Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 65(2): 296-309, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28065600

RESUMEN

In mammalian cells, histone deacetylase (HDAC) and Sirtuin (SIRT) are two families responsible for removing acetyl groups from acetylated proteins. Here, we describe protein deacetylation coupled with deacetylimination as a function of lysyl oxidase (LOX) family members. LOX-like 3 (Loxl3) associates with Stat3 in the nucleus to deacetylate and deacetyliminate Stat3 on multiple acetyl-lysine sites. Surprisingly, Loxl3 N-terminal scavenger receptor cysteine-rich (SRCR) repeats, rather than the C-terminal oxidase catalytic domain, represent the major deacetylase/deacetyliminase activity. Loxl3-mediated deacetylation/deacetylimination disrupts Stat3 dimerization, abolishes Stat3 transcription activity, and restricts cell proliferation. In Loxl3-/- mice, Stat3 is constitutively acetylated and naive CD4+ T cells are potentiated in Th17/Treg cell differentiation. When overexpressed, the SRCR repeats from other LOX family members can catalyze protein deacetylation/deacetylimination. Thus, our findings delineate a hitherto-unknown mechanism of protein deacetylation and deacetylimination catalyzed by lysyl oxidases.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Linfocitos T CD4-Positivos/enzimología , Colitis/enzimología , Procesamiento Proteico-Postraduccional , Factor de Transcripción STAT3/metabolismo , Acetilación , Aminoácido Oxidorreductasas/deficiencia , Aminoácido Oxidorreductasas/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Catálisis , Diferenciación Celular , Núcleo Celular/enzimología , Proliferación Celular , Colitis/genética , Colitis/inmunología , Modelos Animales de Enfermedad , Genotipo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Dominios Proteicos , Multimerización de Proteína , Interferencia de ARN , Factor de Transcripción STAT3/genética , Linfocitos T Reguladores/enzimología , Linfocitos T Reguladores/inmunología , Células Th17/enzimología , Células Th17/inmunología , Transcripción Genética , Transfección
2.
J Biol Chem ; 299(2): 102911, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642187

RESUMEN

The attachment of a sugar to a hydrophobic lipid carrier is the first step in the biosynthesis of many glycoconjugates. In the halophilic archaeon Haloarcula hispanica, HAH_1206, renamed AepG, is a predicted glycosyltransferase belonging to the CAZy Group 2 family that shares a conserved amino acid sequence with dolichol phosphate mannose synthases. In this study, the function of AepG was investigated by genetic and biochemical approaches. We found that aepG deletion led to the disappearance of dolichol phosphate-glucuronic acid. Our biochemical assays revealed that recombinant cellulose-binding, domain-tagged AepG could catalyze the formation of dolichol phosphate-glucuronic acid in time- and dose-dependent manners. Based on the in vivo and in vitro analyses, AepG was confirmed to be a dolichol phosphate glucuronosyltransferase involved in the synthesis of the acidic exopolysaccharide produced by H. hispanica. Furthermore, lack of aepG resulted in hindered growth and cell aggregation in high salt medium, indicating that AepG is vital for the adaptation of H. hispanica to a high salt environment. In conclusion, AepG is the first dolichol phosphate glucuronosyltransferase identified in any of the three domains of life and, moreover, offers a starting point for further investigation into the diverse pathways used for extracellular polysaccharide biosynthesis in archaea.


Asunto(s)
Haloarcula , Secuencia de Aminoácidos , Fosfatos de Dolicol/metabolismo , Haloarcula/metabolismo , Transferasas/metabolismo , Polisacáridos/metabolismo
3.
BMC Plant Biol ; 24(1): 290, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627629

RESUMEN

BACKGROUND: Flesh firmness is a critical factor that influences fruit storability, shelf-life and consumer's preference as well. However, less is known about the key genetic factors that are associated with flesh firmness in fresh fruits like watermelon. RESULTS: In this study, through bulk segregant analysis (BSA-seq), we identified a quantitative trait locus (QTL) that influenced variations in flesh firmness among recombinant inbred lines (RIL) developed from cross between the Citrullus mucosospermus accession ZJU152 with hard-flesh and Citrullus lanatus accession ZJU163 with soft-flesh. Fine mapping and sequence variations analyses revealed that ethylene-responsive factor 1 (ClERF1) was the most likely candidate gene for watermelon flesh firmness. Furthermore, several variations existed in the promoter region between ClERF1 of two parents, and significantly higher expressions of ClERF1 were found in hard-flesh ZJU152 compared with soft-flesh ZJU163 at key developmental stages. DUAL-LUC and GUS assays suggested much stronger promoter activity in ZJU152 over ZJU163. In addition, the kompetitive allele-specific PCR (KASP) genotyping datasets of RIL populations and germplasm accessions further supported ClERF1 as a possible candidate gene for fruit flesh firmness variability and the hard-flesh genotype might only exist in wild species C. mucosospermus. Through yeast one-hybrid (Y1H) and dual luciferase assay, we found that ClERF1 could directly bind to the promoters of auxin-responsive protein (ClAux/IAA) and exostosin family protein (ClEXT) and positively regulated their expressions influencing fruit ripening and cell wall biosynthesis. CONCLUSIONS: Our results indicate that ClERF1 encoding an ethylene-responsive factor 1 is associated with flesh firmness in watermelon and provide mechanistic insight into the regulation of flesh firmness, and the ClERF1 gene is potentially applicable to the molecular improvement of fruit-flesh firmness by design breeding.


Asunto(s)
Citrullus , Citrullus/genética , Citrullus/metabolismo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Frutas/genética , Etilenos/metabolismo , Regiones Promotoras Genéticas/genética
4.
Plant Biotechnol J ; 22(5): 1325-1334, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213067

RESUMEN

Cytoplasmic male sterility (CMS), encoded by the mitochondrial open reading frames (ORFs), has long been used to economically produce crop hybrids. However, the utilization of CMS also hinders the exploitation of sterility and fertility variation in the absence of a restorer line, which in turn narrows the genetic background and reduces biodiversity. Here, we used a mitochondrial targeted transcription activator-like effector nuclease (mitoTALENs) to knock out ORF138 from the Ogura CMS broccoli hybrid. The knockout was confirmed by the amplification and re-sequencing read mapping to the mitochondrial genome. As a result, knockout of ORF138 restored the fertility of the CMS hybrid, and simultaneously manifested a cold-sensitive male sterility. ORF138 depletion is stably inherited to the next generation, allowing for direct use in the breeding process. In addition, we proposed a highly reliable and cost-effective toolkit to accelerate the life cycle of fertile lines from CMS-derived broccoli hybrids. By applying the k-mean clustering and interaction network analysis, we identified the central gene networks involved in the fertility restoration and cold-sensitive male sterility. Our study enables mitochondrial genome editing via mitoTALENs in Brassicaceae vegetable crops and provides evidence that the sex production machinery and its temperature-responsive ability are regulated by the mitochondria.


Asunto(s)
Brassica , Infertilidad Masculina , Masculino , Humanos , Brassica/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Fitomejoramiento , Mitocondrias/genética , Fertilidad/genética , Infertilidad Vegetal/genética
5.
Plant Physiol ; 191(1): 369-381, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36179097

RESUMEN

Cucumber green mottle mosaic virus (CGMMV) is one of the major global quarantine viruses and causes severe symptoms in Cucurbit crops, particularly with regard to fruit decay. However, the genetic mechanisms that control plant resistance to CGMMV have yet to be elucidated. Here, we found that WPRb, a weak chloroplast movement under blue light 1 and plastid movement impaired 2-related protein family gene, is recessively associated with CGMMV resistance in watermelon (Citrullus lanatus). We developed a reproducible marker based on a single non-synonymous substitution (G1282A) in WPRb, which can be used for marker-assisted selection for CGMMV resistance in watermelon. Editing of WPRb conferred greater tolerance to CGMMV. We found WPRb targets to the plasmodesmata (PD) and biochemically interacts with the CGMMV movement protein, facilitating viral intercellular movement by affecting the permeability of PD. Our findings enable us to genetically control CGMMV resistance in planta by using precise genome editing techniques targeted to WPRb.


Asunto(s)
Citrullus , Tobamovirus , Tobamovirus/genética , Citrullus/genética , Enfermedades de las Plantas/genética
6.
Plant Physiol ; 193(2): 1330-1348, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37477947

RESUMEN

Sweetness and appearance of fresh fruits are key palatable and preference attributes for consumers and are often controlled by multiple genes. However, fine-mapping the key loci or genes of interest by single genome-based genetic analysis is challenging. Herein, we present the chromosome-level genome assembly of 1 landrace melon accession (Cucumis melo ssp. agrestis) with wild morphologic features and thus construct a melon pan-genome atlas via integrating sequenced melon genome datasets. Our comparative genomic analysis reveals a total of 3.4 million genetic variations, of which the presence/absence variations (PAVs) are mainly involved in regulating the function of genes for sucrose metabolism during melon domestication and improvement. We further resolved several loci that are accountable for sucrose contents, flesh color, rind stripe, and suture using a structural variation (SV)-based genome-wide association study. Furthermore, via bulked segregation analysis (BSA)-seq and map-based cloning, we uncovered that a single gene, (CmPIRL6), determines the edible or inedible characteristics of melon fruit exocarp. These findings provide important melon pan-genome information and provide a powerful toolkit for future pan-genome-informed cultivar breeding of melon.


Asunto(s)
Cucumis melo , Cucurbitaceae , Mapeo Cromosómico , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genes de Plantas , Cucumis melo/genética , Frutas/genética , Frutas/metabolismo
7.
Theor Appl Genet ; 137(5): 98, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592431

RESUMEN

KEY MESSAGE: The ClLOG gene encoding a cytokinin riboside 5'-monophosphate phosphoribohydrolase determines trichome length in watermelon, which is associated with its promoter variations. Trichomes, which are differentiated from epidermal cells, are special accessory structures that cover the above-ground organs of plants and possibly contribute to biotic and abiotic stress resistance. Here, a bulked segregant analysis (BSA) of an F2 population with significant variations in trichome length was undertaken. A 1.84-Mb candidate region on chromosome 10 was associated with trichome length. Resequencing and fine-mapping analyses indicated that a 12-kb structural variation in the promoter of Cla97C10G203450 (ClLOG) led to a significant expression difference in this gene in watermelon lines with different trichome lengths. In addition, a virus-induced gene silencing analysis confirmed that ClLOG positively regulated trichome elongation. These findings provide new information and identify a potential target gene for controlling multicellular trichome elongation in watermelon.


Asunto(s)
Citocininas , Tricomas , Tricomas/genética , Glicósidos , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
8.
Pharmacol Res ; 203: 107149, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518830

RESUMEN

Neuronal health is closely linked to the homeostasis of intracellular organelles, and organelle dysfunction affects the pathological progression of neurological diseases. In contrast to isolated cellular compartments, a growing number of studies have found that organelles are largely interdependent structures capable of communicating through membrane contact sites (MCSs). MCSs have been identified as key pathways mediating inter-organelle communication crosstalk in neurons, and their alterations have been linked to neurological disease pathology. The endoplasmic reticulum (ER) is a membrane-bound organelle capable of forming an extensive network of pools and tubules with important physiological functions within neurons. There are multiple MCSs between the ER and other organelles and the plasma membrane (PM), which regulate a variety of cellular processes. In this review, we focus on ER-organelle MCSs and their role in a variety of neurological diseases. We compared the biological effects between different tethering proteins and the effects of their respective disease counterparts. We also discuss how altered ER-organelle contacts may affect disease pathogenesis. Therefore, understanding the molecular mechanisms of ER-organelle MCSs in neuronal homeostasis will lay the foundation for the development of new therapies targeting ER-organelle contacts.


Asunto(s)
Retículo Endoplásmico , Enfermedades del Sistema Nervioso , Transducción de Señal , Humanos , Retículo Endoplásmico/metabolismo , Animales , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuronas/metabolismo , Orgánulos/metabolismo
9.
Brain ; 146(8): 3373-3391, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36825461

RESUMEN

GGC repeat expansion in the 5' untranslated region (UTR) of NOTCH2NLC is associated with a broad spectrum of neurological disorders, especially neuronal intranuclear inclusion disease (NIID). Studies have found that GGC repeat expansion in NOTCH2NLC induces the formation of polyglycine (polyG)-containing protein, which is involved in the formation of neuronal intranuclear inclusions. However, the mechanism of neurotoxicity induced by NOTCH2NLC GGC repeats is unclear. Here, we used NIID patient-specific induced pluripotent stem cell (iPSC)-derived 3D cerebral organoids (3DCOs) and cellular models to investigate the pathophysiological mechanisms of NOTCH2NLC GGC repeat expansion. IPSC-derived 3DCOs and cellular models showed the deposition of polyG-containing intranuclear inclusions. The NOTCH2NLC GGC repeats could induce the upregulation of autophagic flux, enhance integrated stress response and activate EIF2α phosphorylation. Bulk RNA sequencing for iPSC-derived neurons and single-cell RNA sequencing (scRNA-seq) for iPSC-derived 3DCOs revealed that NOTCH2NLC GGC repeats may be associated with dysfunctions in ribosome biogenesis and translation. Moreover, NOTCH2NLC GGC repeats could induce the NPM1 nucleoplasm translocation, increase nucleolar stress, impair ribosome biogenesis and induce ribosomal RNA sequestration, suggesting dysfunction of membraneless organelles in the NIID cellular model. Dysfunctions in ribosome biogenesis and phosphorylated EIF2α and the resulting increase in the formation of G3BP1-positive stress granules may together lead to whole-cell translational inhibition, which may eventually cause cell death. Interestingly, scRNA-seq revealed that NOTCH2NLC GGC repeats may be associated with a significantly decreased proportion of immature neurons while 3DCOs were developing. Together, our results underscore the value of patient-specific iPSC-derived 3DCOs in investigating the mechanisms of polyG diseases, especially those caused by repeats in human-specific genes.


Asunto(s)
ADN Helicasas , ARN Helicasas , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas con Motivos de Reconocimiento de ARN , Regiones no Traducidas 5' , Cuerpos de Inclusión Intranucleares , Ribosomas , Expansión de Repetición de Trinucleótido/genética
10.
Ergonomics ; 67(4): 515-525, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37365918

RESUMEN

To investigate whether high cognitive task load (CTL) for aircraft pilots can be identified by analysing heart-rate variability, electrocardiograms were recorded while cadet pilots (n = 68) performed the plane tracking, anti-gravity pedalling, and reaction tasks during simulated flight missions. Data for standard electrocardiogram parameters were extracted from the R-R-interval series. In the research phase, low frequency power (LF), high frequency power (HF), normalised HF, and LF/HF differed significantly between high and low CTL conditions (p < .05 for all). A principal component analysis identified three components contributing 90.62% of cumulative heart-rate variance. These principal components were incorporated into a composite index. Validation in a separate group of cadet pilots (n = 139) under similar conditions showed that the index value significantly increased with increasing CTL (p < .05). The heart-rate variability index can be used to objectively identify high CTL flight conditions.Practitioner summary: We used principal component analysis of electrocardiogram data to construct a composite index for identifying high cognitive task load in pilots during simulated flight. We validated the index in a separate group of pilots under similar conditions. The index can be used to improve cadet training and flight safety.Abbreviations: ANOVA: a one-way analysis of variance; AP: anti-gravity pedaling task; CTL: cognitive task load; ECG: electrocardiograms; HR: heart rate; HRV: heart-rate variability; HRVI: heart-rate variability index; PT: plane-tracking task; RMSSD: root-mean square of differences between consecutive R-R intervals; RT: reaction task; SDNN: standard deviation of R-R intervals; HF: high frequency power; HFnu: normalized HF; LF: low frequency power; LFnu: normalized LF; PCA: principal component analysis.


Asunto(s)
Cognición , Electrocardiografía , Humanos , Frecuencia Cardíaca/fisiología , Análisis de Componente Principal
11.
Angew Chem Int Ed Engl ; : e202408414, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850273

RESUMEN

Transition metal oxides (TMOs) are promising cathode materials for aqueous zinc ion batteries (ZIBs), however, their performance is hindered by a substantial Hubbard gap, which limits electron transfer and battery cyclability. Addressing this, we introduce a heteroatom coordination approach, using triethanolamine to induce axial N coordination on Mn centers in MnO2, yielding N-coordinated MnO2 (TEAMO). This approach leverages the change of electronegativity disparity between Mn and ligands (O and N) to disrupt spin symmetry and augment spin polarization. This enhancement leads to the closure of the Hubbard gap, primarily driven by the intensified occupancy of the Mn eg orbitals. The resultant TEAMO exhibit a significant increase in storage capacity, reaching 351 mAh g-1 at 0.1 A g-1. Our findings suggest a viable strategy for optimizing the electronic structure of TMO cathodes, enhancing the potential of ZIBs in energy storage technology.

12.
Cell Mol Neurobiol ; 43(3): 1181-1196, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35661286

RESUMEN

Lanthanum (La) is a natural rare-earth element that can damage the central nervous system and impair learning and memory. However, its neurotoxic mechanism remains unclear. In this study, adult female rats were divided into 4 groups and given distilled water solution containing 0%, 0.125%, 0.25%, and 0.5% LaCl3, respectively, and this was done from conception to the end of the location. Their offspring rats were used to establish animal models to investigate LaCl3 neurotoxicity. Primary neurons cultured in vitro were treated with LaCl3 and infected with LKB1 overexpression lentivirus. The results showed that LaCl3 exposure resulted in abnormal axons in the hippocampus and primary cultured neurons. LaCl3 reduced the expression of LKB1, p-LKB1, STRAD and MO25 proteins, and directly or indirectly affected the expression of LKB1, leading to decreased activity of LKB1-MARK2 and LKB1-STK25-GM130 pathways. This study indicated that LaCl3 exposure could interfere with the normal effects of LKB1 in the brain and downregulate LKB1-MARK2 and LKB1-STK25-GM130 signaling pathways, resulting in abnormal axon in offspring rats.


Asunto(s)
Axones , Lantano , Ratas , Femenino , Animales , Lantano/toxicidad , Ratas Wistar , Transducción de Señal , Proteínas Serina-Treonina Quinasas
13.
Theor Appl Genet ; 136(4): 75, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36952042

RESUMEN

KEY MESSAGE: A 448 kb region on chromosome B02 was delimited to be associated with trichome trait in Brassica juncea, in which the BjuVB02G54610 gene with a structural variation of 3 kb structure variation (SV) encoding a MYB transcription factor was predicted as the possible candidate gene. Mustards (Brassica juncea) are allopolyploid crops in the worldwide, and trichomes are essential quality attributes that significantly influence its taste and palpability in vegetable-use cultivars. As important accessory tissues from specialized epidermal cells, trichomes also play an important role in mitigating biotic and abiotic stresses. In this study, we constructed a F2 segregating population using YJ27 with intensive trichome leaves and 03B0307 with glabrous leaves as parents. By bulked segregant analysis (BSA-seq), we obtained a 2.1 Mb candidate region on B02 chromosome associated with the trichome or glabrous trait formation. Then, we used 13 Kompetitive Allele Specific PCR (KASP) markers for fine mapping and finally narrowed down the candidate region to about 448 kb in length. Interestingly, among the region, there was a 3 kb sequence deletion that located on the BjuVB02G54610 gene in the F2 individuals with trichome leaves. Genotyping results of F2 populations confirmed this deletion (R2 = 81.44%) as a major QTL. Natural population re-sequencing analysis and genotyping results further validated the key role of the 3 kb structure variation (SV) of insertion/deletion type in trichome development in B. juncea. Our findings provide important information on the formation of trichomes and potential target gene for breeding vegetable mustards.


Asunto(s)
Planta de la Mostaza , Tricomas , Humanos , Planta de la Mostaza/genética , Tricomas/genética , Fitomejoramiento , Fenotipo , Factores de Transcripción/genética , Verduras
14.
Theor Appl Genet ; 136(9): 199, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624448

RESUMEN

KEY MESSAGE: The ClACO gene encoding 1-aminocyclopropane-1-carboxylate oxidase enabled highly efficient 15N uptake in watermelon. Nitrogen is one of the most essential nutrient elements that play a pivotal role in regulating plant growth and development for crop productivity. Elucidating the genetic basis of high nitrogen uptake is the key to improve nitrogen use efficiency for sustainable agricultural productivity. Whereas previous researches on nitrogen absorption process are mainly focused on a few model plants or crops. To date, the causal genes that determine the efficient nitrogen uptake of watermelon have not been mapped and remains largely unknown. Here, we fine-mapped the 1-aminocyclopropane-1-carboxylate oxidase (ClACO) gene associated with nitrogen uptake efficiency in watermelon via bulked segregant analysis (BSA). The variations in the ClACO gene led to the changes of gene expression levels between two watermelon accessions with different nitrogen uptake efficiencies. Intriguingly, in terms of the transcript abundance of ClACO, it was concomitant with significant differences in ethylene evolutions in roots and root architectures between the two accessions and among the different genotypic offsprings of the recombinant BC2F1(ZJU132)-18. These findings suggest that ethylene as a negative regulator altered nitrogen uptake efficiency in watermelon by controlling root development. In conclusion, our current study will provide valuable target gene for precise breeding of 'green' watermelon varieties with high-nitrogen uptake efficiencies.


Asunto(s)
Etilenos , Fitomejoramiento , Alelos , Nitrógeno
15.
J Biochem Mol Toxicol ; 37(11): e23451, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37393519

RESUMEN

Sanguinarine is an alkaloid with diverse biological activities, nevertheless, whether it can target epigenetic modifiers remains unknown. In this study, sanguinarine was characterized as a strong BRD4 inhibitor with IC50 = 361.3 nM against BRD4 (BD1) and IC50 = 302.7 nM against BRD4 (BD2) that can inactivate BRD4 reversibly. Additional cellular assays suggested that sanguinarine can bind BRD4 in human clear cell renal cell carcinoma (ccRCC) cell line 786-O and inhibit cell growth with IC50 (24 h) = 0.6752 µM and IC50 (48 h) = 0.5959 µM in a BRD4 dependent manner partially. Meanwhile, sanguinarine can inhibit the migration of 786-O cells in vitro and in vivo, and reverse epithelial-mesenchymal transition. Moreover, it can inhibit 786-O cells proliferation in vivo in a BRD4 dependent manner partially. In sum, our study identified BRD4 as a new target of sanguinarine, and sanguinarine may serve as a potential therapeutic agent against ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proliferación Celular , Neoplasias Renales/tratamiento farmacológico , Línea Celular Tumoral , Proteínas de Ciclo Celular
16.
J Nerv Ment Dis ; 211(1): 23-28, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926188

RESUMEN

ABSTRACT: Sleep disorders persist in renal transplant patients. Previous studies have showed that fatigue and rumination are an important determinant of sleep quality. However, very few studies have explored the mediating role of rumination in the relationship between fatigue and sleep quality in kidney transplant recipients. A descriptive cross-sectional research design was implemented, and 192 kidney transplant patients completed the short questionnaire about their recent experiences of fatigue, rumination, and sleep quality. The prevalence of sleep disorders among kidney transplant recipients was 19.3%. With rumination as a partial mediator, fatigue indirectly affected the patients' sleep quality. This indirect effect was 0.10 (95% confidence interval, 0.154-0.419). Our results indicate that the incidence of sleep disorders after renal transplantation was high, and the more tired kidney transplant recipients become, the more likely they are to ruminate, which leads to a decline in sleep quality.


Asunto(s)
Trasplante de Riñón , Trastornos del Sueño-Vigilia , Humanos , Calidad del Sueño , Trasplante de Riñón/efectos adversos , Estudios Transversales , Encuestas y Cuestionarios , Fatiga/epidemiología , Fatiga/etiología , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/etiología , Sueño
17.
BMC Nephrol ; 24(1): 50, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36894904

RESUMEN

BACKGROUND: Early diagnosis and typing are crucial for improving the prognosis of patients with renal amyloidosis. Currently, Untargeted proteomics based precise diagnosis and typing of amyloid deposits are crucial for guiding patient management. Although untargeted proteomics achieve ultra-high-throughput by selecting the most abundant eluting cationic peptide precursors in series for tandem MS events, it lacks in sensitivity and reproducibility, which may not be suitable for early-stage renal amyloidosis with minor damages. Here, we aimed to develop parallel reaction monitoring (PRM)-based targeted proteomics to achieve high sensitivity and specificity by determining absolute abundances and codetecting all transitions of highly repeatable peptides of preselected amyloid signature and typing proteins in identifying early-stage renal immunoglobulin-derived amyloidosis. METHODS AND RESULTS: In 10 discovery cohort cases, Congo red-stained FFPE slices were micro-dissected and analyzed by data-dependent acquisition-based untargeted proteomics for preselection of typing specific proteins and peptides. Further, a list of proteolytic peptides from amyloidogenic proteins and internal standard proteins were quantified by PRM-based targeted proteomics to validate performance for diagnosis and typing in 26 validation cohort cases. The diagnosis and typing effectiveness of PRM-based targeted proteomics in 10 early-stage renal amyloid cases was assessed via a comparison with untargeted proteomics. A peptide panel of amyloid signature proteins, immunoglobulin light chain and heave chain in PRM-based targeted proteomics showed significantly distinguishing ability and amyloid typing performance in patients. The diagnostic algorithm of targeted proteomics with a low amount of amyloid deposits in early-stage renal immunoglobulin-derived amyloidosis showed better performance than untargeted proteomics in amyloidosis typing. CONCLUSIONS: This study demonstrates that the utility of these prioritized peptides in PRM-based targeted proteomics ensure high sensitivity and reliability for identifying early-stage renal amyloidosis. Owing to the development and clinical application of this method, rapid acceleration of the early diagnosis, and typing of renal amyloidosis is expected.


Asunto(s)
Amiloidosis , Proteómica , Humanos , Reproducibilidad de los Resultados , Proteómica/métodos , Placa Amiloide , Espectrometría de Masas/métodos , Amiloidosis/diagnóstico , Amiloidosis/metabolismo , Amiloide , Cadenas Ligeras de Inmunoglobulina
18.
Ecotoxicol Environ Saf ; 264: 115401, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37634479

RESUMEN

PURPOSE: Aluminum is an environmental toxicant whose long-term exposure is closely associated with nervous system impairment. This study mainly investigated neurological impairment induced by subchronic aluminum exposure via activating NLRP3-medicated pyroptosis pathway. METHODS: In vivo, Kunming mice were exposed to AlCl3 (30.3 mg/kg, 101 mg/kg and 303 mg/kg) via drinking water for 3 months, and administered with Rsv (100 mg/kg) by gavage for 1 month. Cognitive impairment was assessed by Morris water maze test, and pathological injury was detected via H&E staining. BBB integrity, pyroptosis and neuroinflammation were evaluated through western blotting and immunofluorescence methods. In vitro, BV2 microglia was treated with AlCl3 (0.5 mM, 1 mM and 2 mM) to sensitize pyroptosis pathway. The protein interaction was verified by co-immunoprecipitation, and neuronal damage was estimated via a conditioned medium co-culture system with BV2 and TH22 cells. RESULTS: Our results showed that AlCl3 induced mice memory disorder, BBB destruction, and pathological injury. Besides, aluminum caused glial activation, sensitized DDX3X-NLRP3 pyroptosis pathway, released cytokines IL-1ß and IL-18, initiating neuroinflammation. BV2 microglia treated with AlCl3 emerged hyperactivation and pyroptotic death, and Ddx3x knockdown inhibited pyroptosis signaling pathway. DDX3X acted as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome and G3BP1 stress granules. Furthermore, aluminum-activated microglia had an adverse effect on co-cultured neurons and destroyed nervous system homeostasis. CONCLUSION: Aluminum exposure could induce pyroptosis and neurotoxicity. DDX3X determined live or die via selectively regulating pro-survival stress granules or pro-death NLRP3 inflammasome. Excessive activation of microglia might damage neurons and aggravate nerve injury.


Asunto(s)
Inflamasomas , Piroptosis , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Aluminio/metabolismo , Enfermedades Neuroinflamatorias , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN , Sistema Nervioso Central
19.
Ecotoxicol Environ Saf ; 250: 114496, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608567

RESUMEN

The prevalence of lung cancer in women currently merits our attentions. However, cigarette exposure alone does not tell the whole story that lung cancer is more prevalent among non-smoking women. Since female lung cancer is closely linked to estrogen levels, many of endocrine disrupting chemicals (EDCs), as the substances similar to estrogen, affect hormone levels and become a potential risk of female lung cancer. Additionally, the combined toxicity of EDCs in daily environment has only been discussed on a limited scale. Consequently, this study explored the cancer-promoting effect of two representative substances of EDCs namely Bisphenol A (BPA) and Di(2-Ethylhexyl) Phthalate (DEHP) after their exposure alone or in combination, using a rat pulmonary tumor model published previously, combining bioinformatics analysis based on The Comparative Toxicogenomics Database (CTD) and The Cancer Genome Atlas (TCGA) databases. It demonstrated that BPA and DEHP enhanced the promotion of pulmonary tumor in female rats, either alone or in combination. Mechanistically, BPA and DEHP mainly directly bound and activated ESR2 protein, phosphorylated CREB protein, activated HDAC6 transcriptionally, induced the production of the proto-oncogene c-MYC, and accelerated the formation of pulmonary tumor in female rats. Remarkably, BPA, rather than DEHP, exhibited a much more critical effect in female lung cancer. Additionally, the transcription factor ESR2 was most affected in carcinogenesis, causing genetic disruption. Furthermore, the TCGA database revealed that ESR2 could enhance the promotion and progression of non-small cell lung cancer in females via activating the WNT/ß-catenin pathway. Finally, our findings demonstrated that BPA and DEHP could enhance the promotion of pulmonary carcinoma via ESR2 in female rats and provide a potential and valuable insight into the causes and prevention of lung cancer in non-smoking women due to EDCs exposure.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Dietilhexil Ftalato , Disruptores Endocrinos , Neoplasias Pulmonares , Animales , Femenino , Ratas , Compuestos de Bencidrilo/toxicidad , Carcinoma de Pulmón de Células no Pequeñas/inducido químicamente , Carcinoma de Pulmón de Células no Pequeñas/genética , Dietilhexil Ftalato/toxicidad , Disruptores Endocrinos/toxicidad , Receptor beta de Estrógeno , Estrógenos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética
20.
Ecotoxicol Environ Saf ; 249: 114373, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508838

RESUMEN

INTRODUCTION: Aluminum is everywhere in nature and is a recognized neurotoxicant closely associated with various neurodegenerative diseases. Neuroinflammation occurs in the early stage of neurodegenerative diseases, but the underlying mechanism by which aluminum induces neuroinflammation remains unclear. MATERIAL AND METHODS: A 3-month subchronic aluminum exposure mouse model was established by drinking water containing aluminum chloride (AlCl3). Microglia BV2 cells and hippocampal neuron HT22 cells were treated with AlCl3 in vitro. BBG and YC-1 were used as intervention agents. RESULTS: Aluminum could activate microglia and increase the level of extracellular ATP, stimulate P2X7 receptor, HIF-1α, activate NLRP3 inflammasome and CASP-1, release more cytokine IL-1ß, and induce an inflammatory response in nerve cells. There was a mutual regulatory relationship between P2X7 and HIF-1α at mRNA and protein levels. The co-culture system of BV2-HT22 cells observed that conditioned medium from microglia treated with aluminum could aggravate neuronal morphological damage, inflammatory response and death. While BBG and YC-1 intervention could rescue these injuries to some extent. CONCLUSION: The P2X7-NLRP3 pathway was involved in aluminum-induced neuroinflammation and injury. P2X7 and HIF-1α might mutually regulate and promote the progression of neuroinflammation, both BBG and YC-1 could relieve it.


Asunto(s)
Aluminio , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Receptores Purinérgicos P2X7 , Animales , Ratones , Aluminio/toxicidad , Aluminio/metabolismo , Inflamasomas/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA