Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Chem Phys ; 160(20)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804489

RESUMEN

The thermophysical properties and elemental abundances of the noble gases in terrestrial materials can provide unique insights into the Earth's evolution and mantle dynamics. Here, we perform extensive ab initio molecular dynamics simulations to determine the melting temperature and sound velocity of neon up to 370 GPa and 7500 K to constrain its physical state and storage capacity, together with to reveal its implications for the deep interior of the Earth. It is found that solid neon can exist stably under the lower mantle and inner core conditions, and the abnormal melting of neon is not observed under the entire temperature (T) and pressure (P) region inside the Earth owing to its peculiar electronic structure, which is substantially distinct from other heavier noble gases. An inspection of the reduction for sound velocity along the Earth's geotherm evidences that neon can be used as a light element to account for the low-velocity anomaly and density deficit in the deep Earth. A comparison of the pair distribution functions and mean square displacements of MgSiO3-Ne and Fe-Ne alloys further reveals that MgSiO3 has a larger neon storage capacity than the liquid iron under the deep Earth condition, indicating that the lower mantle may be a natural deep noble gas storage reservoir. Our results provide valuable information for studying the fundamental behavior and phase transition of neon in a higher T-P regime, and further enhance our understanding for the interior structure and evolution processes inside the Earth.

2.
Phys Chem Chem Phys ; 25(43): 29633-29640, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37880996

RESUMEN

We conducted first-principles calculations to investigate the dynamic braiding of local edge states and the spin topological transport mechanism in a strong topological MoS1.75Te0.25 matrix. The presence of type-II Van Hove singularity in the middle of the X-S path indicates a strong cohesive interaction and a paring condensation mechanism within the matrix. The surface state data of MoS1.75Te0.25 clearly demonstrate the characteristic features of strong regular loop braiding in spin transport. The spin Hall conductivity of the matrix was determined from the anisotropic characteristics of the spin Berry curvature. The phase transition of the spin Hall conductivity was evidenced by the positive sign of local spin polarization strength, primarily contributed by the dz2 orbital of Mo atoms, and the negative sign of spin polarization strength, mainly contributed by the p-px orbitals of S atoms. Moreover, the inclusion of Te selectively tuned the spin transport efficiency of the dz2 and px orbitals. Comprehensive braiding and readout of edge states can be achieved using an artificially designed MoS1.75Te0.25 spintronic device. This 2D fractional braiding holds significant potential for applications in topological quantum computation.

3.
Phys Chem Chem Phys ; 25(47): 32387-32392, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37997152

RESUMEN

We theoretically demonstrate how the competition between band inversion and spin-orbit coupling (SOC) results in the nontrivial topology of band evolution, using two-dimensional (2D) Mn16B16 as a matrix. This study utilizes the ab initio method with the generalized gradient approximation (GGA+U scheme) and Wannier functions to investigate the topological and transport properties of the Ni-doped structure. The Ni atom induces dynamical antilocalization, which appears due to the phase accumulation between time-reversed fermion loops. A key observation is that when band inversion dominates over SOC, "twin" Weyl cones appear in the band structure, in which the Weyl cones caused by the large Berry curvature coupling with the net magnetization lead to the significantly enhanced anomalous Hall conductivity (AHC). Interestingly, the nested small polaron and energy band inversion coexist with SOC. An analysis of the projected energy band shows that the doped Ni atom induces a strong spin wave for both spin up and spin down.

4.
Chaos ; 33(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38060781

RESUMEN

Thermal rectification is a mechanism that controls the direction of heat conduction, allowing it to flow freely in one direction and hindering it in the opposite direction. In this study, we propose a heat conduction model on a complex network where the node masses are non-uniformly distributed according to mi∼kiα. Our findings show that the existence of a critical point, α=1, determines the working mode of thermal rectification. For α>1, the working mode of thermal rectification is positive, whereas for α<1, the working mode is negative. Additionally, we discovered that this critical transition is a general phenomenon and does not vary with changes in network size, average degree, or degree distribution. By conducting theoretical analyses based on phonon spectra, we also identified the physical mechanism of the critical transition. These results provide a new approach to implement and enrich thermal diodes, opening up new possibilities for more efficient thermal management.

5.
Phys Chem Chem Phys ; 24(31): 18983-18991, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35917181

RESUMEN

We have successfully predicted the local topological bands in the frustrated kagome lattice SbV3S5. An important future research direction is to raise the kagome band with novel co-existing strong nonlinear dispersion and strong cohesion due to the anisotropic inner field of kagome SbV3S5 to the Fermi level. The Z2 topological index of T-invariant systems provides evidence for a σyz near the Fermi level that determines the quantum anomalous Hall state. This shows that the quantum anomalous Hall effect (QAHE) phase of the kagome lattice SbV3S5 has a weak topological stability that is sensitive to weak disorder and field interactions. Neighbouring van Hove singularities near the Fermi level induced a quantum anomalous Hall conductivity and charge density wave platform.

6.
Phys Rev E ; 109(4-1): 044311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755911

RESUMEN

The regulation of thermal transport is a challenging topic in complex networks. At present, the hidden physical mechanism behind thermal transport is poorly understood. This paper addresses this issue by proposing a complex network model that focuses on the thermal transport regulation through the manipulation of the network's degree distribution and clustering coefficient. Our findings indicate that increasing the degree distribution regulation parameter σ leads to reduced phonon localization and improved thermal transport efficiency. Conversely, increasing the clustering coefficient c results in enhanced phonon localization and reduced thermal transport efficiency. Meanwhile, by calculating the pseudodispersion relation of the network, we find that the maximum (or the second smallest) eigenfrequency decreases with increasing σ (or c). Finally, we elucidate that phonon localization plays a pivotal role in the thermal transport of the network, as demonstrated through density of states and the participation ratio.

7.
Proc Natl Acad Sci U S A ; 106(31): 12926-31, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19622727

RESUMEN

Despite the importance of the aberrant polymerization of Abeta in the early pathogenic cascade of Alzheimer's disease, little is known about the induction of Abeta aggregation in vivo. Here we show that induction of cerebral beta-amyloidosis can be achieved in many different brain areas of APP23 transgenic mice through the injection of dilute Abeta-containing brain extracts. Once the amyloidogenic process has been exogenously induced, the nature of the induced Abeta-deposition is determined by the brain region of the host. Because these observations are reminiscent of a prion-like mechanism, we then investigated whether cerebral beta-amyloidosis also can be induced by peripheral and systemic inoculations or by the intracerebral implantation of stainless steel wires previously coated with minute amounts of Abeta-containing brain extract. Results reveal that oral, intravenous, intraocular, and intranasal inoculations yielded no detectable induction of cerebral beta-amyloidosis in APP23 transgenic mice. In contrast, transmission of cerebral beta-amyloidosis through the Abeta-contaminated steel wires was demonstrated. Notably, plasma sterilization, but not boiling of the wires before implantation, prevented the induction of beta-amyloidosis. Our results suggest that minute amounts of Abeta-containing brain material in direct contact with the CNS can induce cerebral beta-amyloidosis, but that systemic cellular mechanisms of prion uptake and transport to the CNS may not apply to Abeta.


Asunto(s)
Péptidos beta-Amiloides/administración & dosificación , Amiloidosis/etiología , Encefalopatías/etiología , Péptidos beta-Amiloides/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades por Prión/etiología
8.
Sci Rep ; 11(1): 5501, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750886

RESUMEN

Developing efficient strategy to regulate heat conduction is a challenging problem, with potential implication in the field of thermal materials. We here focus on a potential thermal material, i.e. complex networks of nanowires and nanotubes, and propose a model where the mass of each node is assigned proportional to its degree with [Formula: see text], to investigate how distributed nodes masses can impact the heat flow in a network. We find that the heat conduction of complex network can be either increased or decreased, depending on the controlling parameter [Formula: see text]. Especially, there is an optimal heat conduction at [Formula: see text] and it is independent of network topologies. Moreover, we find that the temperature distribution within a complex network is also strongly influenced by the controlling parameter [Formula: see text]. A brief theoretical analysis is provided to explain these results. These findings may open up appealing applications in the cases of demanding either increasing or decreasing heat conduction, and our approach of regulating heat conduction by distributed nodes masses may be also valuable to the challenge of controlling waste heat dissipation in highly integrated and miniaturized modern devices.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(8): 2057-61, 2010 Aug.
Artículo en Zh | MEDLINE | ID: mdl-20939306

RESUMEN

The ignition delay times and special spectral intensity of aluminum nanopowders reacting with propylene oxide were investigated by fast spectrum system triggered by synchronous shock light singles, and the ignition mechanism was presented from those data. X-ray diffraction (XRD) spectrum indicated that aluminum nanoparticle produced by plasma method has been oxidized for its high activity, X-ray photoelectron spectroscopy (XPS) of sample revealed that there is 3 nm oxide layer on its surface. XPS of the products showed that the oxide layer thickness will increase with the increasing shock wave strength. AlO (464.8 nm) ignition times investigated by monochromator revealed that aluminum nanoparticle will be equably distributed in propylene oxide vapor for increasing shock wave strength to increase its heating surface and heating rate, and shock wave will easily crack the 3 nm oxide layer on aluminum nanoparticle present chance for core active aluminum to react with oxygen atom and containing-oxygen molecule in the reaction system to ignite.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 27(12): 2396-8, 2007 Dec.
Artículo en Zh | MEDLINE | ID: mdl-18330269

RESUMEN

A new optical spectroscopy system consisting of a monochromator, photomultiplier tubes (PMT), piezoelectric pressure sensor and digital phosphor oscilloscope was established to study spectrum and ignition delay time of benzene in quick reaction in a high temperature shock tube. A new method of determining ignition delay time of energetic materials behind incident shock wave is proposed. Several important products, such as H, C2 and CH, were determined in sequence of emergence time. The reaction mechanism of formation of carbon was introduced when benzene was driven under shock compression. The results indicate that in spite of the variety of Mach number, atom H always emerged first, indicating that the pyrolysis of benzene started with C-H bond instead of C-C bond. The results show that applying spectrum techniques can preferably study the ignition characteristic of benzene in quick reaction. Measuring ignition delay time by means of a prior emerged intermediate product (atom H) is more accurate than that with white color technique widely used home and abroad, and furthermore, can obviously reduce the times of experiment.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 26(2): 225-7, 2006 Feb.
Artículo en Zh | MEDLINE | ID: mdl-16826892

RESUMEN

The micro-behaviours of shock ignition of epoxypropane were studied by OMA (optical multii channal system) and monochromator techniques. The radicals O, CH2O, C2, CH, CH3O, CO2 and H2O were observed by OMA spectrometer. The delay time and critical condition of shock ignition were determined using three monochromators and gauge. The emergence of intermediate product of O for epoxypropane after shock ignition is always the earliest.

12.
Prion ; 10(3): 165-81, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27220820

RESUMEN

Bovine spongiform encephalopathy (BSE) created a global European crisis in the 1980s and 90s, with very serious health and economic implications. Classical BSE now appears to be under control, to a great extent as a result of a global research effort that identified the sources of prions in meat and bone meal (MBM) and developed new animal-testing tools that guided policy. Priority ( www.prionpriority.eu ) was a European Union (EU) Framework Program 7 (FP7)-funded project through which 21 European research institutions and small and medium enterprises (SMEs) joined efforts between 2009 and 2014, to conduct coordinated basic and applied research on prions and prion diseases. At the end of the project, the Priority consortium drafted a position paper ( www.prionpriority.eu/Priority position paper) with its main conclusions. In the present opinion paper, we summarize these conclusions. With respect to the issue of re-introducing ruminant protein into the feed-chain, our opinion is that sustaining an absolute ban on feeding ruminant protein to ruminants is essential. In particular, the spread and impact of non-classical forms of scrapie and BSE in ruminants is not fully understood and the risks cannot be estimated. Atypical prion agents will probably continue to represent the dominant form of prion diseases in the near future in Europe. Atypical L-type BSE has clear zoonotic potential, as demonstrated in experimental models. Similarly, there are now data indicating that the atypical scrapie agent can cross various species barriers. More epidemiological data from large cohorts are necessary to reach any conclusion on the impact of its transmissibility on public health. Re-evaluations of safety precautions may become necessary depending on the outcome of these studies. Intensified searching for molecular determinants of the species barrier is recommended, since this barrier is key for important policy areas and risk assessment. Understanding the structural basis for strains and the basis for adaptation of a strain to a new host will require continued fundamental research, also needed to understand mechanisms of prion transmission, replication and how they cause nervous system dysfunction and death. Early detection of prion infection, ideally at a preclinical stage, also remains crucial for development of effective treatment strategies.


Asunto(s)
Cadena Alimentaria , Enfermedades por Prión/epidemiología , Enfermedades por Prión/prevención & control , Priones/análisis , Alimentación Animal/efectos adversos , Animales , Bovinos , Diagnóstico Precoz , Encefalopatía Espongiforme Bovina/diagnóstico , Encefalopatía Espongiforme Bovina/epidemiología , Encefalopatía Espongiforme Bovina/prevención & control , Encefalopatía Espongiforme Bovina/transmisión , Europa (Continente)/epidemiología , Humanos , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/transmisión , Priones/aislamiento & purificación , Priones/metabolismo , Priones/patogenicidad , Scrapie/diagnóstico , Scrapie/epidemiología , Scrapie/prevención & control , Scrapie/transmisión
13.
Infect Control Hosp Epidemiol ; 25(4): 280-3, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15108723

RESUMEN

OBJECTIVES: To establish an animal model to study transmissible spongiform encephalopathy using hamsters and steel wires contaminated with infectious brain materials as transfer vehicles, and, based on this model, to test decontamination procedures against the infectious prion proteins on the steel wires as a near real situation bioassay. DESIGN: Infectious brain materials were given to healthy hamsters intracerebrally either as a suspension or as dried materials on the surface of steel wires. The animals were observed for 18 months. During this period, animals showing definitive clinical signs were euthanized. Decontamination studies were performed by reprocessing contaminated steel wires with different disinfection agents and procedures before implantation. RESULTS: Pathological prion proteins were able to bind to the steel wires and caused disease after the contaminated wires were implanted in the brains of hamsters. When the contaminated wires were treated with different reprocessing procedures before implantation, infectivity was reduced, which was manifested directly by prolonged survival time of the test animals. These results show that this model can be used as a bioassay to validate reprocessing procedures for surgical instruments. CONCLUSIONS: At the time of submission of this article, only the group of hamsters incubated with wires reprocessed with an alkaline detergent, followed by sterilization with a modified cycle in a hydrogen peroxide gas plasma sterilizer (4 injections), showed no clinical signs of disease and remained alive. Two animals from the group receiving sodium hydroxide followed by autoclaving (at 134 degrees C for 18 minutes) died. Furthermore, the tested enzymatic cleaning agent seemed to have no positive effect.


Asunto(s)
Antiinfecciosos Locales/uso terapéutico , Encéfalo/patología , Descontaminación/métodos , Detergentes/uso terapéutico , Peróxido de Hidrógeno/uso terapéutico , Enfermedades por Prión/prevención & control , Priones/efectos de los fármacos , Animales , Cricetinae , Enfermedades por Prión/transmisión , Priones/patogenicidad , Acero Inoxidable
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA