Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Appl Toxicol ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164216

RESUMEN

The coking industry in China is the largest coke supplier in the world. Contaminated soil in industrial areas poses a serious threat to human and ecosystems. Most of the studies investigated the toxicity of soil from coking plant on soil microorganisms, while the toxic effects of soil leaching liquor on aquatics are limited. In this study, the composition of soil leaching liquor from a coking plant in Taiyuan (TY) was analyzed, and the developmental toxicity on zebrafish was evaluated. The results showed that a total of 91 polycyclic aromatic hydrocarbons were detected in the leaching liquor, followed by phenols and benzene series. The leaching liquor induced developmental impairment in zebrafish larvae, including delayed incubation, deficits in locomotor behavior, vascular and cardiac dysplasia, and impaired neurodevelopment. The results of metabolomics analysis showed that TY soil leaching liquor induced significant metabolic profile disturbances in zebrafish embryos/larvae. The developmental toxicity of the leaching liquor metabolic disorders may be associated with the leaching liquor-induced abnormalities in zebrafish embryonic development. Metabolic pathways were identified by arginine and proline metabolism, phosphotransferase system, starch and sucrose metabolism, steroid biosynthesis, beta-alanine metabolism, and nucleotide metabolism pathways.

2.
Org Biomol Chem ; 20(23): 4815-4825, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35648132

RESUMEN

A copper-catalyzed, pyrimidine directed regioselective C-H chlorination of indoles with para-toluenesulfonyl chloride (TsCl) has been developed. The reactions proceeded smoothly in the presence of 20 mol% of Cu(OAc)2 as the catalyst and TsCl as the chlorine source, delivering C2-chlorinated indoles with structural diversity in moderate to excellent yields. Mechanistic studies suggested that single electron transfer (SET) from Cu(II) to TsCl accompanied by the release of the p-toluenesulfonyl radical and the related Cu(III)Cl species might be involved in the reactions.


Asunto(s)
Cobre , Halogenación , Catálisis , Cloruros , Cobre/química , Indoles/química
3.
Mol Cancer ; 17(1): 90, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29764424

RESUMEN

BACKGROUND: Abnormal metabolism, including abnormal lipid metabolism, is a hallmark of cancer cells. Some studies have demonstrated that the lipogenic pathway might promote the development of hepatocellular carcinoma (HCC). However, the role of the lipolytic pathway in HCC has not been elucidated. METHODS: We compared levels of adipose triglyceride lipase (ATGL) in human HCC and healthy liver tissues by real time PCR, western blot and immunohistochemistry. We measured diacylglycerol(DAG) and free fatty acid (FFA) levels in HCC cells driven by the NEAT1-ATGL axis and in HCC tissues. We also assessed the effects of ATGL, DAG, FFA, and NEAT1 on HCC cells proliferation in vitro and in an orthotopic xenograft HCC mouse model. We also performed a luciferase reporter assay to investigate the interaction between NEAT1/ATGL and miR-124-3p. RESULTS: We found that the lipolytic enzyme, ATGL is highly expressed in human HCC tissues and predicts poor prognosis. We also found that high levels of DAG and FFA are present in HCC tissues. Furthermore, the lncRNA-NEAT1 was found to modulate ATGL expression and disrupt lipolysis in HCC cells via ATGL. Notably, ATGL and its products, DAG and FFA, were shown to be responsible for NEAT1-mediated HCC cell growth. NEAT1 regulated ATGL expression by binding miR-124-3p. Additionally, NEAT1 knockdown attenuated HCC cell growth through miR-124-3p/ATGL/DAG+FFA/PPARα signaling. CONCLUSION: Our results reveal that NEAT1-modulates abnormal lipolysis via ATGL to drive HCC proliferation.


Asunto(s)
Carcinoma Hepatocelular/patología , Diglicéridos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Lipasa/genética , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Lipólisis , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , MicroARNs/genética , Trasplante de Neoplasias
4.
Med Sci Monit ; 24: 8224-8231, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30439866

RESUMEN

BACKGROUND As laparoscopic liver resection is becoming a commonly used method for hepatic surgery, postoperative pain management is emerging as one of the trickiest problems after surgery. The ideal method of pain management is controversial and the optimal strategy for postoperative pain management after surgery remains unclear. The present study evaluated the postoperative analgesic efficacy of parecoxib and fentanyl, and the benefit of a new intravenous parecoxib infusion pump with patient-controlled analgesia after laparoscopic liver resection. MATERIAL AND METHODS This controlled, prospective, randomized, double-blind trial compared VAS scores among 3 groups of patients: a fentanyl group (FEN group) using a fentanyl citrate pump, an intravenous parecoxib group (IVPA group) receiving intravenous parecoxib, and a parecoxib pump group (PUPA group) receiving parecoxib sodium by analgesia pump. We enrolled 124 patients planned for laparoscopic liver resection. The primary outcome was VAS score at rest and with movement. Secondary outcomes were adverse effects (including nausea), sedation, pruritus, and quality of life. RESULTS For all time intervals, the VAS scores were significantly lower in the PUPA group. VAS scores at rest and with movement in the PUPA group were the lowest among the 3 groups, while the scores in the FEN group were the highest. More adverse effects were detected in the FEN group, and no significant differences in adverse effects were found between the intravenous group and the parecoxib pump group. CONCLUSIONS Use of the intravenous infusion parecoxib pump for patient-controlled analgesia provides superior analgesic efficacy and fewer adverse effects for patients after laparoscopic liver resection.


Asunto(s)
Analgesia Controlada por el Paciente/métodos , Analgésicos Opioides/administración & dosificación , Fentanilo/administración & dosificación , Hepatectomía/métodos , Isoxazoles/administración & dosificación , Manejo del Dolor/métodos , Adulto , Método Doble Ciego , Femenino , Humanos , Bombas de Infusión , Infusiones Intravenosas , Laparoscopía/métodos , Hígado/cirugía , Masculino , Persona de Mediana Edad , Dolor Postoperatorio/tratamiento farmacológico , Estudios Prospectivos
5.
Hepatology ; 64(5): 1606-1622, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27533020

RESUMEN

Increasing evidence supports a role for N-myc downstream-regulated gene 2 (NDRG2) deregulation in tumorigenesis. We investigated the roles and mechanisms of NDRG2 in human cholangiocarcinoma (CCA) progression. In the present study, expression of NDRG2, microRNA (miR)-181c and leukemia inhibitory factor (LIF) in human CCA and adjacent nontumor tissues were examined. The effects of NDRG2 on CCA tumor growth and metastasis were determined both in vivo and in vitro. The role of the NDRG2/LIF/miR-181c signaling pathway in cholangiocarcinogenesis and metastasis were investigated both in vivo and in vitro. The results showed that human CCA tissues exhibited decreased levels of NDRG2 and increased levels of miR-181c and LIF compared with nontumor tissues. NDRG2 could inhibit CCA cell proliferation, chemoresistance, and metastasis both in vitro and in vivo. We found that NDRG2 is a target gene of miR-181c, and the down-regulation of NDRG2 was attributed to miR-181c overexpression in CCA. Furthermore, miR-181c can be activated by LIF treatment, whereas NDRG2 could inhibit LIF transcription through disrupting the binding between Smad, small mothers against decapentaplegic complex and LIF promoter. Down-regulation of NDRG2 and overexpression of miR-181c or LIF are significantly associated with a poorer overall survival (OS) in CCA patients. Finally, we found that a combination of NDRG2, miR-181c, and LIF expression is a strong predictor of prognosis in CCA patients. CONCLUSION: These results establish the counteraction between NDRG2 and LIF/miR-181c as a key mechanism that regulates cholangiocarcinogenesis and metastasis. Our results elucidated a novel pathway in NDRG2-mediated inhibition of cholangiocarcinogenesis and metastasis and suggest new therapeutic targets, including NDRG2, LIF, miR-181c, and transforming growth factor beta, in CCA prevention and treatment. (Hepatology 2016;64:1606-1622).


Asunto(s)
Neoplasias de los Conductos Biliares/etiología , Colangiocarcinoma/etiología , Retroalimentación Fisiológica , Factor Inhibidor de Leucemia/fisiología , MicroARNs/fisiología , Proteínas/fisiología , Proteínas Supresoras de Tumor/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Transducción de Señal
6.
Hepatology ; 60(5): 1659-73, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25042864

RESUMEN

UNLABELLED: Hepatocellular carcinoma (HCC) is a highly vascularized tumor with frequent extrahepatic metastasis. Active angiogenesis and metastasis are responsible for rapid recurrence and poor survival of HCC. However, the mechanisms that contribute to tumor metastasis remain unclear. Here we evaluate the effects of ATPase inhibitory factor 1 (IF1), an inhibitor of the mitochondrial H(+)-adenosine triphosphate (ATP) synthase, on HCC angiogenesis and metastasis. We found that increased expression of IF1 in human HCC predicts poor survival and disease recurrence after surgery. Patients with HCC who have large tumors, with vascular invasion and metastasis, expressed high levels of IF1. Invasive tumors overexpressing IF1 were featured by active epithelial-mesenchymal transition (EMT) and increased angiogenesis, whereas silencing IF1 expression attenuated EMT and invasion of HCC cells. Mechanistically, IF1 promoted Snai1 and vascular endothelial growth factor (VEGF) expression by way of activating nuclear factor kappa B (NF-κB) signaling, which depended on the binding of tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1) to NF-κB-inducing kinase (NIK) and the disruption of NIK association with the TRAF2-cIAP2 complex. Suppression of the NF-κB pathway interfered with IF1-mediated EMT and invasion. Chromatin immunoprecipitation assay showed that NF-κB can bind to the Snai1 promoter and trigger its transcription. IF1 was directly transcribed by NF-κB, thus forming a positive feedback signaling loop. There was a significant correlation between IF1 expression and pp65 levels in a cohort of HCC biopsies, and the combination of these two parameters was a more powerful predictor of poor prognosis. CONCLUSION: IF1 promotes HCC angiogenesis and metastasis by up-regulation of Snai1 and VEGF transcription, thereby providing new insight into HCC progression and IF1 function. (Hepatology 2014;60:1659-1673).


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , FN-kappa B/metabolismo , Neovascularización Patológica/metabolismo , Proteínas/metabolismo , Animales , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , China/epidemiología , Estudios de Cohortes , Transición Epitelial-Mesenquimal , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/secundario , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Metástasis de la Neoplasia , Fosfoproteínas , Pronóstico , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de la Matriz Viral , Proteína Inhibidora ATPasa
7.
Artículo en Inglés | MEDLINE | ID: mdl-37951285

RESUMEN

Zearalenone (ZEN), a ubiquitous mycotoxin that widely occurs in grain and foodstuff may induce serious toxic effects after accumulation in vivo. Melanoidins (MLDs) have shown multiple bio-functional properties such as antioxidant, anti-bacterial and prebiotic activities. Black garlic exhibits several advantages over fresh garlic related to health improvement. In this study, the alleviative effects of black garlic MLDs on ZEN-induced toxicity and the potential mechanisms were studied using zebrafish embryonic developmental model. The results showed that MLDs restored the ZEN-induced adverse influences on zebrafish embryonic development, including delay in hatching time, morphological abnormality and the impairment of nervous development. Further studies showed that MLDs significantly inhibited the ZEN-induced production of reactive oxygen species (ROS) and enhanced the intrinsic antioxidant ability by increasing the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) and the content of glutathione (GSH). In addition, co-exposure of MLDs significantly inhibited the ZEN-stimulated cellular apoptosis in zebrafish larvae through down-regulation of pro-apoptotic genes of bax, caspase-3 and caspase-9 and up-regulation of anti-apoptotic gene bcl-2. Moreover, MLDs inhibited the in vivo accumulation of ZEN in zebrafish larvae. To sum up, MLDs attenuated the ZEN-induced zebrafish embryonic developmental toxicity through suppression of the oxidative stress and intervention on mitochondria apoptosis pathway as well as inhibiting the absorption of ZEN in zebrafish embryos/larvae. The results suggest that black garlic MLDs have potential to be used as a functional ingredient against the adverse effects of exogenous toxins.


Asunto(s)
Ajo , Zearalenona , Animales , Antioxidantes/farmacología , Zearalenona/toxicidad , Pez Cebra , Estrés Oxidativo , Glutatión , Desarrollo Embrionario , Apoptosis
8.
Artículo en Inglés | MEDLINE | ID: mdl-39352637

RESUMEN

In 2020, China pledged carbon reduction targets at the United Nations: peaking emissions by 2030 and achieving carbon neutrality by 2060. Research and prediction of regional carbon emissions are crucial for achieving these dual carbon targets across China. This study aims to construct an indicator system for regional carbon emissions and utilize it for forecasting. Analyzing carbon emission data from a specific area in Hainan Province from 2010 to 2020, we established an indicator system. Using the interpretable SHAP model, we assessed indicator importance and trends. Employing an improved STIRPAT model with partial least squares regression to address multicollinearity among influencing factors, we developed a carbon emission prediction model. Based on this, we forecasted carbon emissions from 2021 to 2060 in the specified area under three scenarios: natural, baseline, and ambitious. The results show that the growth of resident population and per capita GDP has the most significant promoting effect on carbon emissions in the region while optimizing industrial structure, energy consumption structure, and reducing energy intensity will inhibit carbon emissions. The prediction results indicate that in the natural scenario, regional carbon emissions will peak in 2035, and achieving carbon neutrality by 2060 is not feasible, while the baseline scenario and ambitious scenario can achieve the dual carbon targets on time or even earlier. The research results of this article provide a reference method for predicting carbon emissions in other regions and a guide for future regional emission reduction.

9.
Environ Sci Pollut Res Int ; 31(22): 32901-32913, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38668944

RESUMEN

To investigate the influence of COVID-19 lockdown measures on PM2.5 and its chemical components in Shenyang, PM2.5 samples were continuously collected from January 1 to May 31, 2020. The samples were then analyzed for water-soluble inorganic ions, metal elements, organic carbon, and elemental carbon. The findings indicated a significant decrease in PM2.5 and its various chemical components during the lockdown period, compared to pre-lockdown levels (p < 0.05), suggesting a substantial improvement in air quality. Water-soluble inorganic ions (WSIIs) were identified as the primary contributors to PM2.5, accounting for 47% before the lockdown, 46% during the lockdown, and 37% after the lockdown. Ionic balance analysis revealed that PM2.5 exhibited neutral, weakly alkaline, and alkaline characteristics before, during, and after the lockdown, respectively. NH4+ was identified as the main balancing cation and was predominantly present in the form of NH4NO3 in the absence of complete neutralization of SO42- and NO3-. Moreover, the higher sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR), along with the significant increase in PM2.5/EC, suggested intense secondary transformation during the lockdown period. The elevated OC/EC ratio during the lockdown period implied higher secondary organic carbon (SOC), and the notable increase in SOC/EC ratio indicated a significant secondary transformation of total carbon. The enrichment factor (EF) results revealed that during the lockdown, 9 metal elements (As, Sn, Pb, Zn, Cu, Sb, Ag, Cd, and Se) were substantially impacted by anthropogenic emissions. Source analysis of PMF was employed to identify the sources of PM2.5 in Shenyang during the study period, and the analysis identified six factors: secondary sulfate and vehicle emissions, catering fume sources, secondary nitrate and coal combustion emissions, dust sources, biomass combustion, and industrial emissions, with secondary sulfate and vehicle emissions and catering fume sources contributing the most to PM2.5.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Monitoreo del Ambiente , Material Particulado , Material Particulado/análisis , China , Contaminantes Atmosféricos/análisis , COVID-19/epidemiología , Contaminación del Aire , Ciudades , Humanos
10.
Front Cardiovasc Med ; 11: 1354517, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481955

RESUMEN

Objective: This study aims to review the application of deep learning techniques in the imaging diagnosis and treatment of aortic aneurysm (AA), focusing on screening, diagnosis, lesion segmentation, surgical assistance, and prognosis prediction. Methods: A comprehensive literature review was conducted, analyzing studies that utilized deep learning models such as Convolutional Neural Networks (CNNs) in various aspects of AA management. The review covered applications in screening, segmentation, surgical planning, and prognosis prediction, with a focus on how these models improve diagnosis and treatment outcomes. Results: Deep learning models demonstrated significant advancements in AA management. For screening and diagnosis, models like ResNet achieved high accuracy in identifying AA in non-contrast CT scans. In segmentation, techniques like U-Net provided precise measurements of aneurysm size and volume, crucial for surgical planning. Deep learning also assisted in surgical procedures by accurately predicting stent placement and postoperative complications. Furthermore, models were able to predict AA progression and patient prognosis with high accuracy. Conclusion: Deep learning technologies show remarkable potential in enhancing the diagnosis, treatment, and management of AA. These advancements could lead to more accurate and personalized patient care, improving outcomes in AA management.

11.
J Ethnopharmacol ; 329: 118178, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604511

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is widely used clinically as one of the most famous traditional Chinese herbs. Its herb roasted with honey is called honey-processed licorice (HPL). Modern studies have shown that HPL has a stronger cardioprotective ability compared to raw licorice (RL), however the material basis and mechanism of action of the potential cardioprotection have not been fully elucidated. AIM OF THE STUDY: To screen and validate the material basis of cardioprotection exerted by HPL and to preliminarily predict the potential mechanism of action. MATERIALS AND METHODS: UPLC-QTOF-MS/MS was used to analyze HPL samples with different processing levels, and differential compounds were screened out through principal component analysis. Network pharmacology and molecular docking were applied to explore the association between differential compounds and doxorubicin cardiomyopathy and their mechanisms of action were predicted. An in vitro model was established to verify the cardioprotective effects of differential compounds. RESULTS: Six differential compounds were screened as key components of HPL for potential cardioprotection. Based on network pharmacology, 113 potential important targets for the treatment of Dox-induced cardiotoxicity were screened. KEGG enrichment analysis predicted that the PI3K-Akt pathway was closely related to the mechanism of action of active ingredients. Molecular docking results showed that the six differential compounds all had good binding activity with Nrf2 protein. In addition, in vitro experiments had shown that five of the active ingredients (liquiritin, isoliquiritin, liquiritigenin, isoliquiritigenin, and licochalcone A) can significantly increase Dox-induced H9c2 cell viability, SOD activity, and mitochondrial membrane potential, significantly reduces MDA levels and inhibits ROS generation. CONCLUSION: Liquiritin, isoliquiritin, liquiritigenin, isoliquiritigenin and licochalcone A are key components of HPL with potential cardioprotective capabilities. Five active ingredients can alleviate Dox-induced cardiotoxicity by inhibiting oxidative stress and mitochondrial damage.


Asunto(s)
Doxorrubicina , Miel , Simulación del Acoplamiento Molecular , Miocitos Cardíacos , Farmacología en Red , Doxorrubicina/toxicidad , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Chalconas/farmacología , Chalconas/aislamiento & purificación , Glycyrrhiza uralensis/química , Cardiotónicos/farmacología , Cardiotónicos/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Flavanonas/farmacología , Flavanonas/aislamiento & purificación , Factor 2 Relacionado con NF-E2/metabolismo , Línea Celular , Cardiotoxicidad/prevención & control , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Transducción de Señal/efectos de los fármacos , Glucósidos
12.
J Hepatocell Carcinoma ; 10: 1327-1339, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37581093

RESUMEN

Background: The aim of this study is to explore the role of acetyl-CoA acyltransferase 2 (ACAA2) in the progression of hepatocellular carcinoma (HCC). Methods: Bulk RNA data and single-cell RNA data were acquired from The Cancer Genome Atlas and Gene Expression Omnibus. Both in vitro and in vivo studies were used to determine the effect of ACAA2 on the progression of HCC, and RNA sequencing analysis was performed to explore the mechanism. Results: We found downregulation of ACAA2 was involved in the malignant progression of HCC. The patient with low ACAA2 level had an immunosuppressive microenvironment in the HCC and predicted to have a poor prognosis. Decreased ACAA2 facilitated HCC proliferation and metastasis by activating the nuclear factor-κB (NFκB) signaling pathway. And increased CXCL1 induced by NFκB signaling pathway might be responsible for low level of ACAA2 related immunosuppressive microenvironment. Furthermore, the expression of ACAA2 was also detected in immune cells. The expression of ACAA2 in CD4+TCF7+T, CD4+FOXP3+T, CD8+GZMK+T, and CD8+KLRD1+T cells was inversely correlated with the composition of CD8+PDCD1+T cells in HCC. This effect might be due to the CCL5-CCRs and HLA-E-KLRCs ligand-receptor networks. Conclusion: In a conclusion, downregulated ACAA2 promoted the progression of hepatocellular carcinoma and might be participated in the formation of immunosuppressive microenvironment. ACAA2 could be served as a favorable indicator for the prognosis of HCC and an ideal biomarker for immunotherapy.

13.
Artículo en Inglés | MEDLINE | ID: mdl-36410639

RESUMEN

Bisphenol A (BPA) is ubiquitous in the environment and poses a threat to wildlife and human health. It has been reported that BPA may cause the neurotoxicity during gestational and neonatal periods. Cyanidin-3-O-glucoside (C3G) is one of the most abundant anthocyanins that has shown multiple bio-functions. In this study, the protective effects and possible mechanism of C3G against BPA-induced neurodevelopment toxicity in zebrafish embryos/larvae were studied. The results showed that co-exposure of C3G (25 µg/mL) significantly attenuated BPA-induced deficit in locomotor behavior and restored the BPA-induced aberrant changes in brain morphology of zebrafish larvae. Further studies showed that the defects of central nervous development and the downregulated neurogenesis relative genes induced by BPA were significantly counteracted by co-exposure with 5 µg/mL of C3G. In addition, C3G (25 µg/mL) mitigated the decline of glutathione (GSH) content and enzymatic activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT), attenuated oxidative stress and cell apoptosis induced by BPA in zebrafish. The enhancements of the expression of genes involved in the Nrf2-ARE pathway (Nrf2, HO-1, NQO1, GCLC, and GCLM) were also observed by co-exposure of C3G. The results indicate that C3G exerts protective effects on BPA-induced neurodevelopmental toxicity through improving transcription of neurogenesis related genes, enhancing antioxidative defense system and reducing cell apoptosis by regulation of apoptotic genes in zebrafish larvae. The results suggest that anthocyanins may play important role against the exogenous toxicity for vertebrates.


Asunto(s)
Antocianinas , Embrión no Mamífero , Pez Cebra , Animales , Antocianinas/farmacología , Glucósidos/farmacología , Glutatión/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Pez Cebra/metabolismo , Embrión no Mamífero/efectos de los fármacos , Sustancias Protectoras , Fenoles/toxicidad
14.
Sci Rep ; 13(1): 5724, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029182

RESUMEN

Several studies have shown that males suffer more severe damage than females in the process of ischemia and reperfusion of the brain, heart and kidney. Accordingly, our study will reveal the correlation between the severity of hepatic ischemia‒reperfusion injury (HIRI) and sex, and preliminarily analyze the underlying mechanism. A total of 75 patients who were considered to have "benign liver tumors" at the initial admission and underwent partial hepatectomy were enrolled. We identified potential differences between different groups and discussed the correlation between the severity of HIRI and sex through a comparative analysis. Results showed that HIRI was more severe in males than in females, especially in younger patients. To explore whether estrogen level differences are the main reason for the sex differences in HIRI, we further revealed that HIRI in premenopausal females was more severe than that in postmenopausal females. By comparing the levels of gonadal hormones, we speculated that multiple gonadal hormones, including follicle-stimulating hormone, luteinizing hormone and testosterone, may jointly participate in the regulation of sex differences in HIRI together with estrogen.


Asunto(s)
Daño por Reperfusión , Caracteres Sexuales , Humanos , Masculino , Femenino , Estudios Transversales , Hígado , Estrógenos , Hormonas Gonadales
15.
Intractable Rare Dis Res ; 11(4): 202-205, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36457582

RESUMEN

Perivascular epithelioid cell tumors (PEComas) are infrequent mesenchymal tumors. They are usually benign, and only a few are malignant. These tumors are more commonly found in middle-aged women. PEComas are mainly composed of differentiated perivascular epithelioid cells arranged radially around the vascular cavity, and they are usually positive for melanocyte markers and smooth muscle cell differentiation markers. Among the PEComas, hepatic PEComas generally have no obvious symptoms and no typical imaging manifestations. Malignant hepatic PEComas are even rarer. So, we explained our insights into clinical diagnosis and treatment of malignant hepatic PEComas, in order to help clinicians and pathologists to further understand PEComas.

16.
World J Clin Cases ; 10(4): 1447-1453, 2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35211582

RESUMEN

BACKGROUND: Bleeding from gastroesophageal varices (GOV) is a serious complication in patients with liver cirrhosis, carrying a very high mortality rate. For secondary prophylaxis against initial and recurrent bleeding, endoscopic therapy is a critical intervention. Endoscopic variceal clipping for secondary prophylaxis in adult GOV has not been reported. CASE SUMMARY: A 66-year-old man with cirrhosis was admitted to our hospital complaining of asthenia and hematochezia for 1 wk. His hemoglobin level and red blood cell counts were significantly decreased, and his fecal occult blood test was positive. An enhanced computed tomography of the abdomen showed GOV. The patient was diagnosed with hepatitis B cirrhosis-related GOV bleeding. A series of palliative treatments were administered, resulting in significant clinical improvement. Subsequently, an endoscopic examination revealed severe gastric fundal varices, prompting endoscopic variceal clipping. There were no further episodes of gastrointestinal bleeding. The GOV improved significantly on follow-up imaging and was confirmed as improved on endoscopy at the 5th postoperative month. CONCLUSION: Our results suggest that endoscopic clipping is an inexpensive, safe, easy, effective, and tolerable method for the secondary prophylaxis of bleeding from gastric type 2 GOV. However, additional research is indicated to confirm its long-term safety and efficacy.

17.
Cell Death Dis ; 13(7): 623, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851063

RESUMEN

The incidence of hepatocellular carcinoma (HCC) is increasing in the world. However, its role and underlying molecular mechanism in HCC progression remain unclear. We found that CYB5A plays a key role in HCC metastasis by inhibiting the JAK1/STAT3 pathway through binding to STOML2. CYB5A combined with STOML2 can predict the outcome of patients. To demonstrate the effect of CYB5A on JAK1 inhibitor function, we applied Ruxolitinib in metastatic tumors with high CYB5A expression and found that it slowed disease progression and prolonged survival in mice. To the best of our knowledge, this study is the first to report the Ruxolitinib effect on the metastatic ability of HCC cells in vivo and in vitro.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de la Membrana/metabolismo , Animales , Autofagia , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Citocromos b5/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Metástasis de la Neoplasia , Nitrilos , Pirazoles , Pirimidinas
18.
Front Genet ; 12: 790093, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35173763

RESUMEN

The N-reductive enzyme system (NRES), composed of MARC1, MARC2, CYB5, and CYB5R, is responsible for the reduction of N-oxygenated compounds and participates in several physiological processes. For example, MARC2 serves as an important prognostic indicator and is downregulated in hepatocellular carcinoma, and the downregulation of MARC2 is critical to the regulation of lipid metabolism and cell cycle progression. However, the role of MARC2 in tumor immune microenvironment modification had not previously been investigated. In this study, we found that downregulation of MARC2 was associated with the differentiation of CD4+T cells into regulatory T cells (Tregs). Furthermore, restoring the expression of MARC2 could increase the expression of HLA-C and B2M via PPARA-related lipid metabolism signaling pathways, which could facilitate tumor antigen presentation to the tumor-infiltrating T cells. Additionally, MARC2 expression negatively correlated with several immune checkpoints. The immune checkpoint burden was generated based on 28 MARC2-related immune checkpoints. Patients with a higher immune checkpoint burden were predicted to have a poorer prognosis and a lower level of activated CD8+ T cells. The results showed that expression of the NRES is a prognostic indicator of hepatocellular carcinoma and MARC2 contributes significantly to predict the prognosis. Finally, loss of MARC2 in HCC patients was found to facilitate immune escape and was associated with immunosuppression.

19.
Cancers (Basel) ; 13(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34503075

RESUMEN

CA-125, encoded by the MUC16 gene, is highly expressed in most ovarian cancer cells and thus serves as a tumor marker for monitoring disease progression or treatment response in ovarian cancer patients. However, targeting MUC16/CA-125 for ovarian cancer treatment has not been successful to date. In the current study, we performed multiple steps of high-fidelity PCR and obtained a 5 kb DNA fragment upstream of the human MUC16 gene. Reporter assays indicate that this DNA fragment possesses transactivation activity in CA-125-high cancer cells, but not in CA-125-low cancer cells, indicating that the DNA fragment contains the transactivation region that controls specific expression of the MUC16 gene in ovarian cancer cells. We further refined the promoter and found a 1040 bp fragment with similar transcriptional activity and specificity. We used this refined MUC16 promoter to replace the E1A promoter in the adenovirus type 5 genome DNA, where E1A is an essential gene for adenovirus replication. We then generated a conditionally replicative oncolytic adenovirus (CRAd) that replicates in and lyses CA-125-high cancer cells, but not CA-125-low or -negative cancer cells. In vivo studies showed that intraperitoneal virus injection prolonged the survival of NSG mice inoculated intraperitoneally (ip) with selected ovarian cancer cell lines. Furthermore, the CRAd replicates in and lyses primary ovarian cancer cells, but not normal cells, collected from ovarian cancer patients. Collectively, these data indicate that targeting MUC16 transactivation utilizing CRAd is a feasible approach for ovarian cancer treatment that warrants further investigation.

20.
Theranostics ; 11(10): 4743-4758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33754025

RESUMEN

Aims: Emerging evidence is demonstrating that rapid regeneration of remnant liver elicited by associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) may be attenuated in fibrotic livers. However, the molecular mechanisms responsible for this process are largely unknown. It is widely acknowledged that the TGFß1 signaling axis plays a major role in liver fibrosis. Therefore, the aims of this study were to elucidate the underlying mechanism of liver regeneration during ALPPS with or without fibrosis, specifically focusing on TGFß1 signaling. Approach: ALPPS was performed in rat models with N-diethylnitrosamine-induced liver fibrosis and no fibrosis. Functional liver remnant regeneration and expression of TGFß1 were analyzed during the ALPPS procedures. Adeno-associated virus-shTGFß1 and the small molecule inhibitor LY2157299 (galunisertib) were used separately or in combination to inhibit TGFß1 signaling in fibrotic rats. Results: Liver regeneration following ALPPS was lower in fibrotic rats than non-fibrotic rats. TGFß1 was a key mediator of postoperative regeneration in fibrotic liver. Interestingly, AAV-shTGFß1 accelerated the regeneration of fibrotic functional liver remnant and improved fibrosis, while LY2157299 only enhanced liver regeneration. Moreover, combination treatment elicited a stronger effect. Conclusions: Inhibition of TGFß1 accelerated regeneration of fibrotic liver, ameliorated liver fibrosis, and improved liver function following ALPPS. Therefore, TGFß1 is a promising therapeutic target in ALPPS to improve fibrotic liver reserve function and prognosis.


Asunto(s)
Hepatectomía/métodos , Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , Regeneración Hepática/fisiología , Hígado/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Dietilnitrosamina/toxicidad , Células Estrelladas Hepáticas/metabolismo , Ligadura , Hígado/efectos de los fármacos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Regeneración Hepática/efectos de los fármacos , Vena Porta/cirugía , Cultivo Primario de Células , Pirazoles/farmacología , Quinolinas/farmacología , Ratas , Transducción de Señal , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA