Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 21(7): 3434-3446, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781419

RESUMEN

Chemodynamic therapy (CDT) is a novel antitumor strategy that employs Fenton or Fenton-like reactions to generate highly toxic hydroxyl radical (OH•) from hydrogen peroxide (H2O2) for inducing tumor cell death. However, the antitumor efficacy of the CDT strategy is harshly limited by the redox homeostasis of tumor cells; especially the OH • is easily scavenged by glutathione (GSH) and the intracellular H2O2 level is insufficient in the tumor cells. Herein, we propose the Mn2+-menadione (also known as vitamin K3, MK3) cascade biocatalysis strategy to disrupt the redox homeostasis of tumor cells and induce a OH• storm, resulting in enhanced CDT effect. A nanoliposome encapsulating Mn-MK3 (Mn-MK3@LP) was prepared for the treatment of hepatic tumors in this study. After Mn-MK3@LPs were taken up by tumor cells, menadione could facilitate the production of intracellular H2O2 via redox cycling, and further the cytotoxic OH • burst was induced by Mn2+-mediated Fenton-like reaction. Moreover, high-valent manganese ions were reduced by GSH and the depletion of GSH further disrupted the redox homeostasis of tumor cells, thus achieving synergistically enhanced CDT. Overall, both cellular and animal experiments confirmed that the Mn-MK3@LP cascade biocatalysis nanoliposome exhibited excellent biosafety and tumor suppression efficacy. This study may provide deep insights for developing novel CDT-based strategies for tumor therapy.


Asunto(s)
Glutatión , Peróxido de Hidrógeno , Radical Hidroxilo , Vitamina K 3 , Animales , Radical Hidroxilo/química , Radical Hidroxilo/metabolismo , Humanos , Ratones , Glutatión/metabolismo , Glutatión/química , Vitamina K 3/química , Vitamina K 3/farmacología , Biocatálisis , Línea Celular Tumoral , Manganeso/química , Oxidación-Reducción/efectos de los fármacos , Ratones Endogámicos BALB C , Liposomas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Ratones Desnudos , Células Hep G2 , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas/química , Hierro
2.
Molecules ; 29(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38338471

RESUMEN

Cell cycle-dependent kinase 2 (CDK2) is located downstream of CDK4/6 in the cell cycle and regulates cell entry into S-phase by binding to Cyclin E and hyper-phosphorylating Rb. Proto-oncogene murine double minute 2 (MDM2) is a key negative regulator of p53, which is highly expressed in tumors and plays an important role in tumorigenesis and progression. In this study, we identified a dual inhibitor of CDK2 and MDM2, III-13, which had good selectivity for inhibiting CDK2 activity and significantly reduced MDM2 expression. In vitro results showed that III-13 inhibited proliferation of a wide range of tumor cells, regardless of whether Cyclin E1 (CCNE1) was overexpressed or not. The results of in vivo experiments showed that III-13 significantly inhibited proliferation of tumor cells and did not affect body weight of mice. The results of the druggability evaluation showed that III-13 was characterized by low bioavailability and poor membrane permeability when orally administered, suggesting the necessity of further structural modifications. Therefore, this study provided a lead compound for antitumor drugs, especially those against CCNE1-amplified tumor proliferation.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclo Celular , Antineoplásicos/farmacología , División Celular
3.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675532

RESUMEN

Pyxinol, an active metabolite of ginsenosides in human hepatocytes, exhibits various pharmacological activities. Here, a series of C-3 modified pyxinol derivatives was designed and virtually screened by molecular docking with the key inflammation-related proteins of the nuclear factor kappa B (NF-κB) pathway. Some of the novel derivatives were synthesized to assess their effects in inhibiting the production of nitric oxide (NO) and mitochondrial reactive oxygen species (MtROS) in lipopolysaccharide-triggered RAW264.7 cells. Derivative 2c exhibited the highest NO and MtROS inhibitory activities with low cytotoxicity. Furthermore, 2c decreased the protein levels of interleukin 1ß, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2 and suppressed the activation of NF-κB signaling. Cellular thermal shift assays indicated that 2c could directly bind with p65 and p50 in situ. Molecular docking revealed that 2c's binding to the p65-p50 heterodimer and p50 homodimer was close to their DNA binding sites. In summary, pyxinol derivatives possess potential for development as NF-κB inhibitors.


Asunto(s)
Antiinflamatorios , Simulación del Acoplamiento Molecular , FN-kappa B , Óxido Nítrico , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Ratones , Animales , Células RAW 264.7 , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Lipopolisacáridos/farmacología , Humanos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Relación Estructura-Actividad
4.
Bioorg Chem ; 134: 106467, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933337

RESUMEN

Ginsenosides are a promising group of secondary metabolites for developing anti-inflammatory agents. In this study, Michael acceptor was fused into the aglycone A-ring of protopanoxadiol (PPD)-type ginsenosides (MAAG), the main pharmacophore of ginseng, and its liver metabolites to produce novel derivatives and assess their anti-inflammatory activity in vitro. The structure-activity relationship of MAAG derivatives was assessed based on their NO-inhibition activities. Of these, a 4-nitrobenzylidene derivative of PPD (2a) was the most effective and dose-dependently inhibited the release of proinflammatory cytokines. Further studies indicated that 2a-induced downregulation on lipopolysaccharide (LPS)-induced iNOS protein expression and cytokine release may be related to its inhibitory effect on MAPK and NF-κB signaling pathways. Importantly, 2a almost completely inhibited LPS-induced production of mitochondrial reactive oxygen species (mtROS) and LPS-induced NLRP3 upregulation. This inhibition was higher than that by hydrocortisone sodium succinate, a glucocorticoid drug. Overall, the fusion of Michael acceptors into the aglycone of ginsenosides greatly enhanced the anti-inflammatory activities of the derivatives, and 2a alleviated inflammation considerably. These findings could be attributed to the inhibition of LPS-induced mtROS to block abnormal activation of the NLRP3 pathway.


Asunto(s)
Ginsenósidos , Proteína con Dominio Pirina 3 de la Familia NLR , Ginsenósidos/farmacología , Ginsenósidos/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Transducción de Señal , Citocinas/metabolismo
5.
J Sep Sci ; 46(10): e2200825, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36892410

RESUMEN

The molecular imprinting technique has aroused great interest in preparing novel stationary phases, and the resulting materials named molecularly imprinted polymers coated silica packing materials exhibit good performance in separating diverse analytes based on their good characteristics (including high selectivity, simple synthesis, and good chemical stability). To date, mono-template is commonly used in synthesizing molecularly imprinted polymers-based stationary phases. The resulting materials always own the disadvantages of low column efficiency and restricted analytes, and the price of ginsenosides with high purity was very high. In this study, to overcome the weaknesses of molecularly imprinted polymers-based stationary phases mentioned above, the multi-templates (total saponins of folium ginseng) strategy was used to prepare ginsenosides imprinted polymer-based stationary phase. The resulting ginsenosides imprinted polymer-coated silica stationary phase has a good spherical shape and suitable pore structures. Additionally, the total saponins of folium ginseng were cheaper than other kinds of ginsenosides. Moreover, the ginsenosides imprinted polymer-coated silica stationary phase-packed column performed well in the separation of ginsenosides, nucleosides, and sulfonamides. The ginsenosides imprinted polymer-coated silica stationary phase possesses good reproducibility, repeatability, and stability for seven days. Therefore, a multi-templates strategy for synthesizing the ginsenosides imprinted polymer-coated silica stationary phase is considered in the future.


Asunto(s)
Ginsenósidos , Saponinas , Ginsenósidos/química , Polímeros/química , Polímeros Impresos Molecularmente , Reproducibilidad de los Resultados , Cromatografía Líquida de Alta Presión/métodos , Dióxido de Silicio/química
6.
Biomed Chromatogr ; 37(5): e5611, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36840461

RESUMEN

Biflavonoids are naturally occurring compounds consisting of two flavonoid moieties that have received substantial attention from researchers. Although many kinds of biflavonoids are typically distributed in Selaginella uncinata with hypoglycemic effect, their anti-α-glucosidase activities are not yet clear. In this study, a ligand fishing strategy for fast screening of α-glucosidase inhibitors from S. uncinata was proposed. α-Glucosidase was first immobilized on Fe3 O4 magnetic nanoparticles (MNPs) and then the α-glucosidase-functionalized MNPs were incubated with crude extracts of S. uncinata to fish out the ligands. Furthermore, considering the similarity and easy confusion of the structures of biflavonoids, the fragmentation patterns of different types of biflavonoids were studied. Based on this, 11 biflavonoids ligands with α-glucosidase inhibitory activities were accurately and quickly identified from S. uncinata with ultra-high-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry. Furthermore, these ligands were confirmed to be potential inhibitors through the in vitro inhibitory assay and molecular docking.


Asunto(s)
Biflavonoides , Selaginellaceae , Animales , alfa-Glucosidasas , Biflavonoides/farmacología , Biflavonoides/química , Cromatografía Líquida de Alta Presión/métodos , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Ligandos , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Selaginellaceae/química , Espectrometría de Masas en Tándem/métodos
7.
Molecules ; 28(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770974

RESUMEN

Pyxinol skeleton is a promising framework of anti-inflammatory agents formed in the human liver from 20S-protopanaxadiol, the main active aglycone of ginsenosides. In the present study, a new series of amino acid-containing derivatives were produced from 12-dehydropyxinol, a pyxinol oxidation metabolite, and its anti-inflammatory activity was assessed using an NO inhibition assay. Interestingly, the dehydrogenation at C-12 of pyxinol derivatives improved their potency greatly. Furthermore, half of the derivatives exhibited better NO inhibitory activity than hydrocortisone sodium succinate, a glucocorticoid drug. The structure-activity relationship analysis indicated that the kinds of amino acid residues and their hydrophilicity influenced the activity to a great extent, as did R/S stereochemistry at C-24. Of the various derivatives, 5c with an N-Boc-protected phenylalanine residue showed the highest NO inhibitory activity and relatively low cytotoxicity. Moreover, derivative 5c could dose-dependently suppress iNOS, IL-1ß, and TNF-α via the MAPK and NF-κB pathways, but not the GR pathway. Overall, pyxinol derivatives hold potential for application as anti-inflammatory agents.


Asunto(s)
Antiinflamatorios , Ginsenósidos , Humanos , Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Relación Estructura-Actividad , Ginsenósidos/farmacología , Lipopolisacáridos
8.
Molecules ; 29(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38202741

RESUMEN

Acute kidney injury (AKI) and chronic kidney disease (CKD) have become public health problems due to high morbidity and mortality. Currently, drugs recommended for patients with AKI or CKD are extremely limited, and candidates based on a new mechanism need to be explored. 84-B10 is a novel 3-phenylglutaric acid derivative that can activate the mitochondrial protease, Lon protease 1 (LONP1), and may protect against cisplatin-induced AKI and unilateral ureteral obstruction- or 5/6 nephrectomy [5/6Nx]-induced CKD model. Preclinical studies have shown that 84-B10 has a good therapeutic effect, low toxicity, and is a good prospect for further development. In the present study, the UHPLC-MS/MS method was first validated then applied to the pharmacokinetic study and tissue distribution of 84-B10 in rats. Physicochemical properties of 84-B10 were then acquired in silico. Based on these physicochemical and integral physiological parameters, a physiological based pharmacokinetic (PBPK) model was developed using the PK-Sim platform. The fitting accuracy was estimated with the obtained experimental data. Subsequently, the validated model was employed to predict the pharmacokinetic profiles in healthy and chronic kidney injury patients to evaluate potential clinical outcomes. Cmax in CKD patients was about 3250 ng/mL after a single dose of 84-B10 (0.41 mg/kg), and Cmax,ss was 1360 ng/mL after multiple doses. This study may serve in clinical dosage setting in the future.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Humanos , Animales , Ratas , Espectrometría de Masas en Tándem , Lesión Renal Aguda/tratamiento farmacológico , Insuficiencia Renal Crónica/tratamiento farmacológico , Cisplatino , Endopeptidasas , Proteínas Mitocondriales , Proteasas ATP-Dependientes
9.
Entropy (Basel) ; 25(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628227

RESUMEN

Designing reasonable MAC scheduling strategies is an important means to ensure transmission quality in wireless sensor networks (WSNs). When there exist multiple available routes from the source to the destination, it is necessary to combine a data traffic allocation mechanism and design a multi-path MAC scheduling scheme in order to ensure QoS. This paper develops a multi-path resource allocation method for multi-channel wireless sensor networks, which uses random-access technology to complete MAC scheduling and selects the transmission path for each packet according to the probability. Through theoretical analysis and simulation experiments, it can be found that the proposed strategy can provide a reliable throughput capacity region. Meanwhile, due to the use of random-access technology, the computational complexity of the proposed algorithm can be independent of the number of links and channels.

10.
Molecules ; 27(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684413

RESUMEN

As for ligand fishing, the current immobilization approaches have some potential drawbacks such as the small protein loading capacity and difficult recycle process. The core-shell metal-organic frameworks composite (Fe3O4-COOH@UiO-66-NH2), which exhibited both magnetic characteristics and large specific surface area, was herein fabricated and used as magnetic support for the covalent immobilization of porcine pancreatic lipase (PPL). The resultant composite Fe3O4-COOH@UiO-66-NH2@PPL manifested a high loading capacity (247.8 mg/g) and relative activity recovery (101.5%). In addition, PPL exhibited enhanced tolerance to temperature and pH after immobilization. Then, the composite Fe3O4-COOH@UiO-66-NH2@PPL was incubated with the extract of Scutellaria baicalensis to fish out the ligands. Eight lipase inhibitors were obtained and identified by UPLC-Q-TOF-MS/MS. The feasibility of the method was further confirmed through an in vitro inhibitory assay and molecular docking. The proposed ligand fishing technique based on Fe3O4-COOH@UiO-66-NH2@PPL provided a feasible, selective, and effective platform for discovering enzyme inhibitors from natural products.


Asunto(s)
Lipasa , Estructuras Metalorgánicas , Animales , Enzimas Inmovilizadas/química , Ligandos , Lipasa/química , Fenómenos Magnéticos , Estructuras Metalorgánicas/química , Simulación del Acoplamiento Molecular , Ácidos Ftálicos , Extractos Vegetales/farmacología , Scutellaria baicalensis , Porcinos , Espectrometría de Masas en Tándem
11.
Entropy (Basel) ; 24(9)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36141131

RESUMEN

In wireless networks, MAC scheduling methods can be divided into two types according to the implementation model: centralized and distributed scheduling. By reasonably designing MAC scheduling policies, both centralized and distributed schedulers can ensure a reliable throughput capacity region, i.e., realizing throughput-guaranteed. However, it can be found that some existing throughput-guaranteed scheduling schemes cannot further ensure bounded end-to-end average delay, and the reason for this phenomenon has not been deeply analyzed. In practical communication networks, throughput and delay are equally important. Based on this idea, the existing MAC scheduling strategies are investigated systematically in this paper from two aspects of throughput and delay, and their performances are evaluated and compared through both theoretical analysis and simulation experiments. The work of this paper provides a theoretical basis for the improvement of MAC scheduling technology in the next-generation wireless networks.

12.
Sensors (Basel) ; 20(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255739

RESUMEN

High-speed mobility and heavy-load traffic in mobile Ad hoc networks (MANET) may result in frequent topology changes and packet loss. To guarantee packet delivery, a novel stable backup routing (SBR) scheme is put forward in this paper, which consists of the establishment of backup routes and route maintenance. In SBR, backup routes are set up by overhearing MAC signals, and the bit error rate is considered in path selection for improving stability. To repair broken links effectively and reasonably, qualified backup routes are classified into three categories with different priorities, based on which the relevant nodes decide how to reconstruct the forwarding path. Extensive simulations demonstrate that our proposed method outperforms other comparable backup routing mechanisms in terms of packet delivery ratio, average delay and control overhead.

13.
Toxicol Appl Pharmacol ; 341: 98-105, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29408042

RESUMEN

Multidrug resistance (MDR) is a serious obstacle encountered in cancer treatment, in which the overexpression of P-glycoprotein (P-gp) plays an important role. Here, a novel α-hederagenin derivative, designated H6, was designed, synthesized and evaluated for its ability to reverse MDR. Our results showed that H6 could sensitize KBV and MCF7/T cells to paclitaxel and vincristine. Meanwhile, H6 could increase both rhodamine 123 and paclitaxel accumulation in MDR cells without affecting the expression of P-gp. Interestingly, siRNA knockdown of MDR1 further sensitized the cytotoxic activity of paclitaxel when co-administrated with H6. In addition, H6 could directly stimulate P-gp ATPase activity in vitro. Importantly, H6 enhanced the efficacy of paclitaxel against KBV cancer cell-derived xenograft tumors in nude mice. Finally, H6 showed high binding affinity with P-gp with a high docking score. Overall, we show H6 is a novel and potent MDR reversal agent, which has the potential to be administered in combination with conventional anticancer drugs.


Asunto(s)
Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Animales , Resistencia a Múltiples Medicamentos/fisiología , Resistencia a Antineoplásicos/fisiología , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
14.
Org Biomol Chem ; 13(1): 55-8, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25350723

RESUMEN

12-O-ß-D-Glucopyranosyljasmonic acid (JAG, 1) induces nyctinastic leaf-folding of Samanea saman. The SAR studies of 1 revealed the unique role of its glycone moiety. Biological activity and the target affinity of 1 were affected by the stereochemistry of the glycone moiety. JAG belongs to a unique class of ligands in which the structure of the glycone moiety is involved in the molecular recognition by the target protein.


Asunto(s)
Ciclopentanos/química , Glucósidos/química , Glucósidos/metabolismo , Oxilipinas/química , Albizzia/química , Conformación de Carbohidratos , Modelos Moleculares , Estereoisomerismo , Relación Estructura-Actividad , Termodinámica
15.
Food Chem ; 442: 138458, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38278103

RESUMEN

Malachite green (MG) possesses high toxicity, therefore, the detection of MG in fish tissues is of vital importance. A novel core-shell MIPs doped CdTe quantum dots coated silica nanoparticles (CdTe-MIP/SiO2 NPs) were synthesized via a simple one-pot strategy. The materials were characterized carefully. The resulting CdTe-MIP/SiO2 NPs were coated on the thin layer chromatography plate, and coupled with miniaturized fluorimeter for fluorescence detection of MG in fish samples. The resulting CdTe-MIP/SiO2 NPs based system possessed good linearity (0.01 âˆ¼ 20 µmol/L), high recoveries (98.36 %∼101.45 %) and low detection limit (3.7 nmol/L) for MG. Furthermore, CdTe-MIP/SiO2 NPs based system were employed to measure fish samples spiked with MG, meanwhile, HPLC was utilized to evaluate the accuracy and reliability. And the paired t-test was conducted to evaluate differences between fluorescence method and HPLC, P > 0.05 means no significant difference was observed, the results demonstrated that both fluorescence method and HPLC are suitable for MG analysis.


Asunto(s)
Compuestos de Cadmio , Impresión Molecular , Puntos Cuánticos , Colorantes de Rosanilina , Animales , Polímeros Impresos Molecularmente , Puntos Cuánticos/química , Compuestos de Cadmio/química , Dióxido de Silicio/química , Reproducibilidad de los Resultados , Telurio/química , Impresión Molecular/métodos , Peces , Límite de Detección
16.
Nanomaterials (Basel) ; 14(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38607179

RESUMEN

Rheumatoid arthritis (RA) severely affects patients' quality of life and is commonly treated with glucocorticosteroids injections, like dexamethasone, which may have side effects. This study aimed to create a novel low dose of twin-drug hydrogel containing dexamethasone and diclofenac and explore its potential as a drug delivery system for an enhanced anti-inflammatory effect. Its characterization involved rheology, transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Furthermore, the hydrogel demonstrated thixotropic properties. The hydrogel exhibited no cytotoxicity against RAW 264.7 macrophages. Furthermore, the hydrogel demonstrated a significant anti-inflammatory efficacy by effectively downregulating the levels of NO, TNF-α, and IL-6 in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The co-delivery approach, when intra-articularly injected in adjuvant-induced arthritis (AIA) rats, significantly alleviated chronic inflammation leading to reduced synovitis, delayed bone erosion onset, and the downregulation of inflammatory cytokines. The biocompatibility and adverse effect evaluation indicated good biological safety. Furthermore, the hydrogel demonstrated efficacy in reducing NF-κB nuclear translocation in LPS-induced RAW 264.7 macrophages and inhibited p-NF-kB, COX-2, and iNOS expression both in RAW 264.7 macrophages and the joints of AIA rats. In conclusion, the findings indicate that the hydrogel possesses potent anti-inflammatory activity, which effectively addresses the limitations associated with free forms. It presents a promising therapeutic strategy for the management of RA.

17.
Eur J Med Chem ; 272: 116466, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704938

RESUMEN

P-glycoprotein (Pgp) modulators are promising agents for overcoming multidrug resistance (MDR) in cancer chemotherapy. In this study, via structural optimization of our lead compound S54 (nonsubstrate allosteric inhibitor of Pgp), 29 novel pyxinol amide derivatives bearing an aliphatic heterocycle were designed, synthesized, and screened for MDR reversal activity in KBV cells. Unlike S54, these active derivatives were shown to transport substrates of Pgp. The most potent derivative 4c exhibited promising MDR reversal activity (IC50 of paclitaxel = 8.80 ± 0.56 nM, reversal fold = 211.8), which was slightly better than that of third-generation Pgp modulator tariquidar (IC50 of paclitaxel = 9.02 ± 0.35 nM, reversal fold = 206.6). Moreover, the cytotoxicity of this derivative was 8-fold lower than that of tariquidar in human normal HK-2 cells. Furthermore, 4c blocked the efflux function of Pgp and displayed high selectivity for Pgp but had no effect on its expression and distribution. Molecular docking revealed that 4c bound preferentially to the drug-binding domain of Pgp. Overall, 4c is a promising lead compound for developing Pgp modulators.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Amidas , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Simulación del Acoplamiento Molecular , Humanos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Relación Estructura-Actividad , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos
18.
ACS Chem Biol ; 18(1): 12-17, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36547375

RESUMEN

Host selective toxins (HSTs) are small molecule phytotoxins that control the pathogenicity of microbes in the host plant, but the mechanistic basis for their selectivity is unknown. We developed AcIle-EDA (Aclle-(+)-9,10-epoxy-8-hydroxy-9-methyldeca-trienoic acid) as a molecular probe of an HST, examined its mode of action in genetically modified Oryza sativa, and found it to trigger ROS production through NADPH-oxidase OsRBOHB, causing the emergence of pathogenic traits. This result strongly suggests that AcIle-EDA functions through the hijacking of the plant-microbe interaction system.


Asunto(s)
Micotoxinas , Plantas , Virulencia
19.
Environ Sci Pollut Res Int ; 30(13): 38832-38852, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36586024

RESUMEN

The world is facing the challenges of climate change and energy structure adjustments. The role of digital finance, a new branch of business that combines digital technology and traditional financial products, in reducing global carbon emissions needs to be studied. This paper uses panel data on 280 cities in China from 2011 to 2019 to empirically examine the efficacy of digital finance for governing carbon emission reductions and the mechanism by which it does so. The results show that (1) digital finance can facilitate carbon emission reductions and help reduce carbon emission intensity within regions; (2) digital finance helps promote the rational allocation of resources and alleviates factor distortions by encouraging firms to rationally use their own factor endowments so as to reduce carbon emission intensity, which holds robustly after considering the endogenous issues such as possibly omitting variables and collinearity; and (3) differences in geographical location, the vitality of regional innovation and entrepreneurship, regional willingness to protect the environment, and environmental protection levels lead to heterogeneity in the effect of digital finance on carbon emission intensity. Therefore, it is necessary to vigorously develop digital finance as a long-term tool for carbon governance.


Asunto(s)
Carbono , China , Ciudades , Cambio Climático , Desarrollo Económico
20.
Food Funct ; 14(4): 1952-1961, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36723126

RESUMEN

In this study, a ligand fishing technique based on magnetic mesoporous silicon was established and used to screen α-glucosidase inhibitors from Pueraria lobata. To clarify quantity-activity relationships in a holistic view, the knock-out/knock-in technology was used to analyse the interactions of several active constituents in P. lobata. Magnetic mesoporous silicon with a large specific surface area and better biocompatibility was synthesised. Subsequently, α-glucosidase was immobilised on -NH2-modified magnetic mesoporous silicon, and the compounds in the crude extract of P. lobata were screened across enzyme binding. The structures of the ligands were elucidated using UPLC-Q-TOF-MS/MS, and their activities were verified by knock-out/knock-in experiments and molecular docking. Daidzein and puerarin showed α-glucosidase inhibitory activities with an IC50 of 0.088 ± 0.003 mg mL-1 and 0.414 ± 0.005 mg mL-1, respectively. Among them, puerarin, which accounted for more than 40% of the total content, showed synergistic effects with other components and was the main contributor to the α-glucosidase inhibitory activity of P. lobata.


Asunto(s)
Isoflavonas , Pueraria , alfa-Glucosidasas/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Isoflavonas/farmacología , Ligandos , Fenómenos Magnéticos , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Pueraria/química , Saccharomyces cerevisiae/metabolismo , Silicio , Espectrometría de Masas en Tándem , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA