochondrial AGEs accumulation and improves mitochondrial and cognitive function in aging and AGE-challenged mice. Furthermore, we evaluated the direct effect of AGEs on synaptic function in hippocampal neurons in live brain slices as an ex-vivo model and in vitro cultured hippocampal neurons by recording long-term potentiation (LTP) and measuring spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs). Neuronal GLO1 rescues deficits in AGEs-induced synaptic plasticity and transmission by fully recovery of decline in LTP or frequency of mEPSC. These studies explore crosstalk between synaptic mitochondrial dysfunction and age-related metabolic changes relevant to brain aging and cognitive decline. Synaptic mitochondria are particularly susceptible to AGEs-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction in synaptic degeneration in age-related cognitive decline. Thus, augmenting GLO1 function to scavenge toxic metabolites represents a therapeutic approach to reduce age-related AGEs accumulation and to improve mitochondrial function and learning and memory.

2.
Brain ; 147(5): 1710-1725, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38146639

RESUMEN

Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of ∼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-ß-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.


Asunto(s)
Enfermedad de Alzheimer , Isoindoles , Mitocondrias , Compuestos de Organoselenio , Peptidil-Prolil Isomerasa F , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Humanos , Cognición/efectos de los fármacos , Azoles/farmacología , Azoles/uso terapéutico , Ciclofilinas/metabolismo , Ciclofilinas/antagonistas & inhibidores , Ratones Transgénicos , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
3.
Hum Mol Genet ; 27(6): 1002-1014, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29329433

RESUMEN

Receptor for Advanced Glycation End products (RAGE) has been implicated in amyloid ß-peptide (Aß)-induced perturbation relevant to the pathogenesis of Alzheimer's disease (AD). However, whether and how RAGE regulates Aß metabolism remains largely unknown. Aß formation arises from aberrant cleavage of amyloid pre-cursor protein (APP) by ß- and γ-secretase. To investigate whether RAGE modulates ß- and γ-secretase activity potentiating Aß formation, we generated mAPP mice with genetic deletion of RAGE (mAPP/RO). These mice displayed reduced cerebral amyloid pathology, inhibited aberrant APP-Aß metabolism by reducing ß- and γ-secretases activity, and attenuated impairment of learning and memory compared with mAPP mice. Similarly, RAGE signal transduction deficient mAPP mice (mAPP/DN-RAGE) exhibited the reduction in Aß40 and Aß42 production and decreased ß-and γ-secretase activity compared with mAPP mice. Furthermore, RAGE-deficient mAPP brain revealed suppression of activation of p38 MAP kinase and glycogen synthase kinase 3ß (GSK3ß). Finally, RAGE siRNA-mediated gene silencing or DN-RAGE-mediated signaling deficiency in the enriched human APP neuronal cells demonstrated suppression of activation of GSK3ß, accompanied with reduction in Aß levels and decrease in ß- and γ-secretases activity. Our findings highlight that RAGE-dependent signaling pathway regulates ß- and γ-secretase cleavage of APP to generate Aß, at least in part through activation of GSK3ß and p38 MAP kinase. RAGE is a potential therapeutic target to limit aberrant APP-Aß metabolism in halting progression of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Memoria/efectos de los fármacos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 37(8): 1536-1547, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28642238

RESUMEN

OBJECTIVE: Diabetic subjects are at higher risk of ischemic peripheral vascular disease. We tested the hypothesis that advanced glycation end products (AGEs) and their receptor (RAGE) block angiogenesis and blood flow recovery after hindlimb ischemia induced by femoral artery ligation through modulation of immune/inflammatory mechanisms. APPROACH AND RESULTS: Wild-type mice rendered diabetic with streptozotocin and subjected to unilateral femoral artery ligation displayed increased accumulation and expression of AGEs and RAGE in ischemic muscle. In diabetic wild-type mice, femoral artery ligation attenuated angiogenesis and impaired blood flow recovery, in parallel with reduced macrophage content in ischemic muscle and suppression of early inflammatory gene expression, including Ccl2 (chemokine [C-C motif] ligand-2) and Egr1 (early growth response gene-1) versus nondiabetic mice. Deletion of Ager (gene encoding RAGE) or transgenic expression of Glo1 (reduces AGEs) restored adaptive inflammation, angiogenesis, and blood flow recovery in diabetic mice. In diabetes mellitus, deletion of Ager increased circulating Ly6Chi monocytes and augmented macrophage infiltration into ischemic muscle tissue after femoral artery ligation. In vitro, macrophages grown in high glucose display inflammation that is skewed to expression of tissue damage versus tissue repair gene expression. Further, macrophages grown in high versus low glucose demonstrate blunted macrophage-endothelial cell interactions. In both settings, these adverse effects of high glucose were reversed by Ager deletion in macrophages. CONCLUSIONS: These findings indicate that RAGE attenuates adaptive inflammation in hindlimb ischemia; underscore microenvironment-specific functions for RAGE in inflammation in tissue repair versus damage; and illustrate that AGE/RAGE antagonism may fill a critical gap in diabetic peripheral vascular disease.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Angiopatías Diabéticas/metabolismo , Eliminación de Gen , Inflamación/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Enfermedad Arterial Periférica/metabolismo , Receptor para Productos Finales de Glicación Avanzada/deficiencia , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Antígenos Ly/metabolismo , Velocidad del Flujo Sanguíneo , Glucemia/metabolismo , Comunicación Celular , Células Cultivadas , Microambiente Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/fisiopatología , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Productos Finales de Glicación Avanzada/metabolismo , Inflamación/genética , Inflamación/fisiopatología , Isquemia/genética , Isquemia/fisiopatología , Macrófagos/metabolismo , Ratones Noqueados , Ratones Transgénicos , Monocitos/metabolismo , Músculo Esquelético/metabolismo , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/fisiopatología , Fenotipo , Receptor para Productos Finales de Glicación Avanzada/genética , Recuperación de la Función , Flujo Sanguíneo Regional , Transducción de Señal , Estreptozocina , Factores de Tiempo
5.
Brain ; 140(12): 3233-3251, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29077793

RESUMEN

Mitochondrial dysfunction and synaptic damage are early pathological features of the Alzheimer's disease-affected brain. Memory impairment in Alzheimer's disease is a manifestation of brain pathologies such as accumulation of amyloid-ß peptide and mitochondrial damage. The underlying pathogenic mechanisms and effective disease-modifying therapies for Alzheimer's disease remain elusive. Here, we demonstrate for the first time that decreased PTEN-induced putative kinase 1 (PINK1) expression is associated with Alzheimer's disease pathology. Restoring neuronal PINK1 function strikingly reduces amyloid-ß levels, amyloid-associated pathology, oxidative stress, as well as mitochondrial and synaptic dysfunction. In contrast, PINK1-deficient mAPP mice augmented cerebral amyloid-ß accumulation, mitochondrial abnormalities, impairments in learning and memory, as well as synaptic plasticity at an earlier age than mAPP mice. Notably, gene therapy-mediated PINK1 overexpression promotes the clearance of damaged mitochondria by augmenting autophagy signalling via activation of autophagy receptors (OPTN and NDP52), thereby alleviating amyloid-ß-induced loss of synapses and cognitive decline in Alzheimer's disease mice. Loss of PINK1 activity or blockade of PINK1-mediated signalling (OPTN or NDP52) fails to reverse amyloid-ß-induced detrimental effects. Our findings highlight a novel mechanism by which PINK1-dependent signalling promotes the rescue of amyloid pathology and amyloid-ß-mediated mitochondrial and synaptic dysfunctions in a manner requiring activation of autophagy receptor OPTN or NDP52. Thus, activation of PINK1 may represent a new therapeutic avenue for combating Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Hipocampo/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Autofagia , Encéfalo/metabolismo , Proteínas de Ciclo Celular , Proteínas del Ojo/metabolismo , Femenino , Terapia Genética , Humanos , Masculino , Proteínas de Transporte de Membrana , Ratones Transgénicos , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal
6.
Circ Res ; 110(10): 1279-93, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22511750

RESUMEN

RATIONALE: The mammalian diaphanous-related formin (mDia1), governs microtubule and microfilament dynamics while functioning as an effector for Rho small GTP-binding proteins during key cellular processes such as adhesion, cytokinesis, cell polarity, and morphogenesis. The cytoplasmic domain of the receptor for advanced glycation endproducts binds to the formin homology 1 domain of mDia1; mDia1 is required for receptor for advanced glycation endproducts ligand-induced cellular migration in transformed cells. OBJECTIVE: Because a key mechanism in vascular remodeling is the induction of smooth muscle cell migration, we tested the role of mDia1 in this process. METHODS AND RESULTS: We report that endothelial denudation injury to the murine femoral artery significantly upregulates mDia1 mRNA transcripts and protein in the injured vessel, particularly in vascular smooth muscle cells within the expanding neointima. Loss of mDia1 expression significantly reduces pathological neointimal expansion consequent to injury. In primary murine aortic smooth muscle cells, mDia1 is required for receptor for advanced glycation endproducts ligand-induced membrane translocation of c-Src, which leads to Rac1 activation, redox phosphorylation of AKT/glycogen synthase kinase 3ß, and consequent smooth muscle cell migration. CONCLUSIONS: We conclude that mDia1 integrates oxidative and signal transduction pathways triggered, at least in part, by receptor for advanced glycation endproducts ligands, thereby regulating pathological neointimal expansion.


Asunto(s)
Proteínas Portadoras/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/patología , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Citoesqueleto de Actina/fisiología , Animales , Proteínas Portadoras/genética , Movimiento Celular/fisiología , Células Cultivadas , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Arteria Femoral/patología , Forminas , Productos Finales de Glicación Avanzada/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microtúbulos/fisiología , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasa 1 , Neointima/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 33(8): 1779-87, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23766264

RESUMEN

OBJECTIVE: Subjects with diabetes mellitus are at high risk for developing atherosclerosis through a variety of mechanisms. Because the metabolism of glucose results in production of activators of protein kinase C (PKC)ß, it was logical to investigate the role of PKCß in modulation of atherosclerosis in diabetes mellitus. APPROACH AND RESULTS: ApoE(-/-) and PKCß(-/-)/ApoE(-/-) mice were rendered diabetic with streptozotocin. Quantification of atherosclerosis, gene expression profiling, or analysis of signaling molecules was performed on aortic sinus or aortas from diabetic mice. Diabetes mellitus-accelerated atherosclerosis increased the level of phosphorylated extracellular signal-regulated kinase 1/2 and Jun-N-terminus kinase mitogen-activated protein kinases and augmented vascular expression of inflammatory mediators, as well as increased monocyte/macrophage infiltration and CD11c(+) cells accumulation in diabetic ApoE(-/-) mice, processes that were diminished in diabetic PKCß(-/-)/ApoE(-/-) mice. In addition, pharmacological inhibition of PKCß reduced atherosclerotic lesion size in diabetic ApoE(-/-) mice. In vitro, the inhibitors of PKCß and extracellular signal-regulated kinase 1/2, as well as small interfering RNA to Egr-1, significantly decreased high-glucose-induced expression of CD11c (integrin, alpha X 9 complement component 3 receptor 4 subunit]), chemokine (C-C motif) ligand 2, and interleukin-1ß in U937 macrophages. CONCLUSIONS: These data link enhanced activation of PKCß to accelerated diabetic atherosclerosis via a mechanism that includes modulation of gene transcription and signal transduction in the vascular wall, processes that contribute to acceleration of vascular inflammation and atherosclerosis in diabetes mellitus. Our results uncover a novel role for PKCß in modulating CD11c expression and inflammatory response of macrophages in the development of diabetic atherosclerosis. These findings support PKCß activation as a potential therapeutic target for prevention and treatment of diabetic atherosclerosis.


Asunto(s)
Apolipoproteínas E/inmunología , Aterosclerosis/inmunología , Diabetes Mellitus Experimental/inmunología , Proteína Quinasa C/inmunología , Vasculitis/inmunología , Animales , Aortitis/inmunología , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Antígeno CD11c/metabolismo , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/inmunología , Angiopatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Expresión Génica/inmunología , Humanos , Hiperglucemia/genética , Hiperglucemia/inmunología , Hiperglucemia/metabolismo , Hiperlipidemias/genética , Hiperlipidemias/inmunología , Hiperlipidemias/metabolismo , Macrófagos/inmunología , Ratones , Ratones Noqueados , Monocitos/inmunología , Proteína Quinasa C/genética , Proteína Quinasa C beta , Transducción de Señal/inmunología , Células U937 , Vasculitis/genética , Vasculitis/metabolismo
8.
J Biol Chem ; 287(7): 5133-44, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22194616

RESUMEN

The receptor for advanced glycation end products (RAGE) is a multiligand cell surface macromolecule that plays a central role in the etiology of diabetes complications, inflammation, and neurodegeneration. The cytoplasmic domain of RAGE (C-terminal RAGE; ctRAGE) is critical for RAGE-dependent signal transduction. As the most membrane-proximal event, mDia1 binds to ctRAGE, and it is essential for RAGE ligand-stimulated phosphorylation of AKT and cell proliferation/migration. We show that ctRAGE contains an unusual α-turn that mediates the mDia1-ctRAGE interaction and is required for RAGE-dependent signaling. The results establish a novel mechanism through which an extracellular signal initiated by RAGE ligands regulates RAGE signaling in a manner requiring mDia1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/metabolismo , Forminas , Humanos , Inflamación/genética , Inflamación/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Fosforilación/fisiología , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/química , Receptores Inmunológicos/genética
9.
FASEB J ; 26(2): 882-93, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22075646

RESUMEN

In extensive liver resection secondary to primary or metastatic liver tumors, or in living donor liver transplantation, strategies to quell deleterious inflammatory responses and facilitate regeneration are essential. The receptor for advanced glycation endproducts (RAGE) and myeloid differentiating factor 88 (Myd88) are implicated in the inflammatory response. To establish the contributions of RAGE vs. Myd88 signaling in extensive liver resection, we probed the effect of RAGE and/or Myd88, the latter primarily a key transducer of major toll-like receptors and also implicated in interleukin-1 (Il1) signaling, in a murine model of extensive (85%) hepatectomy. We report that, although Myd88 is thoroughly essential for survival via regulation of NF-κB and TNF-α, deletion of RAGE significantly improved survival compared to wild-type, Myd88-null, or RAGE-null/Myd88-null mice. RAGE opposes Myd88 signaling at multiple levels: by suppression of p65 levels, thereby reducing activation of NF-κB and consequent production of cyclin D1, and by suppression of Il6-mediated phosphorylation of Stat3, thereby down-regulating Pim1 and suppressing the hyperplastic response. Further, RAGE-dependent suppression of glyoxalase1, a detoxification pathway for pre-AGEs, enhances AGE levels and suppresses Il6 action. We conclude that blockade of RAGE may rescue liver remnants from the multiple signals that preclude adaptive proliferation triggered primarily by Myd88 signaling pathways.


Asunto(s)
Regeneración Hepática/fisiología , Factor 88 de Diferenciación Mieloide/fisiología , Receptores Inmunológicos/fisiología , Animales , Apoptosis/fisiología , Proliferación Celular , Productos Finales de Glicación Avanzada/metabolismo , Hepatectomía , Hepatocitos/citología , Hepatocitos/metabolismo , Inmunidad Innata , Regeneración Hepática/genética , Regeneración Hepática/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/genética , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba
10.
Amino Acids ; 42(4): 1151-61, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20957395

RESUMEN

The formation of advanced glycation endproducts (AGEs) occurs in diverse settings such as diabetes, aging, renal failure, inflammation and hypoxia. The chief cellular receptor for AGEs, RAGE, transduces the effects of AGEs via signal transduction, at least in part via processes requiring the RAGE cytoplasmic domain binding partner, diaphanous-1 or mDia1. Data suggest that RAGE perpetuates the inflammatory signals initiated by AGEs via multiple mechanisms. AGE-RAGE interaction stimulates generation of reactive oxygen species and inflammation--mechanisms which enhance AGE formation. Further, recent data in type 1 diabetic kidney reveal that deletion of RAGE prevents methylglyoxal accumulation, at least in part via RAGE-dependent regulation of glyoxalase-1, a major enzyme involved in methylglyoxal detoxification. Taken together, these considerations place RAGE in the center of biochemical and molecular stresses that characterize the complications of diabetes and chronic disease. Stopping RAGE-dependent signaling may hold the key to interrupting cycles of cellular perturbation and tissue damage in these disorders.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Enfermedad/etiología , Glicosilación , Humanos , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal
11.
Circ Res ; 106(5): 842-53, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20299674

RESUMEN

The immunoglobulin superfamily molecule RAGE (receptor for advanced glycation end product) transduces the effects of multiple ligands, including AGEs (advanced glycation end products), advanced oxidation protein products, S100/calgranulins, high-mobility group box-1, amyloid-beta peptide, and beta-sheet fibrils. In diabetes, hyperglycemia likely stimulates the initial burst of production of ligands that interact with RAGE and activate signaling mechanisms. Consequently, increased generation of proinflammatory and prothrombotic molecules and reactive oxygen species trigger further cycles of oxidative stress via RAGE, thus setting the stage for augmented damage to diabetic tissues in the face of further insults. Many of the ligand families of RAGE have been identified in atherosclerotic plaques and in the infarcted heart. Together with increased expression of RAGE in diabetic settings, we propose that release and accumulation of RAGE ligands contribute to exaggerated cellular damage. Stopping the vicious cycle of AGE-RAGE and RAGE axis signaling in the vulnerable heart and great vessels may be essential in controlling and preventing the consequences of diabetes.


Asunto(s)
Vasos Sanguíneos/metabolismo , Enfermedades Cardiovasculares/metabolismo , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Inmunidad Adaptativa , Animales , Vasos Sanguíneos/inmunología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/inmunología , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/inmunología , Diabetes Mellitus/genética , Diabetes Mellitus/inmunología , Humanos , Inmunidad Innata , Ligandos , Polimorfismo Genético , Procesamiento Proteico-Postraduccional , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética
12.
Circ Res ; 106(6): 1040-51, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133903

RESUMEN

RATIONALE: The multiligand RAGE (receptor for advanced glycation end products) contributes to atherosclerosis in apolipoprotein (Apo)E-null mice. OBJECTIVE: To delineate the specific mechanisms by which RAGE accelerated atherosclerosis, we performed Affymetrix gene expression arrays on aortas of nondiabetic and diabetic ApoE-null mice expressing RAGE or devoid of RAGE at nine weeks of age, as this reflected a time point at which frank atherosclerotic lesions were not yet present, but that we would be able to identify the genes likely involved in diabetes- and RAGE-dependent atherogenesis. METHODS AND RESULTS: We report that there is very little overlap of the genes that are differentially expressed both in the onset of diabetes in ApoE-null mice, and in the effect of RAGE deletion in diabetic ApoE-null mice. Pathway-Express analysis revealed that the transforming growth factor-beta pathway and focal adhesion pathways might be expected to play a significant role in both the mechanism by which diabetes facilitates the formation of atherosclerotic plaques in ApoE-null mice, and the mechanism by which deletion of RAGE ameliorates this effect. Quantitative polymerase chain reaction studies, Western blotting, and confocal microscopy in aortic tissue and in primary cultures of murine aortic smooth muscle cells supported these findings. CONCLUSIONS: Taken together, our work suggests that RAGE-dependent acceleration of atherosclerosis in ApoE-null mice is dependent, at least in part, on the action of the ROCK1 (rho-associated protein kinase 1) branch of the transforming growth factor-beta pathway.


Asunto(s)
Enfermedades de la Aorta/etiología , Apolipoproteínas E/deficiencia , Aterosclerosis/etiología , Diabetes Mellitus Experimental/complicaciones , Angiopatías Diabéticas/etiología , Receptores Inmunológicos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Aorta/enzimología , Aorta/patología , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apolipoproteínas E/genética , Aterosclerosis/enzimología , Aterosclerosis/genética , Aterosclerosis/patología , Western Blotting , Movimiento Celular , Proliferación Celular , Células Cultivadas , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Angiopatías Diabéticas/enzimología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/patología , Progresión de la Enfermedad , Activación Enzimática , Adhesiones Focales/enzimología , Perfilación de la Expresión Génica/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Trombospondina 1/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta/genética , Quinasas Asociadas a rho/genética
13.
J Biol Chem ; 285(30): 23233-40, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20507991

RESUMEN

Receptor for advanced glycation end product (RAGE)-dependent signaling has been implicated in ischemia/reperfusion injury in the heart, lung, liver, and brain. Because macrophages contribute to vascular perturbation and tissue injury in hypoxic settings, we tested the hypothesis that RAGE regulates early growth response-1 (Egr-1) expression in hypoxia-exposed macrophages. Molecular analysis, including silencing of RAGE, or blockade of RAGE with sRAGE (the extracellular ligand-binding domain of RAGE), anti-RAGE IgG, or anti-AGE IgG in THP-1 cells, and genetic deletion of RAGE in peritoneal macrophages, revealed that hypoxia-induced up-regulation of Egr-1 is mediated by RAGE signaling. In addition, the observation of increased cellular release of RAGE ligand AGEs in hypoxic THP-1 cells suggests that recruitment of RAGE in hypoxia is stimulated by rapid production of RAGE ligands in this setting. Finally, we show that mDia-1, previously shown to interact with the RAGE cytoplasmic domain, is essential for hypoxia-stimulated regulation of Egr-1, at least in part through protein kinase C betaII, ERK1/2, and c-Jun NH(2)-terminal kinase signaling triggered by RAGE ligands. Our findings highlight a novel mechanism by which an extracellular signal initiated by RAGE ligand AGEs regulates Egr-1 in a manner requiring mDia-1.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Macrófagos/citología , Macrófagos/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Regulación hacia Arriba , Animales , Proteínas Portadoras/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Forminas , Humanos , Ligandos , Ratones , Receptor para Productos Finales de Glicación Avanzada
14.
J Exp Med ; 201(3): 473-84, 2005 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-15699076

RESUMEN

The exquisite ability of the liver to regenerate is finite. Identification of mechanisms that limit regeneration after massive injury holds the key to expanding the limits of liver transplantation and salvaging livers and hosts overwhelmed by carcinoma and toxic insults. Receptor for advanced glycation endproducts (RAGE) is up-regulated in liver remnants selectively after massive (85%) versus partial (70%) hepatectomy, principally in mononuclear phagocyte-derived dendritic cells (MPDDCs). Blockade of RAGE, using pharmacological antagonists or transgenic mice in which a signaling-deficient RAGE mutant is expressed in cells of mononuclear phagocyte lineage, significantly increases survival after massive liver resection. In the first hours after massive resection, remnants retrieved from RAGE-blocked mice displayed increased activated NF-kappaB, principally in hepatocytes, and enhanced expression of regeneration-promoting cytokines, TNF-alpha and IL-6, and the antiinflammatory cytokine, IL-10. Hepatocyte proliferation was increased by RAGE blockade, in parallel with significantly reduced apoptosis. These data highlight central roles for RAGE and MPDDCs in modulation of cell death-promoting mechanisms in massive hepatectomy and suggest that RAGE blockade is a novel strategy to promote regeneration in the massively injured liver.


Asunto(s)
Regeneración Hepática , Hígado/metabolismo , Hígado/patología , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Apoptosis/fisiología , Linaje de la Célula , Proliferación Celular , Citocinas/metabolismo , Regulación de la Expresión Génica , Hepatectomía , Humanos , Hígado/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos , Tasa de Supervivencia
15.
J Clin Invest ; 118(1): 183-94, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18079965

RESUMEN

Endothelial dysfunction is a key triggering event in atherosclerosis. Following the entry of lipoproteins into the vessel wall, their rapid modification results in the generation of advanced glycation endproduct epitopes and subsequent infiltration of inflammatory cells. These inflammatory cells release receptor for advanced glycation endproduct (RAGE) ligands, specifically S100/calgranulins and high-mobility group box 1, which sustain vascular injury. Here, we demonstrate critical roles for RAGE and its ligands in vascular inflammation, endothelial dysfunction, and atherosclerotic plaque development in a mouse model of atherosclerosis, apoE-/- mice. Experiments in primary aortic endothelial cells isolated from mice and in cultured human aortic endothelial cells revealed the central role of JNK signaling in transducing the impact of RAGE ligands on inflammation. These data highlight unifying mechanisms whereby endothelial RAGE and its ligands mediate vascular and inflammatory stresses that culminate in atherosclerosis in the vulnerable vessel wall.


Asunto(s)
Apolipoproteínas E , Aterosclerosis/metabolismo , Endotelio Vascular/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Receptores Inmunológicos/inmunología , Animales , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/patología , Modelos Animales de Enfermedad , Endotelio Vascular/lesiones , Endotelio Vascular/patología , Epítopos/genética , Epítopos/metabolismo , Productos Finales de Glicación Avanzada/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Complejo de Antígeno L1 de Leucocito/genética , Complejo de Antígeno L1 de Leucocito/metabolismo , Ligandos , Ratones , Ratones Noqueados , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética
16.
Nat Med ; 9(3): 287-93, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12598893

RESUMEN

Multiple sclerosis (MS) is a devastating neuroinflammatory disorder of the central nervous system (CNS) in which T cells that are reactive with major components of myelin sheaths have a central role. The receptor for advanced glycation end products (RAGE) is present on T cells, mononuclear phagocytes and endothelium. Its pro-inflammatory ligands, S100-calgranulins, are upregulated in MS and in the related rodent model, experimental autoimmune encephalomyelitis (EAE). Blockade of RAGE suppressed EAE when disease was induced by myelin basic protein (MBP) peptide or encephalitogenic T cells, or when EAE occurred spontaneously in T-cell receptor (TCR)-transgenic mice devoid of endogenous TCR-alpha and TCR-beta chains. Inhibition of RAGE markedly decreased infiltration of the CNS by immune and inflammatory cells. Transgenic mice with targeted overexpression of dominant-negative RAGE in CD4+ T cells were resistant to MBP-induced EAE. These data reinforce the importance of RAGE-ligand interactions in modulating properties of CD4+ T cells that infiltrate the CNS.


Asunto(s)
Sistema Nervioso Central/fisiología , Encefalomielitis Autoinmune Experimental/inmunología , Receptores Inmunológicos/metabolismo , Linfocitos T/fisiología , Animales , Línea Celular , Sistema Nervioso Central/inmunología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Complejo de Antígeno L1 de Leucocito/metabolismo , Ratones , Ratones Transgénicos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/inmunología , Vaina de Mielina/metabolismo , Fragmentos de Péptidos/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Proteínas S100/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Médula Espinal/patología , Linfocitos T/inmunología
17.
Free Radic Biol Med ; 164: 429-438, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33359687

RESUMEN

Aging is a strong risk factor for brain dementia and cognitive decline. Age-related accumulation of metabolites such as advanced glycation end products (AGEs) could serve as danger signals to initiate and accelerate disease process and neurodegeneration. The underlying causes and consequences of cerebral AGEs accumulation remain largely unknown. Here, we comprehensively investigate age-related accumulation of AGEs and dicarbonyls, including methylglyoxal (MG), glyoxal (GO), and 3-deoxyglucosone (3-DG), and the effects of mitochondrial reactive oxygen species (ROS) on cerebral AGEs accumulation, mitochondrial function, and oxidative stress in the aging human and mouse brain. We demonstrate that AGEs, including arginine and lysine derived N(6)-carboxymethyl lysine (CML), Nε-(1-Carboxyethyl)-l-lysine (CEL), and methylglyoxal-derived hydroimidazolone-1 (MG-H1), were significantly elevated in the cerebral cortex and hippocampus with advanced age in mice. Accordingly, aging mouse and human brains revealed decrease in activities of mitochondrial respiratory chain complexes I & IV and ATP levels, and increased ROS. Notably, administration of mitoTEMPO (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mTEMPO), a scavenger of mitochondrial ROS, not only suppressed ROS production but also reduced aged-induced accumulation of AGEs and dicarbonyls. mTEMPO treatment improved mitochondrial respiratory function and restored ATP levels. Our findings provide evidence linking age-related accumulation of toxic metabolites (AGEs) to mitochondrial oxidative stress. This highlights a novel mechanism by which AGEs-dependent signaling promotes carbonyl stress and sustained mitochondrial dysfunction. Eliminating formation and accumulation of AGEs may represent a new therapeutic avenue for combating cognitive decline and mitochondrial degeneration relevant to aging and neurodegenerative diseases including Alzheimer's disease.


Asunto(s)
Productos Finales de Glicación Avanzada , Mitocondrias , Animales , Arginina , Ratones , Piruvaldehído , Especies Reactivas de Oxígeno
18.
Aging Cell ; 20(5): e13368, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33951271

RESUMEN

Mitochondrial dysfunction is one of the early pathological features of Alzheimer's disease (AD). Accumulation of cerebral and mitochondrial Aß links to mitochondrial and synaptic toxicity. We have previously demonstrated the mechanism by which presequence peptidase (PITRM1)-mediated clearance of mitochondrial Aß contributes to mitochondrial and cerebral amyloid pathology and mitochondrial and synaptic stress in adult transgenic AD mice overexpressing Aß up to 12 months old. Here, we investigate the effect of PITRM1 in an advanced age AD mouse model (up to 19-24 months) to address the fundamental unexplored question of whether restoration/gain of PITRM1 function protects against mitochondrial and synaptic dysfunction associated with Aß accumulation and whether this protection is maintained even at later ages featuring profound amyloid pathology and synaptic failure. Using newly developed aged PITRM1/Aß-producing AD mice, we first uncovered reduction in PITRM1 expression in AD-affected cortex of AD mice at 19-24 months of age. Increasing neuronal PITRM1 activity/expression re-established mitochondrial respiration, suppressed reactive oxygen species, improved synaptic function, and reduced loss of synapses even at advanced ages (up to 19-24 months). Notably, loss of PITRM1 proteolytic activity resulted in Aß accumulation and failure to rescue mitochondrial and synaptic function, suggesting that PITRM1 activity is required for the degradation and clearance of mitochondrial Aß and Aß deposition. These data indicate that augmenting PITRM1 function results in persistent life-long protection against Aß toxicity in an AD mouse model. Therefore, augmenting PITRM1 function may enhance Aß clearance in mitochondria, thereby maintaining mitochondrial integrity and ultimately slowing the progression of AD.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Metaloendopeptidasas/metabolismo , Mitocondrias/enzimología , Neuronas/enzimología , Sinapsis/metabolismo , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/metabolismo , Cognición , Modelos Animales de Enfermedad , Femenino , Inflamación , Masculino , Metaloendopeptidasas/genética , Ratones Transgénicos , Mitocondrias/metabolismo , Neuronas/metabolismo , Sinapsis/fisiología
19.
FASEB J ; 23(4): 1081-91, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19036858

RESUMEN

Endothelial activation is a central initiating event in atheroma formation. Evidence from our laboratory and others has demonstrated links between activation of early growth response-1 (Egr-1) and atherosclerosis and also has demonstrated that activated protein kinase C (PKC) betaII is a critical upstream regulator of Egr-1 in response to vascular stress. We tested the role of PKCbeta in regulating key events linked to atherosclerosis and show that the aortas of apoE(-/-) mice display an age-dependent increase in PKCbetaII antigen in membranous fractions vs. C57BL/6 animals with a approximately 2-fold increase at age 6 wk and a approximately 4.5-fold increase at age 24 wk. Consistent with important roles for PKCbeta in atherosclerosis, a significant decrease in atherosclerotic lesion area was evident in PKCbeta(-/-)/apoE(-/-) vs. apoE(-/-) mice by approximately 5-fold, in parallel with significantly reduced vascular transcripts for Egr-1 and matrix metalloproteinase (MMP)-2 antigen and activity vs. apoE(-/-) mice. Significant reduction in atherosclerosis of approximately 2-fold was observed in apoE(-/-) mice fed ruboxistaurin chow (PKCbeta inhibitor) vs. vehicle. In primary murine and human aortic endothelial cells, the PKCbeta-JNK mitogen-activated protein kinase pathway importantly contributes to oxLDL-mediated induction of MMP2 expression. Blockade of PKCbeta may be beneficial in mitigating endothelial perturbation and atherosclerosis.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/metabolismo , Aterosclerosis/patología , Proteína Quinasa C/deficiencia , Animales , Aorta/metabolismo , Aorta/patología , Apolipoproteínas E/genética , Cruzamientos Genéticos , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Homocigoto , Indoles/farmacología , Masculino , Maleimidas/farmacología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteína Quinasa C beta
20.
Circ Res ; 102(8): 905-13, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18323529

RESUMEN

Myocardial infarction, stroke, and venous thromboembolism are characterized by oxygen deprivation. In hypoxia, biological responses are activated that evoke tissue damage. Rapid activation of early growth response-1 in hypoxia upregulates fundamental inflammatory and prothrombotic stress genes. We probed the mechanisms mediating regulation of early growth response-1 and demonstrate that hypoxia stimulates brisk generation of advanced glycation end products (AGEs) by endothelial cells. Via AGE interaction with their chief signaling receptor, RAGE, membrane translocation of protein kinase C-betaII occurs, provoking phosphorylation of c-Jun NH(2)-terminal kinase and increased transcription of early growth response-1 and its downstream target genes. These findings identify RAGE as a master regulator of tissue stress elicited by hypoxia and highlight this receptor as a central therapeutic target to suppress the tissue injury-provoking effects of oxygen deprivation.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Hipoxia/genética , Receptores Inmunológicos/fisiología , Animales , Aorta , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA