Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 9(22): 23892-23902, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854585

RESUMEN

Many reports have presented that in tight formation, the flow mechanism differs from a conventional reservoir, such as molecular diffusion, Pre-Darcy flow behavior, and stress sensitivity. However, for CO2 Huff-n-Puff development, it is a challenge to synthetically research these mechanisms. Considering the above flow mechanisms and offshore engineering background, the development plan optimization becomes a key issue. In this paper, a self-developed simulator that satisfies research needs is introduced. Then, based on experimental results, the simulation is launched to analyze the effects of CO2 diffusion, Huff-n-Puff period, and permeability heterogeneity. The results indicate that molecular diffusion makes a positive contribution to the oil recovery factor. Additionally, for offshore reservoirs, limited to the development cost and CO2 facilities corrosion, when the total Huff-n-Puff time is constant, the ratio of 0.5-1.0 between the Huff period and the Puff period in every cycle performs better. Finally, the greater heterogeneity in permeability is much more favorable for the CO2 Huff-n-Puff because of more intensive transport processes in formation. These different scenarios can increase the understanding of the CO2 Huff-n-Puff in tight oil offshore reservoirs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA