Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 109(6): 1441-1456, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34908202

RESUMEN

Homogalacturonan (HG), the most abundant pectic glycan, functions as a cell wall structural and signaling molecule essential for plant growth, development and response to pathogens. HG exists as a component of pectic homoglycans, heteroglycans and glycoconjugates. HG is synthesized by members of the GALACTURONOSYLTRANSFERASE (GAUT) family. UDP-GalA-dependent homogalacturonan:galacturonosyltransferase (HG:GalAT) activity has previously been demonstrated for GAUTs 1, 4 and 11, as well as the GAUT1:GAUT7 complex. Here, we show that GAUTs 10, 13 and 14 are also HG:GalATs and that GAUTs 1, 10, 11, 13, 14 and 1:7 synthesize polymeric HG in vitro. Comparison of the in vitro HG:GalAT specific activities of the heterologously-expressed proteins demonstrates GAUTs 10 and 11 with the lowest, GAUT1 and GAUT13 with moderate, and GAUT14 and the GAUT1:GAUT7 complex with the highest HG:GalAT activity. GAUT13 and GAUT14 are also shown to de novo synthesize (initiate) HG synthesis in the absence of exogenous HG acceptors, an activity previously demonstrated for GAUT1:GAUT7. The rate of de novo HG synthesis by GAUT13 and GAUT14 is similar to their acceptor dependent HG synthesis, in contrast to GAUT1:GAUT7 for which de novo synthesis occurred at much lower rates than acceptor-dependent synthesis. The results suggest a unique role for de novo HG synthesis by GAUTs 13 and 14. The reducing end of GAUT13-de novo-synthesized HG has covalently attached UDP, indicating that UDP-GalA serves as both a donor and acceptor substrate during de novo HG synthesis. The functional significance of unique GAUT HG:GalAT catalytic properties in the synthesis of different pectin glycan or glycoconjugate structures is discussed.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/metabolismo , Glucuronosiltransferasa/metabolismo , Glicosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Pectinas/metabolismo
2.
Plant Cell ; 32(7): 2367-2382, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32354790

RESUMEN

Xylans are a major component of plant cell walls. O-Acetyl moieties are the dominant backbone substituents of glucuronoxylan in dicots and play a major role in the polymer-polymer interactions that are crucial for wall architecture and normal plant development. Here, we describe the biochemical, structural, and mechanistic characterization of Arabidopsis (Arabidopsis thaliana) xylan O-acetyltransferase 1 (XOAT1), a member of the plant-specific Trichome Birefringence Like (TBL) family. Detailed characterization of XOAT1-catalyzed reactions by real-time NMR confirms that it exclusively catalyzes the 2-O-acetylation of xylan, followed by nonenzymatic acetyl migration to the O-3 position, resulting in products that are monoacetylated at both O-2 and O-3 positions. In addition, we report the crystal structure of the catalytic domain of XOAT1, which adopts a unique conformation that bears some similarities to the α/ß/α topology of members of the GDSL-like lipase/acylhydrolase family. Finally, we use a combination of biochemical analyses, mutagenesis, and molecular simulations to show that XOAT1 catalyzes xylan acetylation through formation of an acyl-enzyme intermediate, Ac-Ser-216, by a double displacement bi-bi mechanism involving a Ser-His-Asp catalytic triad and unconventionally uses an Arg residue in the formation of an oxyanion hole.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Polisacáridos/metabolismo , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arginina/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana , Modelos Moleculares , Mutación , Conformación Proteica , Xilanos/metabolismo
3.
Isr J Chem ; 63(10-11)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38737670

RESUMEN

Truncated mucin-type O-glycans, such as Tn-associated antigens, are aberrantly expressed biomarkers of cancer, but remain challenging to target. Reactive antibodies to these antigens either lack high-affinity or are prone to antigen escape. Here, we have developed a robust chemoenzymatic strategy for the global labeling of Tn-associated antigens, i.e. Tn (GalNAcα-O-Ser/Thr), Thomsen-Friedenreich (Galß1-3GalNAcα-O-Ser/Thr, TF) and STF (Neu5Acα2-3Galß1-3GalNAcα-O-Ser/Thr, STF) antigens, in human whole blood with high efficiency and selectivity. This method relies on the use of the O-glycan sialyltransferase ST6GalNAc1 to transfer a sialic acid-functionalized adaptor to the GalNAc residue of these antigens. By tagging, the adaptor functionalized antigens can be easily targeted by customized strategies such as, but not limited to, chimeric antigen receptor T-Cells (CAR-T). We expect this tagging system to find broad applications in cancer diagnostics and targeting in combination with established strategies.

4.
J Biol Chem ; 296: 100110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33229435

RESUMEN

Poly-N-acetyl-lactosamine (poly-LacNAc) structures are composed of repeating [-Galß(1,4)-GlcNAcß(1,3)-]n glycan extensions. They are found on both N- and O-glycoproteins and glycolipids and play an important role in development, immune function, and human disease. The majority of mammalian poly-LacNAc is synthesized by the alternating iterative action of ß1,3-N-acetylglucosaminyltransferase 2 (B3GNT2) and ß1,4-galactosyltransferases. B3GNT2 is in the largest mammalian glycosyltransferase family, GT31, but little is known about the structure, substrate recognition, or catalysis by family members. Here we report the structures of human B3GNT2 in complex with UDP:Mg2+ and in complex with both UDP:Mg2+ and a glycan acceptor, lacto-N-neotetraose. The B3GNT2 structure conserves the GT-A fold and the DxD motif that coordinates a Mg2+ ion for binding the UDP-GlcNAc sugar donor. The acceptor complex shows interactions with only the terminal Galß(1,4)-GlcNAcß(1,3)- disaccharide unit, which likely explains the specificity for both N- and O-glycan acceptors. Modeling of the UDP-GlcNAc donor supports a direct displacement inverting catalytic mechanism. Comparative structural analysis indicates that nucleotide sugar donors for GT-A fold glycosyltransferases bind in similar positions and conformations without conserving interacting residues, even for enzymes that use the same donor substrate. In contrast, the B3GNT2 acceptor binding site is consistent with prior models suggesting that the evolution of acceptor specificity involves loops inserted into the stable GT-A fold. These observations support the hypothesis that GT-A fold glycosyltransferases employ coevolving donor, acceptor, and catalytic subsite modules as templates to achieve the complex diversity of glycan linkages in biological systems.


Asunto(s)
Amino Azúcares/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Amino Azúcares/química , Sitios de Unión , Catálisis , Cromatografía en Gel , Células HEK293 , Humanos , N-Acetilglucosaminiltransferasas/química , Especificidad por Sustrato
5.
Biochem J ; 478(8): 1571-1583, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33734311

RESUMEN

The α1,6-fucosyltransferase, FUT8, is the sole enzyme catalyzing the core-fucosylation of N-glycoproteins in mammalian systems. Previous studies using free N-glycans as acceptor substrates indicated that a terminal ß1,2-GlcNAc moiety on the Man-α1,3-Man arm of N-glycan substrates is required for efficient FUT8-catalyzed core-fucosylation. In contrast, we recently demonstrated that, in a proper protein context, FUT8 could also fucosylate Man5GlcNAc2 without a GlcNAc at the non-reducing end. We describe here a further study of the substrate specificity of FUT8 using a range of N-glycans containing different aglycones. We found that FUT8 could fucosylate most of high-mannose and complex-type N-glycans, including highly branched N-glycans from chicken ovalbumin, when the aglycone moiety is modified with a 9-fluorenylmethyloxycarbonyl (Fmoc) moiety or in a suitable peptide/protein context, even if they lack the terminal GlcNAc moiety on the Man-α1,3-Man arm. FUT8 could also fucosylate paucimannose structures when they are on glycoprotein substrates. Such core-fucosylated paucimannosylation is a prominent feature of lysosomal proteins of human neutrophils and several types of cancers. We also found that sialylation of N-glycans significantly reduced their activity as a substrate of FUT8. Kinetic analysis demonstrated that Fmoc aglycone modification could either improve the turnover rate or decrease the KM value depending on the nature of the substrates, thus significantly enhancing the overall efficiency of FUT8 catalyzed fucosylation. Our results indicate that an appropriate aglycone context of N-glycans could significantly broaden the acceptor substrate specificity of FUT8 beyond what has previously been thought.


Asunto(s)
Eritropoyetina/metabolismo , Fucosa/metabolismo , Fucosiltransferasas/metabolismo , Glicoproteínas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Manosa/metabolismo , Polisacáridos/metabolismo , Animales , Secuencia de Carbohidratos , Pollos , Eritropoyetina/química , Eritropoyetina/genética , Fluorenos/química , Fucosa/química , Fucosiltransferasas/química , Fucosiltransferasas/genética , Expresión Génica , Glicoproteínas/química , Glicoproteínas/genética , Glicosilación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Células HEK293 , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , Humanos , Cinética , Manosa/química , Ovalbúmina/química , Ovalbúmina/genética , Ovalbúmina/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Polisacáridos/química , Especificidad por Sustrato
6.
J Biol Chem ; 295(50): 17027-17045, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33004438

RESUMEN

Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown.Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems.


Asunto(s)
Fucosiltransferasas/química , Pliegue de Proteína , Cristalografía por Rayos X , Células HEK293 , Humanos , Dominios Proteicos , Homología Estructural de Proteína , Especificidad por Sustrato
7.
Glycobiology ; 31(4): 425-435, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-32902634

RESUMEN

Preparation of samples for nuclear magnetic resonance (NMR) characterization of larger proteins requires enrichment with less abundant, NMR-active, isotopes such as 13C and 15N. This is routine for proteins that can be expressed in bacterial culture where low-cost isotopically enriched metabolic substrates can be used. However, it can be expensive for glycosylated proteins expressed in mammalian culture where more costly isotopically enriched amino acids are usually used. We describe a simple, relatively inexpensive procedure in which standard commercial media is supplemented with 13C-enriched glucose to achieve labeling of all glycans plus all alanines of the N-terminal domain of the highly glycosylated protein, CEACAM1. We demonstrate an ability to detect partially occupied N-glycan sites, sites less susceptible to processing by an endoglycosidase, and some unexpected truncation of the amino acid sequence. The labeling of both the protein (through alanines) and the glycans in a single culture requiring no additional technical expertise past standard mammalian expression requirements is anticipated to have several applications, including structural and functional screening of the many glycosylated proteins important to human health.


Asunto(s)
Glucosa , Glicoproteínas , Animales , Isótopos de Carbono , Glucosa/metabolismo , Glicoproteínas/metabolismo , Humanos , Marcaje Isotópico/métodos , Espectroscopía de Resonancia Magnética , Mamíferos/metabolismo , Resonancia Magnética Nuclear Biomolecular
8.
Proc Natl Acad Sci U S A ; 115(18): 4637-4642, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666272

RESUMEN

Asn-linked oligosaccharides are extensively modified during transit through the secretory pathway, first by trimming of the nascent glycan chains and subsequently by initiating and extending multiple oligosaccharide branches from the trimannosyl glycan core. Trimming and branching pathway steps are highly ordered and hierarchal based on the precise substrate specificities of the individual biosynthetic enzymes. A key committed step in the synthesis of complex-type glycans is catalyzed by N-acetylglucosaminyltransferase II (MGAT2), an enzyme that generates the second GlcNAcß1,2- branch from the trimannosyl glycan core using UDP-GlcNAc as the sugar donor. We determined the structure of human MGAT2 as a Mn2+-UDP donor analog complex and as a GlcNAcMan3GlcNAc2-Asn acceptor complex to reveal the structural basis for substrate recognition and catalysis. The enzyme exhibits a GT-A Rossmann-like fold that employs conserved divalent cation-dependent substrate interactions with the UDP-GlcNAc donor. MGAT2 interactions with the extended glycan acceptor are distinct from other related glycosyltransferases. These interactions are composed of a catalytic subsite that binds the Man-α1,6- monosaccharide acceptor and a distal exosite pocket that binds the GlcNAc-ß1,2Man-α1,3Manß- substrate "recognition arm." Recognition arm interactions are similar to the enzyme-substrate interactions for Golgi α-mannosidase II, a glycoside hydrolase that acts just before MGAT2 in the Asn-linked glycan biosynthetic pathway. These data suggest that substrate binding by MGAT2 employs both conserved and convergent catalytic subsite modules to provide substrate selectivity and catalysis. More broadly, the MGAT2 active-site architecture demonstrates how glycosyltransferases create complementary modular templates for regiospecific extension of glycan structures in mammalian cells.


Asunto(s)
N-Acetilglucosaminiltransferasas/química , Pliegue de Proteína , Uridina Difosfato N-Acetilglucosamina/química , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , Dominios Proteicos , Uridina Difosfato N-Acetilglucosamina/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(45): 11573-11578, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30337484

RESUMEN

Invasive microbes causing diseases such as sudden oak death negatively affect ecosystems and economies around the world. The deployment of resistant genotypes for combating introduced diseases typically relies on breeding programs that can take decades to complete. To demonstrate how this process can be accelerated, we employed a genome-wide association mapping of ca 1,000 resequenced Populus trichocarpa trees individually challenged with Sphaerulina musiva, an invasive fungal pathogen. Among significant associations, three loci associated with resistance were identified and predicted to encode one putative membrane-bound L-type receptor-like kinase and two receptor-like proteins. A susceptibility-associated locus was predicted to encode a putative G-type D-mannose-binding receptor-like kinase. Multiple lines of evidence, including allele analysis, transcriptomics, binding assays, and overexpression, support the hypothesized function of these candidate genes in the P. trichocarpa response to S. musiva.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Populus/genética , Saccharomycetales/patogenicidad , Transcriptoma , Alelos , Mapeo Cromosómico , Cromosomas de las Plantas/química , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Sitios Genéticos , Interacciones Huésped-Patógeno/inmunología , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/inmunología , Populus/inmunología , Populus/microbiología , Proteínas Quinasas/genética , Proteínas Quinasas/inmunología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Saccharomycetales/fisiología
10.
Nat Chem Biol ; 14(2): 156-162, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29251719

RESUMEN

Vertebrate glycoproteins and glycolipids are synthesized in complex biosynthetic pathways localized predominantly within membrane compartments of the secretory pathway. The enzymes that catalyze these reactions are exquisitely specific, yet few have been extensively characterized because of challenges associated with their recombinant expression as functional products. We used a modular approach to create an expression vector library encoding all known human glycosyltransferases, glycoside hydrolases, and sulfotransferases, as well as other glycan-modifying enzymes. We then expressed the enzymes as secreted catalytic domain fusion proteins in mammalian and insect cell hosts, purified and characterized a subset of the enzymes, and determined the structure of one enzyme, the sialyltransferase ST6GalNAcII. Many enzymes were produced at high yields and at similar levels in both hosts, but individual protein expression levels varied widely. This expression vector library will be a transformative resource for recombinant enzyme production, broadly enabling structure-function studies and expanding applications of these enzymes in glycochemistry and glycobiology.


Asunto(s)
Perfilación de la Expresión Génica , Sialiltransferasas/química , Animales , Baculoviridae/metabolismo , Cristalografía por Rayos X , Citidina Monofosfato/química , Vectores Genéticos , Glicósido Hidrolasas/química , Glicosilación , Células HEK293 , Humanos , Insectos , Cinética , Proteínas Recombinantes/química , Sulfotransferasas/química
11.
Angew Chem Int Ed Engl ; 59(30): 12493-12498, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32396713

RESUMEN

Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array-based assay for the high-throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl-, fucosyl-, and xylosyltransferases can transfer azido-functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized "on chip" by a 1,3-dipolar cycloaddition reaction with an alkynyl-modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.


Asunto(s)
Glicosiltransferasas/química , Plantas/enzimología , Polisacáridos/análisis , Pared Celular/química
12.
J Biol Chem ; 293(49): 19047-19063, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30327429

RESUMEN

Homogalacturonan (HG) is a pectic glycan in the plant cell wall that contributes to plant growth and development and cell wall structure and function, and interacts with other glycans and proteoglycans in the wall. HG is synthesized by the galacturonosyltransferase (GAUT) gene family. Two members of this family, GAUT1 and GAUT7, form a heteromeric enzyme complex in Arabidopsis thaliana Here, we established a heterologous GAUT expression system in HEK293 cells and show that co-expression of recombinant GAUT1 with GAUT7 results in the production of a soluble GAUT1:GAUT7 complex that catalyzes elongation of HG products in vitro The reaction rates, progress curves, and product distributions exhibited major differences dependent upon small changes in the degree of polymerization (DP) of the oligosaccharide acceptor. GAUT1:GAUT7 displayed >45-fold increased catalytic efficiency with DP11 acceptors relative to DP7 acceptors. Although GAUT1:GAUT7 synthesized high-molecular-weight polymeric HG (>100 kDa) in a substrate concentration-dependent manner typical of distributive (nonprocessive) glycosyltransferases with DP11 acceptors, reactions primed with short-chain acceptors resulted in a bimodal product distribution of glycan products that has previously been reported as evidence for a processive model of GT elongation. As an alternative to the processive glycosyltransfer model, a two-phase distributive elongation model is proposed in which a slow phase, which includes the de novo initiation of HG and elongation of short-chain acceptors, is distinguished from a phase of rapid elongation of intermediate- and long-chain acceptors. Upon reaching a critical chain length of DP11, GAUT1:GAUT7 elongates HG to high-molecular-weight products.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Glucuronosiltransferasa/metabolismo , Pectinas/biosíntesis , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Glucuronosiltransferasa/química , Células HEK293 , Humanos , Modelos Biológicos , Estructura Molecular , Pectinas/química , Electricidad Estática , Especificidad por Sustrato , Azúcares de Uridina Difosfato/metabolismo
13.
J Biomol NMR ; 73(3-4): 191-198, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31041649

RESUMEN

Residual dipolar couplings (RDCs) provide both structural and dynamical information useful in the characterization of biological macromolecules. While most data come from the interaction of simple pairs of directly bonded spin-1/2 nuclei (1H-15N, 1H-13C, 1H-1H), it is possible to acquire data from interactions among the multiple spins of 13C-labeled methyl groups (1H3-13C). This is especially important because of the advantages that observation of 13C-labeled methyl groups offers in working with very large molecules. Here we consider some of the options for measurement of methyl RDCs in large and often fully protonated proteins and arrive at a pulse sequence that exploits both J-modulation and direct detection of 13C. Its utility is illustrated by application to a fully protonated two domain fragment from the mammalian glycoprotein, Robo1, 13C-methyl-labeled in all valines.


Asunto(s)
Carbono/química , Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Isótopos de Carbono/química , Glicosilación , Espectroscopía de Resonancia Magnética , Metilación , Resonancia Magnética Nuclear Biomolecular/métodos
14.
Plant Physiol ; 178(3): 1045-1064, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30228108

RESUMEN

Pectin is a vital component of the plant cell wall and provides the molecular glue that maintains cell-cell adhesion, among other functions. As the most complex wall polysaccharide, pectin is composed of several covalently linked domains, such as homogalacturonan (HG) and rhamnogalacturonan I (RG I). Pectin has widespread uses in the food industry and has emerging biomedical applications, but its synthesis remains poorly understood. For instance, the enzymes that catalyze RG I elongation remain unknown. Recently, a coexpression- and sequence-based MUCILAGE-RELATED (MUCI) reverse genetic screen uncovered hemicellulose biosynthetic enzymes in the Arabidopsis (Arabidopsis thaliana) seed coat. Here, we use an extension of this strategy to identify MUCI70 as the founding member of a glycosyltransferase family essential for the accumulation of seed mucilage, a gelatinous wall rich in unbranched RG I. Detailed biochemical and histological characterization of two muci70 mutants and two galacturonosyltransferase11 (gaut11) mutants identified MUCI70 and GAUT11 as required for two distinct RG I domains in seed mucilage. We demonstrate that, unlike MUCI70, GAUT11 catalyzes HG elongation in vitro and, thus, likely is required for the synthesis of an HG region important for RG I elongation. Analysis of a muci70 gaut11 double mutant confirmed that MUCI70 and GAUT11 are indispensable for the production and release of the bulk of mucilage RG I and for shaping the surface morphology of seeds. In addition, we uncover relationships between pectin and hemicelluloses and show that xylan is essential for the elongation of at least one RG I domain.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Glucuronosiltransferasa/metabolismo , Hidrolasas/fisiología , Pectinas/metabolismo , Mucílago de Planta/metabolismo , Semillas/enzimología , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Pared Celular/ultraestructura , Glucuronosiltransferasa/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hidrolasas/genética , Microscopía Electrónica de Rastreo , Filogenia , Mucílago de Planta/química , Mucílago de Planta/ultraestructura , Polisacáridos/metabolismo , Semillas/genética , Semillas/ultraestructura
15.
Biochemistry ; 57(15): 2189-2199, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29570275

RESUMEN

Leukocyte common antigen-related (LAR) protein is one of the type IIa receptor protein tyrosine phosphatases (RPTPs) that are important for signal transduction in biological processes, including axon growth and regeneration. Glycosaminoglycan chains, including heparan sulfate (HS) and chondroitin sulfate (CS), act as ligands that regulate LAR signaling. Here, we report the structural characterization of the first two immunoglobulin domains (Ig1-2) of LAR interacting with an HS pentasaccharide (GlcNS6S-GlcA-GlcNS3,6S-IdoA2S-GlcNS6S-OME, fondaparinux) using multiple solution-based NMR methods. In the course of the study, we extended an assignment strategy useful for sparsely labeled proteins expressed in mammalian cell culture supplemented with a single type of isotopically enriched amino acid ([15N]-Lys in this case) by including paramagnetic perturbations to NMR resonances. The folded two-domain structure for LAR-Ig1-2 seen in previous crystal structures has been validated in solution using residual dipolar coupling data, and a combination of chemical shift perturbation on titration of LAR-Ig1-2 with fondaparinux, saturation transfer difference (STD) spectra, and transferred nuclear Overhauser effects (trNOEs) have been employed in the docking program HADDOCK to generate models for the LAR-fondaparinux complex. These models are further analyzed by postprocessing energetic analysis to identify key binding interactions. In addition to providing insight into the ligand interaction mechanisms of type IIa RPTPs and the origin of opposing effects of CS and HS ligands, these results may assist in future design of therapeutic compounds for nervous system repair.


Asunto(s)
Heparitina Sulfato/química , Simulación del Acoplamiento Molecular , Polisacáridos/química , Pliegue de Proteína , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Cristalografía por Rayos X , Fondaparinux , Células HEK293 , Humanos , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos
16.
Plant J ; 91(6): 931-949, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28670741

RESUMEN

The mechanistic underpinnings of the complex process of plant polysaccharide biosynthesis are poorly understood, largely because of the resistance of glycosyltransferase (GT) enzymes to structural characterization. In Arabidopsis thaliana, a glycosyl transferase family 37 (GT37) fucosyltransferase 1 (AtFUT1) catalyzes the regiospecific transfer of terminal 1,2-fucosyl residues to xyloglucan side chains - a key step in the biosynthesis of fucosylated sidechains of galactoxyloglucan. We unravel the mechanistic basis for fucosylation by AtFUT1 with a multipronged approach involving protein expression, X-ray crystallography, mutagenesis experiments and molecular simulations. Mammalian cell culture expressions enable the sufficient production of the enzyme for X-ray crystallography, which reveals the structural architecture of AtFUT1 in complex with bound donor and acceptor substrate analogs. The lack of an appropriately positioned active site residue as a catalytic base leads us to propose an atypical water-mediated fucosylation mechanism facilitated by an H-bonded network, which is corroborated by mutagenesis experiments as well as detailed atomistic simulations.


Asunto(s)
Arabidopsis/enzimología , Fucosiltransferasas/química , Glucanos/química , Modelos Estructurales , Xilanos/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Glicosilación , Simulación de Dinámica Molecular , Mutagénesis , Agua/metabolismo , Galactósido 2-alfa-L-Fucosiltransferasa
17.
New Phytol ; 218(3): 1049-1060, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29460505

RESUMEN

Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-ß-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-ß-xylan formation, XYS1/IRX10 in plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-ß-xylan synthase activity, and 1,4-ß-xylan occurs in the K. flaccidum cell wall. These data suggest that plant 1,4-ß-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.


Asunto(s)
Pared Celular/metabolismo , Carofíceas/enzimología , Pentosiltransferasa/metabolismo , Células Vegetales/metabolismo , Secuencias de Aminoácidos , Vías Biosintéticas , Carofíceas/genética , Evolución Molecular , Células HEK293 , Humanos , Pentosiltransferasa/química , Filogenia
18.
J Biol Chem ; 291(38): 20085-95, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27471271

RESUMEN

Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the ß-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED ß-strands and the other involving GFCC'C″ ß-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC'C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions.


Asunto(s)
Antígenos CD/química , Moléculas de Adhesión Celular/química , Multimerización de Proteína/fisiología , Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Glicosilación , Células HEK293 , Humanos , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA