Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(27): e2409257121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917009

RESUMEN

Dynamic protein structures are crucial for deciphering their diverse biological functions. Two-dimensional infrared (2DIR) spectroscopy stands as an ideal tool for tracing rapid conformational evolutions in proteins. However, linking spectral characteristics to dynamic structures poses a formidable challenge. Here, we present a pretrained machine learning model based on 2DIR spectra analysis. This model has learned signal features from approximately 204,300 spectra to establish a "spectrum-structure" correlation, thereby tracing the dynamic conformations of proteins. It excels in accurately predicting the dynamic content changes of various secondary structures and demonstrates universal transferability on real folding trajectories spanning timescales from microseconds to milliseconds. Beyond exceptional predictive performance, the model offers attention-based spectral explanations of dynamic conformational changes. Our 2DIR-based pretrained model is anticipated to provide unique insights into the dynamic structural information of proteins in their native environments.


Asunto(s)
Aprendizaje Automático , Proteínas , Espectrofotometría Infrarroja , Proteínas/química , Espectrofotometría Infrarroja/métodos , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína
2.
Small ; 20(31): e2311351, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38453673

RESUMEN

Supramolecular self-assembly has emerged as an efficient tool to construct well-organized nanostructures for biomedical applications by small organic molecules. However, the physicochemical properties of self-assembled nanoarchitectures are greatly influenced by their morphologies, mechanical properties, and working mechanisms, making it challenging to design and screen ideal building blocks. Herein, using a biocompatible firefly-sourced click reaction between the cyano group of 2-cyano-benzothiazole (CBT) and the 1,2-aminothiol group of cysteine (Cys), an amino-acid-encoded supramolecular self-assembly platform Cys(SEt)-X-CBT (X represents any amino acid) is developed to incorporate both covalent and noncovalent interactions for building diverse morphologies of nanostructures with bioinspired response mechanism, providing a convenient and rapid strategy to construct site-specific nanocarriers for drug delivery, cell imaging, and enzyme encapsulation. Additionally, it is worth noting that the biodegradation of Cys(SEt)-X-CBT generated nanocarriers can be easily tracked via bioluminescence imaging. By caging either the thiol or amino groups in Cys with other stimulus-responsive sites and modifying X with probes or drugs, a variety of multi-morphological and multifunctional nanomedicines can be readily prepared for a wide range of biomedical applications.


Asunto(s)
Portadores de Fármacos , Nanoestructuras , Nanoestructuras/química , Portadores de Fármacos/química , Aminoácidos/química , Humanos , Cisteína/química
3.
J Fish Biol ; 104(3): 624-632, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37943095

RESUMEN

As an adipokine, coiled-coil domain-containing 3 (CCDC3) plays multiple physiological roles in fatty liver, lipid metabolism, and abdominal obesity. Grass carp was selected as the experimental animal in this study to investigate the roles of Ccdc3 in teleosts. Results showed that the open reading frame (ORF) of cloned ccdc3 was 831 bp and encoded 276 amino acids. Three N-glycosylation sites and a predicted coiled-coil domain motif were located in the identified Ccdc3. Moreover, a nuclear localization signal (NLS) was contained in the coiled-coil domain motif of the identified Ccdc3. The results on tissue distribution revealed that ccdc3 was highly detected in grass carp fat and brain tissue. In the oral glucose tolerance test (OGTT), the expression of ccdc3 increased remarkably in the brain, hypothalamus, and visceral fat in the glucose treatment group. In the fasting and refeeding experiment, the ccdc3 expression levels were remarkably reduced in the brain, hypothalamus, and visceral fat after 14 days of fasting. In the refeeding group, the ccdc3 expression levels were considerably elevated compared with those in the fasting group. In the induced overfeeding experiment, the ccdc3 expression increased remarkably in the hepatopancreas, brain, and visceral fat tissues. The ccdc3 expression in the primary hepatocytes was remarkably increased with glucose, oleic acid, and insulin treatment. However, ccdc3 expression was markedly decreased with glucagon treatment. In conclusion, these results indicate that Ccdc3 is involved in regulating glucose and lipid metabolism of teleosts.


Asunto(s)
Carpas , Insulina , Animales , Glucagón , Carpas/genética , Carpas/metabolismo , Clonación Molecular , Glucosa , Proteínas de Peces/metabolismo , Filogenia
4.
Fish Shellfish Immunol ; 139: 108921, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37385461

RESUMEN

This study aimed to evaluate the effects of dietary supplementation with Bacillus velezensis R-71003 combined with sodium gluconate on antioxidant capacity, immune response and resistance against Aeromonas hydrophila in common carp. In addition, the biocontrol potential of the secondary metabolites of B. velezensis R-71003 was also evaluated to analyze the possible mechanism of B. velezensis R-71003 against A. hydrophila. The results indicated that the antibacterial crude extract of B. velezensis R-71003 can destroy the cell wall of A. hydrophila. Moreover, the results showed that dietary B. velezensis R-71003 could promote antioxidant capacity, which significantly increased the activities of CAT and SOD and decreased the content of MDA. Additionally, B. velezensis R-71003 supplementation significantly enhanced the immunity of common carp, as measured by the mRNA expression levels of cytokine-related genes (TNF-α, TGF-ß, IL-1ß and IL-10). In addition, dietary B. velezensis R-71003 exhibited an upregulation of IL-10 and a downregulation of IL-1ß, coupled with higher survival rates when challenged with A. hydrophila compared to the positive group. Furthermore, compared to prechallenge, the mRNA expression levels of TLR-4, MyD88, IRAK1, TRAF6, TRIF and NF-κB in the head kidney of common carp were significantly increased after challenge. The fish fed the B. velezensis R-71003 diet showed lower expression of TLR-4, MyD88, IRAK1, TRAF6, TRIF and NF-κB after the challenge than those fed the control diet. Thus, this study revealed that B. velezensis R-71003 can improve the resistance of common carp to pathogenic bacteria by destroying bacterial cell walls and improving fish immunity by activating the TLR4 signaling pathway. Importantly, this study indicated that sodium gluconate has a positive effect on B. velezensis R-71003 in enhancing the anti-infection ability of common carp. The results of this study will lay the foundation for the application of B. velezensis R-71003 in combination with sodium gluconate as an alternative to antibiotics in aquaculture.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Antioxidantes/metabolismo , Suplementos Dietéticos , Interleucina-10/metabolismo , Aeromonas hydrophila/fisiología , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4 , Resistencia a la Enfermedad , Dieta/veterinaria , ARN Mensajero , Carpas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Alimentación Animal/análisis
5.
Gen Comp Endocrinol ; 327: 114096, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841941

RESUMEN

Neurosecretory protein GL (NPGL), a novel neuropeptide, has been identified in the hypothalamus of chicks and rodents. NPGL plays a crucial role in monitoring energetic status via the regulation of feeding and metabolism. However, no study on NPGL has been reported in fish thus far. In the present study, the full-length cDNA of NPGL was identified from the hypothalamus of GIFT tilapia (Oreochromis niloticus). The ORF of tilapia NPGL is 471 bp and encodes a precursor peptide with a size of 156 a.a, consisting of a 26 a.a signal peptide and an 82 a.a mature peptide. Tissue distribution profiles of npgl in tilapia were acquired using semiquantitative PCR and in situ hybridization (ISH). The results showed that the highest npgl mRNA is expressed in the telencephalic-preoptic complex, which comprises both the telencephalon and the anterior preoptic area (POA) of male tilapia, and in the ovary of female tilapia. In addition, in male tilapia, the ISH results showed that the cells containing npgl mRNA were distributed exclusively in the anterior periventricular pretectal nucleus (Ppa) of the POA. FISH results demonstrated that npgl mRNA is also expressed in the lateral tuberal nucleus of the hypothalamus (NLT). Real-time PCR showed that npgl mRNA significantly increased in the telencephalic-preoptic complex of male tilapia that were fasted for 24 h and then fed a full diet for 20 min compared with the unfed group. Results of the FISH study showed that parvocellular cells containing npgl mRNA in the Ppa of fed fish were apparently more abundant than those of the unfed group. Few npgl positive signals also appeared in the NLT after full feeding, where pomc mRNA is highly expressed. These results indicate that NPGL may be a short-term satiety factor in fish and that the coexpression of NPGL and POMC may be present in the hypothalamus of male tilapia.


Asunto(s)
Cíclidos , Tilapia , Animales , Cíclidos/genética , Cíclidos/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Femenino , Masculino , Proopiomelanocortina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tilapia/genética , Tilapia/metabolismo , Distribución Tisular
6.
Aquac Nutr ; 2022: 4330251, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36860432

RESUMEN

GIP plays an important regulatory role in glucose and lipid metabolism. As the specific receptor, GIPR is involved in this physiological process. To assess the roles of GIPR in teleost, the GIPR gene was cloned from grass carp. The ORF of cloned GIPR gene was 1560 bp, encoding 519 amino acids. The grass carp GIPR was the G-protein-coupled receptor which contains seven predicted transmembrane domains. In addition, two predicted glycosylation sites were contained in the grass carp GIPR. The grass carp GIPR expression is in multiple tissues and is highly expressed in the kidney, brain regions, and visceral fat tissue. In the OGTT experiment, the GIPR expression is markedly decreased in the kidney, visceral fat, and brain by treatment with glucose for 1 and 3 h. In the fast and refeeding experiment, the GIPR expression in the kidney and visceral fat tissue was significantly induced in the fast groups. In addition, the GIPR expression levels were markedly decreased in the refeeding groups. In the present study, the visceral fat accumulation of grass carp was induced by overfed. The GIPR expression was significantly decreased in the brain, kidney, and visceral fat tissue of overfed grass carp. In primary hepatocytes, the GIPR expression was promoted by treatment with oleic acid and insulin. The GIPR mRNA levels were significantly reduced by treatment with glucose and glucagon in the grass carp primary hepatocytes. To our knowledge, this is the first time the biological role of GIPR is unveiled in teleost.

7.
Gen Comp Endocrinol ; 301: 113647, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33166532

RESUMEN

Irisin, encoded by fibronectin type III domain-containing protein 5 (FNDC5) gene, plays a role in energy expenditure and insulin sensitivity in mice. In fish, the function of irisin related to glucose metabolism is less reported. It may increase glucose utilization in fish. The aim of the present study was to characterize the regulatory role of irisin in glucose metabolism in common carp (Cyprinus carpio L.). In this study, FNDC5a and FNDC5b were isolated from common carp. The cDNA of FNDC5a and FNDC5b were 722 bp and 714 bp, encoding 221 and 207 amino acids, respectively. FNDC5a was abundantly expressed in the brain and gonad. FNDC5b was mainly expressed in brain. Different expression pattern of FNDC5a and FNDC5b under fasting/refeeding and OGTT experiment were identified. The recombinant common carp irisinA and irisinB were prepared by prokaryotic expression system. Glucose concentration was decreased in treatment with irisinA or irisinB in the in vitro and in vivo experiments. The mRNA expression levels of gluconeogenesis-related genes were significantly down-regulated, while the mRNA expression of glycolysis-related genes were significantly up-regulated after treatment with recombinant irisinA or irisinB in liver in vivo and in primary hepatocytes in vitro. Our research shows that irisin inhibits hepatic gluconeogenesis and promotes hepatic glycolysis. Taken together, this study for the first time revealed the two subtypes of FNDC5 and explored the function and mechanisms of irisinA and irisinB in fish glucose homeostasis.


Asunto(s)
Carpas , Resistencia a la Insulina , Animales , Carpas/genética , Fibronectinas/genética , Glucosa , Hígado
8.
Ecotoxicol Environ Saf ; 228: 112977, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34781134

RESUMEN

Heavy metal cadmium (Cd) pollution is a serious problem affecting the sustainable development of aquaculture and the safety of aquatic foods. Research about the use of probiotics to attenuate toxic damage caused by Cd2+ in aquatic animals has received widespread attention. Bacillus coagulans (B. coagulans), a kind of probiotics commonly used in aquaculture, has been shown to adsorb Cd2+ both in vivo and vitro. Here, we aimed to determine the effects of B. coagulans on Cd2+ bioaccumulation, gut barrier function, oxidative stress and gut microbiota in common carp following Cd2+ exposure. The fish were exposure to Cd2+ at 0 and 0.5 mg/L and/or fed a B. coagulans-containing diet at 107, 108 and 109 CFU/g for 8 weeks. The results indicated that B. coagulans can maintain gut barrier function in Cd2+-exposed fish by reducing Cd2+ bioaccumulation, increasing the mRNA levels of tight junction protein genes (occludin, claudin-2 and zonula occludens-1), and decreasing the levels of diamine oxidase and D-lactic acid. In addition, B. coagulans could relieve oxidative stress in Cd2+-exposed fish by restoring the activities of glutathione peroxidase, catalase and superoxide dismutase. Moreover, Cd2+ exposure decreased the intestinal microbiota diversity and changed the intestinal microbiota compositions in common carp. However, supplementation with B. coagulans could reverse the altered intestinal microbiota diversity and composition after Cd2+ exposure, decrease the abundance of some pathogens (Shewanella and Vibrio), and increase the abundance of probiotics (Bacillus and Lactobacillus). These results indicate that B. coagulans may serve as a potential antidote for alleviating Cd2+ toxicity.

9.
J Fish Biol ; 99(6): 1843-1856, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34418098

RESUMEN

Glucose transporter 4 (GLUT4) is comprehensively investigated in mammals, while the comparative research of GLUT4 in common carp is deficient. To investigate the function of GLUT4, carp glut4 was first isolated. The open reading frame of carp glut4 was 1518 bp in length, encoding 505 amino acids. A high-sequence homology was identified in carp and teleost, and the phylogenetic tree displayed that the carp GLUT4 was clustered with the teleost. A high level of glut4 mRNA was analysed in fat, red muscle and white muscle. After fasting treatment, glut4 mRNA expression was increased significantly in muscle. In the oral glucose tolerance test experiment, glut4 mRNA was also significantly elevated in muscle, gut and fat. Furthermore, intraperitoneal injection of insulin resulted in the upregulation of glut4 gene expression significantly in white muscle, gut and fat. On the contrary, the glut4 mRNA level in the white muscle, gut and fat was markedly downregulated after glucagon injection. These results suggest that GLUT4 might play important roles in food intake and could be regulated by nutrient condition, insulin and glucagon in common carp. Our study is the first to report on GLUT4 in common carp. These data provide a basis for further study on fish GLUT4.


Asunto(s)
Carpas , Proteínas de Peces/genética , Transportador de Glucosa de Tipo 4/genética , Animales , Carpas/genética , Carpas/metabolismo , Glucagón/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Filogenia , Inanición
10.
Fish Physiol Biochem ; 46(4): 1207-1218, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32212006

RESUMEN

Glucose transporter 2 (glut2) has been studied in mammals, aves, and several fish, while the comparative studies of glut2 in common carp are still lacking. In this study, glut2 was firstly isolated and characterized from the liver of common carp. The full-length cDNA of glut2 was 2351 bp with an open reading frame (ORF) of 1512 bp, encoding 503 amino acids. Alignment of glut2 amino acid sequences from different species revealed that common carp glut2 showed higher sequence identity with teleosts, and lower homology with mammals and amphibians. Tissue distribution demonstrated that glut2 mRNA level was mainly expressed in liver, foregut, and midgut. To investigate the actions of glut2 on glucose metabolism, the level of glut2 mRNA was detected after intraperitoneal injection of glucose, human insulin and glucagon (100 ng/g), respectively. Following glucose administration, glut2 gene expression was significantly upregulated at 3 h in the foregut. However, no change was found in hepatic glut2 mRNA level, indicating that glut2 may have a role in intestinal glucose uptake rather than in the liver. Following insulin treatment, the expression of glut2 was markedly downregulated at 3 h and 6 h in the liver, and at 3 h in the foregut, respectively. Furthermore, glut2 mRNA expression was unaffected by glucagon injection in the liver and foregut. These results suggested that the expression of glut2 regulated by pancreatic hormones was different. Taken together, our studies firstly revealed the structure of the glut2 gene and its potential functions in glucose metabolism of common carp.


Asunto(s)
Carpas/metabolismo , Transportador de Glucosa de Tipo 2/genética , Secuencia de Aminoácidos , Aminoácidos/genética , Análisis de Varianza , Animales , Secuencia de Bases , Clonación Molecular , Regulación hacia Abajo , Expresión Génica , Glucagón/administración & dosificación , Glucagón/farmacología , Glucosa/administración & dosificación , Glucosa/farmacología , Transportador de Glucosa de Tipo 2/efectos de los fármacos , Transportador de Glucosa de Tipo 2/aislamiento & purificación , Transportador de Glucosa de Tipo 2/metabolismo , Insulina/administración & dosificación , Insulina/farmacología , Mucosa Intestinal/metabolismo , Hígado/química , Hígado/metabolismo , Sistemas de Lectura Abierta/genética , Filogenia , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Regulación hacia Arriba
11.
Fish Physiol Biochem ; 46(4): 1469-1482, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32323051

RESUMEN

The GH (growth hormone)/IGFs (insulin-like growth factors) system has an important function in the regulation of growth. In this system, IGFBPs play a crucial regulatory role in IGF functions. As a member of the IGFBP family, IGFBP2 can bind to IGF and regulate IGF functions to regulate development and growth. In addition, IGFBP2 shows key regulatory functions in cell proliferation and metabolism. In this study, the igfbp2 gene was cloned from grass carp (Ctenopharyngodon idellus) liver. The ORF of grass carp igfbp2 is 834 bp long and encodes 277 amino acids. The tissue distribution results showed that igfbp2 is expressed in multiple tissues in grass carp and has a high expression level in the liver. In the OGTT, igfbp2 expression was significantly decreased in the liver and brain after 6 h of treatment with glucose. In vitro, igfbp2 expression in grass carp's primary hepatocytes was significantly suppressed by insulin after treatment for 6 and 12 h. Moreover, igfbp2 expression was markedly increased in a dose-dependent manner with glucagon incubation in grass carp's primary hepatocytes. To the best of our knowledge, this is the first report about Igfbp2 in grass carp. These results will provide a basis for the in-depth study of grass carp Igfbp2.


Asunto(s)
Carpas/clasificación , Glucagón/farmacología , Glucosa/farmacología , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Insulina/farmacología , Somatomedinas/metabolismo , Secuencia de Aminoácidos , Análisis de Varianza , Animales , Secuencia de Bases , Carpas/genética , Carpas/inmunología , Clonación Molecular , ADN Complementario/química , Glucagón/administración & dosificación , Glucosa/administración & dosificación , Hepatocitos/efectos de los fármacos , Insulina/administración & dosificación , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/química , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Sistemas de Lectura Abierta , Filogenia , Probabilidad , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia
12.
Fish Physiol Biochem ; 46(5): 1665-1677, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32447624

RESUMEN

Hepatic lipid metabolism disorder due to excessive fat accumulation in fish is a significant problem in aquaculture. Studies have shown that grape seed procyanidin extract (GSPE) can regulate fish lipid metabolism and improve fish immunity. However, the mechanism is unclear. In this study, we used grass carp that stores excess fat in the liver as a model. In vitro, GSPE treatment of hepatocytes for 3 h significantly decreased TG content, accompanied with decreased expression of SREBP-1c, FAS, and ACC and increased expression of PPARα, ATGL, and LPL. GSPE treatment for 1 h significantly decreased expression of pro-inflammatory cytokines (TNFα, IL-6, IL-1ß, and NF-κB) and increased the expression of anti-inflammatory cytokines (IL-10 and TGF-ß1). In vivo, the administration of GSPE significantly reduced high-fat diet-induced increase of serum CHOL, TG, and HDL, but increased LDL content. GSPE treatment for 3 h increased expression of ATGL and LPL, and significantly decreased the expression of HFD-fed-induced SREBP-1c, ACC, FAS, PPARγ, PPARα, and H-FABP. GSPE treatment for 3 h also significantly decreased the expression of pro-inflammatory cytokines (TNFα, IL-6, and IL-1ß) and increased the expression of the anti-inflammatory cytokine IL-10. The expression levels of the lipogenic miRNAs, miR-33, and miR-122, were suppressed both in vivo and in vitro by GSPE. In summary, GSPE had hypolipidemic and potential anti-inflammatory effects in the liver, potentially mediated by miR-33 and miR-122.


Asunto(s)
Carpas , Extracto de Semillas de Uva/química , Inflamación/prevención & control , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Extractos Vegetales/farmacología , Proantocianidinas/química , Animales , Hepatocitos/efectos de los fármacos , Inflamación/inducido químicamente , Ácido Oléico/toxicidad , Extractos Vegetales/química
13.
Fish Shellfish Immunol ; 95: 528-537, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31678187

RESUMEN

The Chinese yam peel (CYP) is a by-product of yam processing that is rich in various nutrients and a good source for feed additives. This study investigated the effects of CYP on the intestinal microbiota and gut defence barrier of the common carp (Cyprinus carpio L.). Different groups of experimental fish were fed a normal control diet (NC), a low CYP diet (LYP) and a high CYP diet (HYP) for 8 weeks. After the feeding trial, the fish were assessed for intestinal enzyme activity, intestinal histology, immune-related gene expression, intestinal SCFAs and intestinal microbiota. Our results indicated that the intestinal integrity and antioxidant enzyme (CAT and SOD) activity in the common carp were enhanced following CYP supplementation. The mRNA levels of anti-inflammatory (TGF-ß), tight binding protein (occludin and ZO-1) and pathway factor genes (TLR4 and NF-κB) were significantly upregulated in the HYP group (P<0.05), which was accompanied by an increase in the level of pro-inflammatory IL-1ß in the gut (P<0.05). High-throughput sequencing revealed that Fusobacteria, Proteobacteria, and Bacteroidetes bacteria were most abundant in the microbial community in the gut of the common carp. The relative abundances of Bacteroides, Flavobacterium and Lactobacillus were increased, while the abundances of pathogenic microorganisms such as Enterobacteriaceae, Shewanella, Pseudomonas and Vibrio were reduced after treatment with CYP. Furthermore, the concentrations of acetic acid, propionic acid, butyric acid and total short-chain fatty acids (SCFAs) in the gut were also increased (P<0.05). Finally, our results revealed correlations between gut microbiota, SCFAs, non-specific immunity and antioxidant enzymes in CYP-fed carp. These results suggest that CYP-supplemented feed could improve the immunity of the common carp by modulating the intestinal microflora and enhancing the gut defence barrier and has the potential to be used as an immunostimulating feed additive in aquaculture.


Asunto(s)
Alimentación Animal/análisis , Carpas/inmunología , Suplementos Dietéticos/análisis , Dioscorea/química , Microbioma Gastrointestinal , Animales , Acuicultura
14.
Gen Comp Endocrinol ; 277: 3-8, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30465768

RESUMEN

The hypothalamo-pituitary-gonadal (HPG) axis plays a major role in coordinating the reproduction of fish and other vertebrates. Gonadotropin-releasing hormone (GnRH) is the primary stimulatory factor responsible for the hypothalamic control of gonadotropin secretion. In 2000, a previously unidentified hypothalamic neuropeptide was isolated from the brain of Japanese quail and termed gonadotropin-inhibitory hormone (GnIH) based on its ability to directly inhibit gonadotropin release from the cultured quail anterior pituitary gland. One year later, the cDNA sequence that encodes the quail GnIH precursor polypeptide was cloned and was found to encompass two further peptides (GnIH-related peptide (RP)-1 and GnIH-RP-2) besides GnIH. To date, GnIH orthologous have been detected in a variety of vertebrates from fish to humans. These peptides possess a characteristic-LPXRFa (X = L or Q) motif at the C-terminus and are designated as LPXRFa peptides. It is generally accepted that LPXRFa peptides act on GnRH neurons in the hypothalamus to inhibit gonadotropin synthesis and release in addition to affecting the pituitary function in birds and mammals. However, the exact physiological role of LPXRFa is still uncertain in fish and dual actions of LPXRFa on the HPG axis have been observed. Research aiming to elucidate the detailed signaling pathways mediating the actions of LPXRFa on target cells may contribute to understanding the functional divergence of the LPXRFa system in teleosts. Accordingly, this review will discuss the recent advances in LPXRFa receptor signaling, as well as the potential interactions on cell signaling induced by other factors, such as GnRH and kisspeptin.


Asunto(s)
Peces/metabolismo , Péptidos/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Vertebrados/metabolismo , Animales , Humanos , Unión Proteica
15.
Gen Comp Endocrinol ; 281: 137-144, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31176753

RESUMEN

The insulin-like growth factor (IGF) system plays a pivotal role in the regulation of growth, and IGF binding proteins (IGFBPs) are important regulatory factors in the IGF system. Generally, IGFBPs inhibit IGF actions by preventing its binding to receptors. Under some conditions, the IGFBPs can also enhance IGF actions. IGFBP1 is generally inhibitory to IGFI. In this study, the grouper (Epinephelus coioides) igfbp1 (MK621003) gene was cloned from the liver. The sequence of igfbp1 cDNA was 1055 bp and contained a 5'UTR of 127 bp and a 3'UTR of 247 bp, and the ORF of grouper igfbp1 was 741 bp, encoding 246 amino acids. The tissue distribution results showed that igfbp1 has a higher expression in the liver. In the nutritional status experiment, igfbp1 expression was significantly increased in the liver after 7 days of fasting and was markedly decreased after refeeding. In in vitro experiments, igfbp1 expression in grouper primary hepatocytes was significantly inhibited by recombinant grouper Gh (growth hormone) in a dose-dependent manner. Additionally, igfbp1 expression decreased in grouper primary hepatocytes upon incubation with insulin. This is the first report describing grouper igfbp1, and these findings contribute to understanding the roles of IGFBP1 in metabolism and growth in grouper.


Asunto(s)
Lubina/genética , Hormona del Crecimiento/farmacología , Hepatocitos/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Insulina/farmacología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células Cultivadas , ADN Complementario/genética , Femenino , Hepatocitos/efectos de los fármacos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/química , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Tisular
16.
Fish Physiol Biochem ; 45(5): 1563-1573, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31102099

RESUMEN

This study investigated the effects of honeysuckle extract (Lonicera japonica, HE) on the growth performance and lipid metabolism of juvenile grass carp (Ctenopharyngodon idella). HE at doses of 10 g kg-1 (LHE), 20 g kg-1 (MHE), and 40 g kg-1 (HHE) were individually mixed with the basal diet and fed to grass carp for 10 weeks, and ginseng extract (20 g kg-1, GSE) was used as a positive control. The results showed that HE administration exerted no effect on growth performance, but the hepatosomatic index (HSI) and muscle and liver lipid contents were significantly decreased in the LHE and MHE groups. The serum levels of LDL-c, total triglyceride (TG) and total cholesterol (TC) also declined in the HE-treated groups. Moreover, the disordered vacuolization and nucleus migration in the liver were alleviated in the MHE and HHE groups, and mRNA expressions of lipogenesis-related genes, such as acc1, fas, srebp1, and pparγ decreased. Similarly, the expression of genes related to lipolysis, such as cpt1, atgl, lpl, and pparα, was found to be significantly increased in the MHE and HHE groups compared with the control. Taken together, HE can effectively improve the lipid metabolism and ameliorate the lipid deposition of grass carp and thus may be a promising feed additive in aquaculture.


Asunto(s)
Carpas/crecimiento & desarrollo , Carpas/metabolismo , Lonicera/química , Extractos Vegetales/farmacología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Extractos Vegetales/química
17.
Biochem Biophys Res Commun ; 499(2): 285-290, 2018 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-29574160

RESUMEN

Compensatory growth (CG) is defined as a phase of accelerated growth when the disadvantageous environment is improved, accompanied by metabolic adjustment. Here, we report that hepatic oxidative phosphorylation (OXPHOS) activity was enhanced during compensatory growth in zebrafish. Mitochondrial metabolism enabled the generation of reactive oxygen species (ROS), which activated the nrf2 (nuclear factor-erythroid 2-related factor 2) signaling pathway, as well as the mTOR signaling pathway. Tempol (a superoxide dismutase mimetic) treatment blocked ROS signaling in the liver as well as CG in zebrafish. These results demonstrated that mitochondrial ROS signaling are essential for the occurrence of compensatory growth in zebrafish.


Asunto(s)
Hígado/fisiología , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Animales , Óxidos N-Cíclicos/farmacología , Conducta Alimentaria/efectos de los fármacos , Femenino , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Hígado/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Marcadores de Spin
18.
Gen Comp Endocrinol ; 265: 160-173, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29864417

RESUMEN

As the close paralog of adiponectin, C1q/TNF-Related Protein 9 (CTRP9) has been reported to be involved in the regulation of glucose and fat metabolism, immunization and endothelial cell functions. However, information regarding the actions of Ctrp9 on reproduction is extremely limited in fish. As a first step, Ctrp9, adiponectin receptor 1 (Adipor1) and Adipor2 were identified from Nile tilapia. The open reading frame (ORF) of ctrp9 was 1020 bp which encoded a 339 amino acids. Moreover, the ORFs of adipor1 and adipor2 were 1131 bp and 1134 bp encoding 376 and 377 amino acids, respectively. Tissue distribution showed that ctrp9 mRNA levels were highest in the kidney in both sexes. And, the expression of adipor1 and adipor2 were widely distributed in all tissues examined, exhibiting high levels in the brain, gonad, gut and stomach. In addition, intraperitoneal (i.p.) injection of gCtrp9 (globular Ctrp9) suppressed the hypothalamic expression of gnrh2 (gonadotropin-releasing hormone 2) and gnrh3, as well as gthα (gonadotropic hormone α), fshß (follicle-stimulating hormone ß), lhß (luteinizing hormone ß), lhr (LH receptor) and fshr (FSH receptor) mRNA levels in the pituitary. The mRNA levels of adipor1, but not adipor2, in the gonads were also inhibited after injection. Moreover, the levels of serum E2 (estrogen) in female and T (testosterone) in male were significantly decreased after injection of gCtrp9. Overall, our data provides novel data indicating, for the first time, a regulatory effect of CTRP9 on teleost reproduction.


Asunto(s)
Adiponectina/genética , Cíclidos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Receptores de Adiponectina/metabolismo , Reproducción/genética , Adiponectina/química , Adiponectina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cíclidos/sangre , Clonación Molecular , Estradiol/sangre , Femenino , Masculino , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Adiponectina/química , Receptores de Adiponectina/genética , Análisis de Secuencia de ADN , Testosterona/sangre , Distribución Tisular/genética
19.
Artículo en Inglés | MEDLINE | ID: mdl-29746909

RESUMEN

Gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide, serves as a key player in the regulation of reproduction across vertebrates, acting on the brain and pituitary to modulate reproductive physiology and behavior. However, little information is available in teleosts regarding the intracellular signal transduction pathway in response to GnIH. To this end, we first cloned the gene of LPXRFa (the piscine ortholog of GnIH) receptor in the half-smooth tongue sole (Cynoglossus semilaevis), a representative species of the order Pleuronectiformes. The full-length cDNA of LPXRFa receptor was 2201 bp in size with an open reading frame (ORF) of 1365 bp that encoded 454 amino acids. Tissue distribution showed that LPXRFa receptor transcripts could be detected at high levels in the brain, to a lesser extent in the pituitary, and at low levels in the ovary and other peripheral tissues. In vitro functional analysis revealed that putative tongue sole LPXRFa-1 and LPXRFa-2 peptides significantly stimulated serum responsive element-dependent luciferase (SRE-luc) activity in COS-7 cells transfected with the novel receptor, and these stimulatory effects were evidently reduced by two inhibitors of the PLC/PKC pathway. In addition, neither LPXRFa-1 nor LPXRFa-2 altered the cAMP-responsive element (CRE)-luc activity, but only LPXRFa-2 could markedly decrease forskolin-induced CRE-luc activity in COS-7 cells expressing its cognate receptor. Taken together, our results encompass the first study reporting the existence of LPXRFa receptor in the order Pleuronectiformes and provide novel evidence of differential activation of signaling pathways by LPXRFa peptides in fish.


Asunto(s)
Clonación Molecular , Peces Planos/genética , Perfilación de la Expresión Génica , Hormonas Hipotalámicas/metabolismo , Péptidos/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Chlorocebus aethiops , ADN Complementario/genética , Femenino , Peces Planos/fisiología , Hormonas Hipotalámicas/química , Hormonas Hipotalámicas/genética , Sistemas de Lectura Abierta , Filogenia , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Homología de Secuencia de Aminoácido
20.
Gen Comp Endocrinol ; 237: 1-9, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-26526981

RESUMEN

Growth in vertebrates is mainly mediated by the growth hormone (GH)-insulin-like growth factor (IGF) axis, and somatostatin (SRIF) inhibits growth by decreasing GH release at the pituitary level and antagonizing the release and action of GHRH in the hypothalamus. However, the effects of SRIF on the regulation of growth at levels other than GH release from the pituitary gland are less well known. In the present study, we comprehensively examined the pituitary and peripheral actions of SRIF on the GH-IGF axis in grouper using a primary pituitary and hepatocyte cell culture system. Our results showed that SRIF inhibited GH release at the pituitary level, but had no influence on GH mRNA expression. Basal hepatic GH receptor 1 (GHR1), IGF-I and IGF-II mRNA levels declined over time, whereas GHR2 mRNA levels remained stable throughout the culture period. GH stimulated the hepatic expression of GHR and IGF mRNAs in a dose-dependent manner, while SRIF suppressed both basal and GH-stimulated expression of GHR and IGF mRNAs in primary cultured hepatocytes. The inhibition of GHR and IGF mRNA levels by SRIF was not attributed to the rate of mRNA degradation. To the best of our knowledge, we demonstrated the effects of SRIF on basal and GH-stimulated IGF-II mRNA levels in teleosts for the first time. These results indicate that SRIF regulates growth at the level of the pituitary and peripheral liver.


Asunto(s)
Lubina/metabolismo , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Somatostatina/farmacología , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Hormona del Crecimiento/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Hipófisis/citología , Hipófisis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Proteínas Recombinantes/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA