Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Psychiatry ; 28(9): 3982-3993, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37735502

RESUMEN

Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet ß-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in ß-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina , Proteínas tau/metabolismo , Páncreas/metabolismo , Páncreas/patología , Glucosa/metabolismo , Enfermedad de Alzheimer/metabolismo
2.
Diabetologia ; 63(7): 1333-1348, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32356104

RESUMEN

AIMS/HYPOTHESIS: Reduced insulin secretion results in hyperglycaemia and diabetes involving a complex aetiology that is yet to be fully elucidated. Genetic susceptibility is a key factor in beta cell dysfunction and hyperglycaemia but the responsible genes have not been defined. The Collaborative Cross (CC) is a recombinant inbred mouse panel with diverse genetic backgrounds allowing the identification of complex trait genes that are relevant to human diseases. The aim of this study was to identify and characterise genes associated with hyperglycaemia. METHODS: Using an unbiased genome-wide association study, we examined random blood glucose and insulin sensitivity in 53 genetically unique mouse strains from the CC population. The influences of hyperglycaemia susceptibility quantitative trait loci (QTLs) were investigated by examining glucose tolerance, insulin secretion, pancreatic histology and gene expression in the susceptible mice. Expression of candidate genes and their association with insulin secretion were examined in human islets. Mechanisms underlying reduced insulin secretion were studied in MIN6 cells using RNA interference. RESULTS: Wide variations in blood glucose levels and the related metabolic traits (insulin sensitivity and body weight) were observed in the CC population. We showed that elevated blood glucose in the CC strains was not due to insulin resistance nor obesity but resulted from reduced insulin secretion. This insulin secretory defect was demonstrated to be independent of abnormalities in islet morphology, beta cell mass and pancreatic insulin content. Gene mapping identified the E2f8 (p = 2.19 × 10-15) and Dlg2 loci (p = 3.83 × 10-8) on chromosome 7 to be significantly associated with hyperglycaemia susceptibility. Fine mapping the implicated regions using congenic mice demonstrated that these two loci have independent effects on insulin secretion in vivo. Significantly, our results revealed that increased E2F8 and DLG2 gene expression are correlated with enhanced insulin secretory function in human islets. Furthermore, loss-of-function studies in MIN6 cells demonstrated that E2f8 is involved in insulin secretion through an ATP-sensitive K+ channel-dependent pathway, which leads to a 30% reduction in Abcc8 expression. Similarly, knockdown of Dlg2 gene expression resulted in impaired insulin secretion in response to glucose and non-glucose stimuli. CONCLUSIONS/INTERPRETATION: Collectively, these findings suggest that E2F transcription factor 8 (E2F8) and discs large homologue 2 (DLG2) regulate insulin secretion. The CC resource enables the identification of E2f8 and Dlg2 as novel genes associated with hyperglycaemia due to reduced insulin secretion in pancreatic beta cells. Taken together, our results provide better understanding of the molecular control of insulin secretion and further support the use of the CC resource to identify novel genes relevant to human diseases.


Asunto(s)
Guanilato-Quinasas/metabolismo , Hiperglucemia/metabolismo , Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Represoras/metabolismo , Animales , Glucemia/metabolismo , Línea Celular , Femenino , Estudio de Asociación del Genoma Completo , Guanilato-Quinasas/genética , Hiperglucemia/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Proteínas Represoras/genética
3.
J Biol Chem ; 292(47): 19135-19145, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-28982973

RESUMEN

Insulin resistance is a major risk factor for many diseases. However, its underlying mechanism remains unclear in part because it is triggered by a complex relationship between multiple factors, including genes and the environment. Here, we used metabolomics combined with computational methods to identify factors that classified insulin resistance across individual mice derived from three different mouse strains fed two different diets. Three inbred ILSXISS strains were fed high-fat or chow diets and subjected to metabolic phenotyping and metabolomics analysis of skeletal muscle. There was significant metabolic heterogeneity between strains, diets, and individual animals. Distinct metabolites were changed with insulin resistance, diet, and between strains. Computational analysis revealed 113 metabolites that were correlated with metabolic phenotypes. Using these 113 metabolites, combined with machine learning to segregate mice based on insulin sensitivity, we identified C22:1-CoA, C2-carnitine, and C16-ceramide as the best classifiers. Strikingly, when these three metabolites were combined into one signature, they classified mice based on insulin sensitivity more accurately than each metabolite on its own or other published metabolic signatures. Furthermore, C22:1-CoA was 2.3-fold higher in insulin-resistant mice and correlated significantly with insulin resistance. We have identified a metabolomic signature composed of three functionally unrelated metabolites that accurately predicts whole-body insulin sensitivity across three mouse strains. These data indicate the power of simultaneous analysis of individual, genetic, and environmental variance in mice for identifying novel factors that accurately predict metabolic phenotypes like whole-body insulin sensitivity.


Asunto(s)
Biología Computacional/métodos , Dieta , Resistencia a la Insulina/fisiología , Metaboloma , Metabolómica/métodos , Animales , Masculino , Ratones , Ratones Endogámicos
4.
Nat Metab ; 6(2): 254-272, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263317

RESUMEN

Small extracellular vesicles (EVs) are signalling messengers that regulate inter-tissue communication through delivery of their molecular cargo. Here, we show that liver-derived EVs are acute regulators of whole-body glycaemic control in mice. Liver EV secretion into the circulation is increased in response to hyperglycaemia, resulting in increased glucose effectiveness and insulin secretion through direct inter-organ EV signalling to skeletal muscle and the pancreas, respectively. This acute blood glucose lowering effect occurs in healthy and obese mice with non-alcoholic fatty liver disease, despite marked remodelling of the liver-derived EV proteome in obese mice. The EV-mediated blood glucose lowering effects were recapitulated by administration of liver EVs derived from humans with or without progressive non-alcoholic fatty liver disease, suggesting broad functional conservation of liver EV signalling and potential therapeutic utility. Taken together, this work reveals a mechanism whereby liver EVs act on peripheral tissues via endocrine signalling to restore euglycaemia in the postprandial state.


Asunto(s)
Vesículas Extracelulares , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Control Glucémico , Glucemia , Ratones Obesos
5.
Mol Metab ; 55: 101413, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890851

RESUMEN

OBJECTIVES: Loss of functional ß-cell mass is a key factor contributing to poor glycemic control in advanced type 2 diabetes (T2D). We have previously reported that the inhibition of the neuropeptide Y1 receptor improves the islet transplantation outcome in type 1 diabetes (T1D). The aim of this study was to identify the pathophysiological role of the neuropeptide Y (NPY) system in human T2D and further evaluate the therapeutic potential of using the Y1 receptor antagonist BIBO3304 to improve ß-cell function and survival in T2D. METHODS: The gene expression of the NPY system in human islets from nondiabetic subjects and subjects with T2D was determined and correlated with the stimulation index. The glucose-lowering and ß-cell-protective effects of BIBO3304, a selective orally bioavailable Y1 receptor antagonist, in high-fat diet (HFD)/multiple low-dose streptozotocin (STZ)-induced and genetically obese (db/db) T2D mouse models were assessed. RESULTS: In this study, we identified a more than 2-fold increase in NPY1R and its ligand, NPY mRNA expression in human islets from subjects with T2D, which was significantly associated with reduced insulin secretion. Consistently, the pharmacological inhibition of Y1 receptors by BIBO3304 significantly protected ß cells from dysfunction and death under multiple diabetogenic conditions in islets. In a preclinical study, we demonstrated that the inhibition of Y1 receptors by BIBO3304 led to reduced adiposity and enhanced insulin action in the skeletal muscle. Importantly, the Y1 receptor antagonist BIBO3304 treatment also improved ß-cell function and preserved functional ß-cell mass, thereby resulting in better glycemic control in both HFD/multiple low-dose STZ-induced and db/db T2D mice. CONCLUSIONS: Our results revealed a novel causal link between increased islet NPY-Y1 receptor gene expression and ß-cell dysfunction and failure in human T2D, contributing to the understanding of the pathophysiology of T2D. Furthermore, our results demonstrate that the inhibition of the Y1 receptor by BIBO3304 represents a potential ß-cell-protective therapy for improving functional ß-cell mass and glycemic control in T2D.


Asunto(s)
Células Secretoras de Insulina/fisiología , Receptores de Neuropéptido Y/metabolismo , Animales , Arginina/análogos & derivados , Arginina/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Control Glucémico/métodos , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuropéptido Y/metabolismo , Obesidad/metabolismo , Receptores de Neuropéptido Y/antagonistas & inhibidores , Receptores de Neuropéptido Y/genética
6.
Endocrinology ; 162(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33824978

RESUMEN

The neuropeptide Y (NPY) system has been recognized as one of the most critical molecules in the regulation of energy homeostasis and glucose metabolism. Abnormal levels of NPY have been shown to contribute to the development of metabolic disorders including obesity, cardiovascular diseases, and diabetes. NPY centrally promotes feeding and reduces energy expenditure, while the other family members, peptide YY (PYY) and pancreatic polypeptide (PP), mediate satiety. New evidence has uncovered additional functions for these peptides that go beyond energy expenditure and appetite regulation, indicating a more extensive function in controlling other physiological functions. In this review, we will discuss the role of the NPY system in the regulation of pancreatic ß-cell function and its therapeutic implications for diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/metabolismo , Animales , Arginina/análogos & derivados , Arginina/farmacología , Arginina/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Humanos , Terapia Molecular Dirigida , Receptores de Neuropéptido Y/antagonistas & inhibidores
7.
Mol Metab ; 40: 101040, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32544571

RESUMEN

BACKGROUND: Emerging evidence demonstrates that bone is an endocrine organ capable of influencing multiple physiological and pathological processes through the secretion of hormones. Recent research suggests complex crosstalk between the bone and other metabolic and cardiovascular tissues. It was uncovered that three of these bone-derived hormones-osteocalcin, lipocalin 2, and sclerostin-are involved in the endocrine regulations of cardiometabolic health and play vital roles in the pathophysiological process of developing cardiometabolic syndromes such as type 2 diabetes and cardiovascular disease. Chronic low-grade inflammation is one of the hallmarks of cardiometabolic diseases and a major contributor to disease progression. Novel evidence also implicates important roles of bone-derived hormones in the regulation of chronic inflammation. SCOPE OF REVIEW: In this review, we provide a detailed overview of the physiological and pathological roles of osteocalcin, lipocalin 2, and sclerostin in cardiometabolic health regulation and disease development, with a focus on the modulation of chronic inflammation. MAJOR CONCLUSIONS: Evidence supports that osteocalcin has a protective role in cardiometabolic health, and an increase of lipocalin 2 contributes to the development of cardiometabolic diseases partly via pro-inflammatory effects. The roles of sclerostin appear to be complicated: It exerts pro-adiposity and pro-insulin resistance effects in type 2 diabetes and has an anti-calcification effect during cardiovascular disease. A better understanding of the actions of these bone-derived hormones in the pathophysiology of cardiometabolic diseases will provide crucial insights to help further research develop new therapeutic strategies to treat these diseases.


Asunto(s)
Huesos/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Huesos/enzimología , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hormonas/metabolismo , Humanos , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Lipocalina 2/metabolismo , Obesidad , Osteocalcina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA