Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nanobiotechnology ; 21(1): 162, 2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37211601

RESUMEN

Large-scale skin damage brings potential risk to patients, such as imbalance of skin homeostasis, inflammation, fluid loss and bacterial infection. Moreover, multidrug resistant bacteria (MDRB) infection is still a great challenge for skin damage repair. Herein, we developed an injectable self-healing bioactive nanoglass hydrogel (FABA) with robust antibacterial and anti-inflammatory ability for normal and Methicillin-resistant Staphylococcus aureus (MRSA) infected skin wound repair. FABA hydrogel was fabricated facilely by the self-crosslinking of F127-CHO (FA) and alendronate sodium (AL)-decorated Si-Ca-Cu nanoglass (BA). FABA hydrogel could significantly inhibit the growth of Staphylococcus aureus, Escherichia coli and MRSA in vitro, while showing good cytocompatibility and hemocompatibility. In addition, FABA hydrogel could inhibit the expression of proinflammatory factor TNF-α and enhance the expression of anti-inflammatory factor IL-4/ IL-10. Based on its versatility, FABA hydrogel could complete wound closure efficiently (75% at day 3 for normal wound, 70% at day 3 for MRSA wound), which was almost 3 times higher than control wound, which was related with the decrease of inflammatory factor in early wound. This work suggested that FABA hydrogel could be a promising dressing for acute and MRSA-infected wound repair.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Humanos , Hidrogeles/farmacología , Staphylococcus aureus , Alendronato , Antibacterianos/farmacología , Escherichia coli
2.
Artículo en Inglés | MEDLINE | ID: mdl-37917908

RESUMEN

Lung cancer, with lung adenocarcinoma comprising over 40% of cases, presents a global health challenge. Evidence indicates that long non-coding RNAs (lncRNAs), such as GUSBP11, could have therapeutic potential. Thus we explored the role and mechanism of GUSBP11 in lung adenocarcinoma. Bioinformatics analyses demonstrated GUSBP11 was upregulated in lung adenocarcinoma and was correlated with worsening prognosis. Quantitative PCR (qPCR) analysis revealed that of GUSBP11 was highly expressed in 61 paired lung adenocarcinoma patient tumor compared to paracancerous tissue samples. GUSBP11 knockdown suppressed lung adenocarcinoma cells proliferation and metastasis in vitro while promoted cell apoptosis, and the silencing of GUSBP11 impaired in vivo tumor growth in lung adenocarcinoma. Mechanistic insights revealed GUSBP11's role in inhibiting the regulatory functions of KHSRP, a protein essential for lung adenocarcinoma cell proliferation and metastasis. Taken together, our findings underscore the therapeutic and diagnostic potential of targeting the GUSBP11-KHSRP axis in lung adenocarcinoma, paving the way for further exploration in clinical settings.

3.
Clin Exp Allergy ; 52(1): 46-58, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33999474

RESUMEN

BACKGROUND: Allergic asthma is a common inflammatory lung disease and a major health problem worldwide. Mast cells (MCs) play a key role in the early-stage pathophysiology of allergic asthma. Substance P (SP) functions in neurogenic inflammation by activating MCs, and therefore, it may to participate in the occurrence and development of asthma. OBJECTIVE: We examined the relationship between SP and lung inflammation, and also whether SP can directly trigger asthma. METHODS: We measured the number of peripheral blood eosinophils, neutrophils and basophils and evaluated the levels of IgE and SP in blood samples of 86 individuals with allergic asthma. Serum IgE and SP levels were also determined in 29 healthy individuals. C57BL/6 mice were subjected to different doses of SP, and bronchoalveolar lavage fluid (BALF) was collected to count the inflammatory cells. Lung tissues were analysed using histopathological methods to evaluate lung peribronchial inflammation, fibrosis and glycogen deposition. Levels of IgE, interleukin (IL)-1, IL-2, IL-4, IL-5, IL-13, IL-17 and IFN-γ were determined in mouse serum. RESULTS: Substance P levels were increased in the serum samples of patients with asthma. SP induced mouse lung peribronchial inflammation, fibrosis and glycogen deposition, with high levels of Th2-related cytokines such as IL-4, IL-5 and IL-13 observed in the BALF. Furthermore, low level of total IgE was noted in the serum, and SP had little effect on MC-deficient kitW-sh/W-sh mice. CONCLUSIONS & CLINICAL RELEVANCE: Substance P levels increased significantly in serum of asthmatic patients and independently associated with the risk of asthma. Furthermore, SP induced Th2 lung inflammation in mice, which was dependent on MCs.


Asunto(s)
Neumonía , Sustancia P , Animales , Líquido del Lavado Bronquioalveolar , Citocinas , Modelos Animales de Enfermedad , Humanos , Pulmón , Mastocitos , Ratones , Ratones Endogámicos C57BL , Neumonía/patología
4.
Environ Toxicol ; 37(10): 2375-2387, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35785413

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an interstitial pulmonary disease with slow onset and high mortality. Epithelial-mesenchymal transition (EMT) is a significant condition for tissue fibrosis, and lncRNA-Snhg6 (small nucleolar RNA host gene 6) is related to EMT in some cancer cells, but its role in pulmonary fibrosis remains obscure. Here, we found that TGF-ß1 and Snhg6 were up-regulated in lung tissues of BLM-induced lung fibrosis mouse, and Snhg6 expression was significantly increased in primary lung fibroblasts after BLM treatment. Snhg6 knockdown notably alleviated the pulmonary dysfunction, and the increase of fibrosis area and collagen deposition induced by BLM. MiR-26a-5p was downregulated in BLM-induced fibrotic lung tissues, and it was negatively regulated by Snhg6. Silencing Snhg6 markedly alleviated the TGF-ß1-induced increase in fibrotic marker expression, cell proliferation, migration and differentiation, as well as the nuclear transport of p-Smad2/3 by modulating miR-26a-5p expression in mouse lung fibroblasts. Moreover, overexpressing Snhg6-induced collagen accumulation and fibroblast activation in fibroblasts, which was reversed by treatment with miR-26a-5p mimic or oxymatrine (an inhibitor of TGF-ß1-Smads pathway). Interestingly, silencing Snhg6 in vivo mitigated BLM-driven pulmonary fibrosis by regulating the miR-26a-5p/TGF-ß1-Smads axis. Our data revealed that Snhg6 contributed to the process of BLM-driven lung fibrosis in mouse by modulating the miR-26a-5p/TGF-ß1-Smads axis, suggesting that Snhg6 might be a therapeutic target for lung fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , MicroARNs , ARN Largo no Codificante , Animales , Bleomicina/toxicidad , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
5.
J Cell Mol Med ; 25(2): 827-839, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33249703

RESUMEN

Previously, we identified differentially expressed proteins, including ADFP, between lung adenocarcinoma (LAC) tissue and paired normal bronchioloalveolar epithelium. In this study, we investigated the role of ADFP in LAC. ADFP levels in the serum of patients with lung cancer and benign diseases were measured by enzyme-linked immunosorbent assays (ELISA). shRNA was used to knock-down or overexpress ADFP in A549 and NCI-H1299 cells. The biological function of ADFP and its underlying mechanisms was evaluated in vivo and in vitro. ADFP was highly expressed in the serum of lung cancer patients, especially those with LAC. ADFP promoted cell proliferation and up-regulated the p-Akt/Akt ratio in A549 and NCI-H1299 cells in vitro. Furthermore, in nude mice, ADFP promoted tumour formation with high levels of p-Akt/Akt, Ki67 and proliferating cell nuclear antigen (PCNA). Similar to the effect of ADFP knock-down, MK-2206 (a phosphorylation inhibitor of Akt) reduced A549 and NCI-H1299 cell proliferation. In ADFP-overexpressing A549 and NCI-H1299 cells, proliferation was suppressed by MK-2206 and returned to the control level. ADFP did not regulate invasion, migration or adhesion in LAC cells. Together, these results suggest that ADFP promotes LAC cell proliferation in vitro and in vivo by increasing Akt phosphorylation level.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Perilipina-2/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cicatrización de Heridas/fisiología , Células A549 , Adenocarcinoma del Pulmón/genética , Animales , Línea Celular Tumoral , Femenino , Citometría de Flujo , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Perilipina-2/genética , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Cicatrización de Heridas/genética
6.
Acta Biochim Biophys Sin (Shanghai) ; 53(2): 189-200, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33332541

RESUMEN

miR-195-5p has been widely explored in various cancers and is considered as a tumor-suppressive microRNA. However, its roles in human lung cancer pathogenesis are not fully elucidated. In this study, we aimed to explore how miR-195-5p is involved in malignant behaviors of lung adenocarcinoma (LUAD) cells. miR-195-5p expression was examined in the tumor tissues of patients with LUAD and human LUAD cell lines including A549 and PC-9. Thioredoxin reductase 2 (TrxR2) was predicted to be an mRNA target of miR-195-5p using online tools and validated by the Dual-Luciferase Reporter Assay. Lentivirus infection was used for gene overexpression, while gene knockdown was achieved by RNA interference. Cell proliferation was determined by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine methods, and cell migration and invasion were assayed with transwell experiments. Cell apoptosis was determined by annexin V staining-based flow cytometry. The antitumor effects of miR-195-5p were also evaluated in nude mice xenografted with A549 cells. We found that miR-195-5p was lowly expressed in human LUAD cells, and its overexpression markedly suppressed cell proliferation, migration, and invasion and increased the apoptosis of LUAD cells in vitro. TrxR2 knockdown phenocopied the tumor-suppressive effects of miR-195-5p overexpression, while simultaneous TrxR2 overexpression remarkably reversed the effects of miR-195-5p overexpression on malignant behaviors of A549 and PC-9 cells. Additionally, miR-195-5p overexpression inhibited the growth of xenografted A549 tumor in nude mice. Our work verified that miR-195-5p exerts tumor-suppressive functions in LUAD cells through targeting TrxR2 and suggested that the miR-195-5p/TrxR2 axis is a potential biomarker for LUAD therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Genes Supresores de Tumor , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Tiorredoxina Reductasa 2/metabolismo , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN Neoplásico/genética , Tiorredoxina Reductasa 2/genética
7.
Environ Toxicol ; 36(11): 2225-2235, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34323359

RESUMEN

Angiomotin-like 2 (AMOTL2) is a key modulator of signaling transduction and participates in the regulation of various cellular progresses under diverse physiological and pathological conditions. However, whether AMOTL2 participates in asthma pathogenesis has not been fully studied. In the present work, we studied the possible role and mechanism of AMOTL2 in regulating transforming growth factor-ß1 (TGF-ß1)-induced proliferation and extracellular matrix (ECM) deposition of airway smooth muscle (ASM) cells. Our results showed marked reductions in the abundance of AMOTL2 in TGF-ß1-stimulated ASM cells. Cellular functional investigations confirmed that the up-regulation of AMOTL2 dramatically decreased the proliferation and ECM deposition induced by TGF-ß1 in ASM cells. In contrast, the depletion of AMOTL2 exacerbated TGF-ß1-induced ASM cell proliferation and ECM deposition. Further research revealed that the overexpression of AMOTL2 restrained the activation of Yes-associated protein 1 (YAP1) in TGF-ß1-stimulated ASM cells. Moreover, the reactivation of YAP1 markedly reversed AMOTL2-mediated suppression of TGF-ß1-induced ASM cell proliferation and ECM deposition. Together, these findings suggest that AMOTL2 restrains TGF-ß1-induced proliferation and ECM deposition of ASM cells by down-regulating YAP1 activation.


Asunto(s)
Proteínas Portadoras/genética , Matriz Extracelular , Miocitos del Músculo Liso , Factor de Crecimiento Transformador beta1 , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proliferación Celular , Células Cultivadas , Regulación hacia Abajo , Ratones , Miocitos del Músculo Liso/citología , Factor de Crecimiento Transformador beta1/farmacología , Proteínas Señalizadoras YAP
8.
Dokl Biochem Biophys ; 499(1): 266-272, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34426925

RESUMEN

The present study investigated Boerhaavia diffusa extract against Mycobacterium tuberculosis H37Rv (M.tb) infection in vitro and explored the underlying mechanism. The study demonstrated that Boerhaavia diffusa extract significantly (p < 0.05) reduced RAW 264.7 and A549 cell viability in concentration dependent manner. In BEAS-2B, NuLi-1 cells and splenocytes no significant (p > 0.05) reduction in viability was observed on treatment with 2.5 to 20 mg/L concentrations of Boerhaavia diffusa. The M. tb­induced increase in TNF­α expression was significantly (p < 0.05) reversed by Boerhaavia diffusa treatment in RAW 264.7 and BEAS-2B cells. Moreover, Boerhaavia diffusa treatment significantly (p < 0.05) inhibited M.tb­induced increase in IL-6 and IL­1ß expression in RAW 264.7 and BEAS-2B cells. Boerhaavia diffusa treatment of RAW 264.7 and BEAS-2B cells significantly (p < 0.05) reversed M.tb­induced increase in iNOS and COX­2 expression. Additionally, in Boerhaavia diffusa treated cells M.tb­induced increase in NO release was significantly (p < 0.05) reduced compared to untreated cells. In summary, Boerhaavia diffusa treatment inhibits pro-inflammatory cytokine production, NO release and regulate immunomodulatory mediators in M.tb­infected RAW 264.7 and BEAS-2B cells. Therefore, Boerhaavia diffusa may be developed as a therapeutic agent for treatment of M.tb­infection.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Nyctaginaceae/química , Extractos Vegetales/farmacología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Mycobacterium tuberculosis/fisiología , Células RAW 264.7
9.
Carcinogenesis ; 41(11): 1529-1542, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32603404

RESUMEN

K-ras mutant lung adenocarcinoma (LUAD) is the most common type of lung cancer, displays abysmal prognosis and is tightly linked to tumor-promoting inflammation, which is increasingly recognized as a target for therapeutic intervention. We have recently shown a gender-specific role for epithelial Stat3 signaling in the pathogenesis of K-ras mutant LUAD. The absence of epithelial Stat3 in male K-ras mutant mice (LR/Stat3Δ/Δ mice) promoted tumorigenesis and induced a nuclear factor-kappaB (NF-κB)-driven pro-tumor immune response while reducing tumorigenesis and enhancing anti-tumor immunity in female counterparts. In the present study, we manipulated estrogen and NF-κB signaling to study the mechanisms underlying this intriguing gender-disparity. In LR/Stat3Δ/Δ females, estrogen deprivation by bilateral oophorectomy resulted in higher tumor burden, an induction of NF-κB-driven immunosuppressive response, and reduced anti-tumor cytotoxicity, whereas estrogen replacement reversed these changes. On the other hand, exogenous estrogen in males successfully inhibited tumorigenesis, attenuated NF-κB-driven immunosuppression and boosted anti-tumor immunity. Mechanistically, genetic targeting of epithelial NF-κB activity resulted in reduced tumorigenesis and enhanced the anti-tumor immune response in LR/Stat3Δ/Δ males, but not females. Our data suggest that estrogen exerts a context-specific anti-tumor effect through inhibiting NF-κB-driven tumor-promoting inflammation and provide insights into developing novel personalized therapeutic strategies for K-ras mutant LUAD.


Asunto(s)
Adenocarcinoma del Pulmón/inmunología , Transformación Celular Neoplásica/inmunología , Estrógenos/metabolismo , Inmunomodulación , Neoplasias Pulmonares/inmunología , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Femenino , Humanos , Inmunidad/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Mutación , FN-kappa B/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor de Transcripción STAT3/genética , Células Tumorales Cultivadas
10.
J Cell Physiol ; 234(8): 12828-12838, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30549035

RESUMEN

The incidence and mortality of lung cancer ranked the first among all types of cancer in China, and non-small cell lung cancer (NSCLC) is the most common type of lung cancer accounting for 85% of all lung cancers. Given that the survival rate of patients with advanced NSCLC is still poor nowadays, identification of novel therapeutic targets and the development of effective therapies are desired for the treatment of NSCLC in clinics. In this study, we reported the upregulation of ornithine aminotransferase (OAT) in NSCLC cells and clinical tumor samples as well as its association with the advanced TNM stage, metastasis, and poor tumor differentiation of lung cancer. Using different NSCLC cell lines, we demonstrated that OAT promoted the proliferation, invasion, and migration, inhibited the apoptosis, and altered cell cycle of NSCLC cells; besides, the involvement of OAT-miR-21-glycogen synthase kinase-3ß signaling in the functional role of OAT in NSCLC was also revealed. Importantly, in the absence of OAT, the growth and metastasis of tumor lung cancer xenograft was significantly suppressed in the nude mice. Based on our findings, OAT may be a potential novel biomarker for the diagnosis and therapeutic outcome monitoring of NSCLC. Inhibition of OAT may also represent a new therapeutic strategy of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , MicroARNs/efectos de los fármacos , Ornitina-Oxo-Ácido Transaminasa/farmacología , Adulto , Anciano , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Movimiento Celular/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Regulación hacia Arriba
11.
Brain Behav Immun ; 80: 825-838, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31125710

RESUMEN

Psychological stress promotes tumor progression and has a large impact on the immune system, particularly the spleen. The spleen plays an important role in tumor behavior. However, the role and mechanism of the spleen in hepatocellular carcinoma progression induced by stress is unclear. Here, we showed that the spleen plays a critical role in hepatocellular carcinoma growth induced by restraint stress. Our results demonstrated that restraint stress promoted hepatocellular carcinoma growth, changed the spleen structure, and redistributed splenic myeloid cells to tumor tissues. Interestingly, we found that splenectomy could inhibit hepatocellular carcinoma growth and prevent increases in myeloid cells and macrophages in tumor tissues in stressed mice. Restraint stress significantly elevated the concentration of norepinephrine in the spleen, serum and tumor tissues. Meanwhile, propranolol, an inhibitor of ß-adrenergic signaling, could inhibit hepatocellular carcinoma growth and prevent the redistribution of splenic myeloid cells induced by restraint stress, suggesting that restraint stress promotes hepatocellular carcinoma growth and redistributes splenic myeloid cells through ß-adrenergic signaling. Mechanistic studies revealed that restraint stress upregulated the expressions of CXCL2/CXCL3 in tumor tissues and changed the expression of CXCR2 in myeloid cells. SB225002, an inhibitor of CXCR2, could prevent the recruitment of myeloid cells in tumor tissues and inhibit tumor growth in stressed mice. Together, these data indicate that chronic restraint stress promotes hepatocellular carcinoma growth by mobilizing splenic myeloid cells to tumor tissues via activating ß-adrenergic signaling. The CXCR2-CXCL2/CXCL3 axis contributed to the recruitment of myeloid cells in tumor tissues induced by restraint stress.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Bazo/inmunología , Estrés Psicológico/metabolismo , Adrenérgicos , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Quimiocina CXCL2 , Quimiocinas CXC , Neoplasias Hepáticas/metabolismo , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Células Mieloides/inmunología , Células Mieloides/patología , Propranolol/farmacología , Receptores Adrenérgicos beta/metabolismo , Receptores de Interleucina-8B , Restricción Física , Transducción de Señal/efectos de los fármacos , Bazo/patología , Estrés Fisiológico/inmunología , Estrés Psicológico/patología
12.
Tumour Biol ; 39(6): 1010428317705334, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28618934

RESUMEN

Curcumin is a potent anti-cancer drug in several types of human cancers. Despite of several preclinical and clinical studies of curcumin, the precise mechanism of curcumin in cancer prevention has remained unclear. In our study, we for the first time investigated whole transcriptome alteration in A549 non-small cell lung cancer (NSCLC) cell lines after treatment with curcumin using RNA sequencing. We found that lots of genes and signaling pathways were significantly altered after curcumin treatment in A549 cells. With bioinformatics approaches (gene ontology, Kyoto Encyclopedia of Genes and Genomes, and STRING), we found that those curcumin altered genes were not only the genes that induce cell death but also those extracellular matrix receptors and mitogen-activated protein kinase signaling pathway genes which regulate cell migration and proliferation. Among those significantly altered genes, eight genes ( COL1A1, COL4A1, COL5A1, LAMA5, ITGA3, ITGA2B, DDIT3, and DUSP1) were further examined by quantitative reverse transcription polymerase chain reaction and western blot analysis in four non-small cell lung cancer cell lines. Both in cell lines and in mouse model, the extracellular matrix receptors including the integrin ( ITGA3 and ITGA2B), collagen ( COL5A1), and laminin ( LAMA5) were significantly inhibited by curcumin at messenger RNA and protein levels. Functional studies confirmed that curcumin not only induced A549 cell death but also repressed cell proliferation and migration by regulating extracellular matrix receptors. Collectively, our study suggests that curcumin may be used as a promising drug candidate for intervening lung cancer in future studies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Colágeno Tipo V/biosíntesis , Curcumina/administración & dosificación , Integrina alfa2/biosíntesis , Integrina alfa3/biosíntesis , Laminina/biosíntesis , Células A549 , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colágeno Tipo V/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Integrina alfa2/genética , Integrina alfa3/genética , Laminina/genética , Ratones , ARN Mensajero/biosíntesis , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cell Biol Toxicol ; 32(3): 169-84, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27095254

RESUMEN

Acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome that occurs as a result of various risk factors, including either direct or indirect lung injury, and systemic inflammation triggered also by severe pneumonia (SP). SP-ARDS-associated morbidity and mortality remains high also due to the lack of disease-specific biomarkers. The present study aimed at identifying disease-specific biomarkers in SP or SP-ARDS by integrating proteomic profiles of inflammatory mediators with clinical informatics. Plasma was sampled from the healthy as controls or patients with SP infected with bacteria or infection-associated SP-ARDS on the day of admission, day 3, and day 7. About 15 or 52 cytokines showed significant difference between SP and SP-ARDS patients with controls or 13 between SP-ARDS with SP alone and controls, including bone morphogenetic protein-15 (BMP-15), chemokine (C-X-C motif) ligand 16 (CXCL16), chemokine (C-X-C motif) receptor 3 (CXCR3), interleukin-6 (IL-6), protein NOV homolog (NOV/CCN3), glypican 3, insulin-like growth factor binding protein 4 (IGFBP-4), IL-5, IL-5 R alpha, IL-22 BP, leptin, MIP-1d, and orexin B with a significant correlation with Digital Evaluation Score System (DESS) scores. ARDS patients with overexpressed IL-6, CXCL16, or IGFBP-4 had significantly longer hospital stay and higher incidence of secondary infection. We also found higher levels of those mediators were associated with poor survival rates in patients with lung cancer and involved in the process of the epithelial mesenchymal transition of alveolar epithelial cells. Our preliminary study suggested that integration of proteomic profiles with clinical informatics as part of clinical bioinformatics is important to validate and optimize disease-specific and disease-staged biomarkers.


Asunto(s)
Mediadores de Inflamación/sangre , Neumonía/sangre , Síndrome de Dificultad Respiratoria/sangre , Adulto , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Quimiocina CXCL6/sangre , Citocinas/sangre , Femenino , Humanos , Inflamación/sangre , Inflamación/patología , Interleucina-6/sangre , Masculino , Informática Médica/métodos , Persona de Mediana Edad , Neumonía/diagnóstico , Neumonía/patología , Pronóstico , Proteómica , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/patología
14.
Int Immunopharmacol ; 130: 111798, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38442583

RESUMEN

Asthma is a serious global health problem affecting 300 million persons around the world. Mast cells (MCs) play a major role in airway hyperresponsiveness (AHR) and inflammation in asthma, their exact effector mechanisms remain unclear. Here, we aim to investigate the inhibitory effect of Bergapten (BER) on MRGPRX2-mediated MCs activation through asthma model. Mouse model of asthma was established to examine the anti-asthmatic effects of BER. Calcium (Ca2+) influx, ß-hexosaminidase and histamine release were used to assess MCs degranulation in vitro. RNA-Seq technique was conducted to study the gene expression profile. RT-PCR and Western Blotting were performed to examine targeting molecules expression. BER inhibited AHR, inflammation, mucous secretion, collagen deposition and lung MCs activation in asthma model. BER dramatically reduced levels of IL4, IL-5, and IL-13 in bronchoalveolar lavage fluid (BALF), as well as inflammatory cells. BER also reduced serum IgE levels. Pretreatment MCs with BER inhibited substance P (SP)-induced Ca2+ influx, degranulation and cytokines release from MCs. BER also reduced the phosphorylation levels of PKC, PLC, IP3R, AKT and ERK, which were induced by SP. Furthermore, RNA-seq analysis showed that SP up-regulated 68 genes in MCs, while were reversed by BER. Among these 68 genes, SP up-regulated NR4A1 expression, and this effect was inhibited by BER. Meanwhile, knockdown of NR4A1 significantly attenuated SP-induced MCs degranulation. In conclusion, NR4A1 plays a major role in MRGPRX2-mediated MCs activation, BER inhibited AHR and inflammation in asthmatic model by inhibiting MCs activation through MRGPRX2-NR4A1 pathway.


Asunto(s)
5-Metoxipsoraleno , Antiinflamatorios , Asma , Mastocitos , Animales , Ratones , 5-Metoxipsoraleno/farmacología , 5-Metoxipsoraleno/uso terapéutico , Asma/tratamiento farmacológico , Degranulación de la Célula , Inflamación/tratamiento farmacológico , Pulmón/metabolismo , Mastocitos/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Sustancia P/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratones Endogámicos C57BL , Femenino
15.
Cell Signal ; 113: 110962, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931691

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is a prevalent and aggressive malignancy with limited therapeutic options. Despite advances in treatment, NSCLC remains a major cause of cancer-related death worldwide. Tumor heterogeneity and therapy resistance present challenges in achieving remission. Research is needed to provide molecular insights, identify new targets, and develop personalized therapies to improve outcomes. METHODS: The protein expression level and prognostic value of DHX38 in NSCLC were explored in public databases and NSCLC tissue microarrays. DHX38 knockdown and overexpression cell lines were established to evaluate the role of DHX38 in NSCLC. In vitro and in vivo functional experiments were conducted to assess proliferation and metastasis. To determine the underlying molecular mechanism of DHX38 in human NSCLC, proteins that interact with DHX38 were isolated by IP and identified by LC-MS. KEGG analysis of DHX38-interacting proteins revealed the molecular pathway of DHX38 in human NSCLC. Abnormal pathway activation was verified by Western blot analysis and immunohistochemical (IHC) staining. A molecule-specific inhibitor was further used to explore potential therapeutic targets for NSCLC. The pathway-related target that interacted with DHX38 was verified by co-immunoprecipitation(co-IP) experiments. In cell lines with stable DHX38 overexpression, the target protein was knocked down to explore its complementary effect on DHX38 overexpression-induced tumor promotion. RESULTS: The protein expression of DHX38 was increased in NSCLC, and patients with high DHX38 expression levels had a poor prognosis. In vitro and in vivo experiments showed that DHX38 promoted the proliferation, migration and invasion of human NSCLC cells. DHX38 overexpression caused abnormal activation of the MAPK pathway and promoted epithelial-mesenchymal transition (EMT) in tumours. SCH772984, a novel specific ERK1/2 inhibitor, significantly reduced the increases in cell proliferation, migration and invasion caused by DHX38 overexpression. The co-IP experiments confirmed that DHX38 interacted with the Ras GTPase-activating protein-binding protein G3BP1. DHX38 regulated the expression of G3BP1. Knocking down G3BP1 in cells with stable DHX38 overexpression prevented DHX38-induced tumor cell proliferation, migration and invasion. Silencing G3BP1 reversed the MAPK pathway activation and EMT induced by DHX38 overexpression. CONCLUSION: In NSCLC, DHX38 functions as a tumor promoter. DHX38 modulates G3BP1 expression, leading to the activation of the MAPK signaling pathway, thus promoting tumor cell proliferation, metastasis, and the progression of epithelial-mesenchymal transition (EMT) in non-small cell lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , ADN Helicasas/metabolismo , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Helicasas/metabolismo , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Factores de Empalme de ARN/metabolismo , ARN Helicasas DEAD-box/metabolismo
16.
Int J Biochem Cell Biol ; 169: 106552, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403048

RESUMEN

Our study identified a novel long noncoding RNA, LINC01322, that acts as an oncogene in lung adenocarcinoma progression. Cytoplasmic and nuclear RNA purification assays indicated that LINC01322 was localized in the cytoplasm and nucleus. Gene set enrichment analysis revealed the involvement of LINC01322 in the regulation of cell proliferation, migration, and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. LINC01322 may promote lung adenocarcinoma proliferation and migration through the Janus kinase/signal transducer and activator of transcription signaling pathway. In vitro experiments demonstrated that the knockdown of LINC01322 significantly suppressed lung adenocarcinoma cell proliferation, migration, and activation of the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway, whereas overexpression had the opposite effects. Inhibition of the Janus kinase 2/signal transducer and activator of transcription 3 pathway activity partially reversed the enhancement of cell proliferation and migration caused by LINC01322 overexpression. In vivo experiments further verified the oncogene role of LINC01322. Altogether, our findings suggest that LINC01322 promotes lung adenocarcinoma progression by activating the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway and that it could be a therapeutic target.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Pronóstico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Proliferación Celular/genética , Quinasas Janus/metabolismo , Oncogenes , Neoplasias Pulmonares/patología , Biomarcadores
17.
Int J Biol Sci ; 20(4): 1509-1527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385074

RESUMEN

The relationship between STMN1 and cancer metastasis is controversial. The purpose of this study was to explore the role and mechanism of STMN1 in NSCLC metastasis. In this study, we reported that STMN1 was highly expressed in NSCLC tissues and associated with poor prognosis. Both in vivo and in vitro functional assays confirmed that STMN1 promoted NSCLC metastasis. Further studies confirmed that STMN1 promoted cell migration by regulating microtubule stability. The results of Co-IP and LC‒MS/MS illustrated that STMN1 interacts with HMGA1. HMGA1 decreases microtubule stability by regulating the phosphorylation level of STMN1 at Ser16 and Ser38 after interacting with STMN1. This result suggested that STMN1 could be activated by HMGA1 to further promote NSCLC metastasis. Meanwhile, it has been found that STMN1 could promote cell migration by activating the p38MAPK/STAT1 signaling pathway, which is not dependent on microtubule stability. However, activating p38MAPK can decrease microtubule stability by promoting the dephosphorylation of STMN1 at ser16. A positive feedback loop was formed between STMN1 and p38MAPK to synergistically promote cell migration. In summary, our study demonstrated that STMN1 could promote NSCLC metastasis through microtubule-dependent and nonmicrotubule-dependent mechanisms. STMN1 has the potential to be a therapeutic target to inhibit metastasis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína HMGA1a , Cromatografía Liquida , Línea Celular Tumoral , Espectrometría de Masas en Tándem , Microtúbulos/metabolismo , Movimiento Celular/genética , Proliferación Celular , Estatmina/genética , Estatmina/metabolismo
18.
Int J Gen Med ; 16: 5031-5050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942473

RESUMEN

Background: Lung adenocarcinoma (LUAD) is a group of cancers with poor prognosis. The combination of single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) can identify important genes involved in cancer development and progression from a broader perspective. Methods: The scRNA-seq data and bulk RNA-seq data of LUAD were downloaded from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Analyzing scRNA-seq for core cells in the GSE131907 dataset, and the uniform manifold approximation and projection (UMAP) was used for dimensionality reduction and cluster identification. Macrophage polarization-associated subtypes were acquired from the TCGA-LUAD dataset after analysis, followed by further identification of differentially expressed genes (DEGs) in the TCGA-LUAD dataset (normal/LUAD tissue samples, two subtypes). Venn diagrams were utilized to visualize differentially expressed and highly variable macrophage polarization-related genes. Subsequently, a prognostic risk model for LUAD patients was constructed by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO), and the model was investigated for stability in the external data GSE72094. After analyzing the correlation between the trait genes and significantly mutated genes, the immune infiltration between the high/low-risk groups was then examined. The Monocle package was applied to analyze the pseudo-temporal trajectory analysis of different cell clusters in macrophage clusters. Subsequently, cell clusters of data macrophages were selected as key cell clusters to explore the role of characteristic genes in different cell populations and to identify transcription factors (TFs) that affect signature genes. Finally, qPCR were employed to validate the expression levels of prognosis signature genes in LUAD. Results: 424 macrophage highly variable genes, 3920 DEGs, and 9561 DEGs were obtained from macrophage clusters, the macrophage polarization-related subtypes, and normal/LUAD tissue samples, respectively. Twenty-eight differentially expressed and highly mutated MPRGs were obtained. A prognostic risk model with 7 DE-MPRGs (RGS13, ADRB2, DDIT4, MS4A2, ALDH2, CTSH, and PKM) was constructed. This prognostic model still has a good prediction effect in the GSE72094 dataset. ZNF536 and DNAH9 were mutated in the low-risk group, while COL11A1 was mutated in the high-risk group, and they were highly correlated with the characteristic genes. A total of 11 immune cells were significantly different in the high/low-risk groups. Five cell types were again identified in the macrophage cluster, and then NK cells: CD56hiCD62L+ differentiated earlier and were present mainly on 2 branches. While macrophages were present on 2 branches and differentiated later. It was found that the expression levels of BCLAF1 and MAX were higher in cluster 1, which might be the TFs affecting the expression of the characteristic genes. Moreover, qPCR confirmed that the expression of the prognosis genes was generally consistent with the results of the bioinformatic analysis. Conclusion: Seven MPRGs (RGS13, ADRB2, DDIT4, MS4A2, ALDH2, CTSH, and PKM) were identified as prognostic genes for LUAD and revealed the mechanisms of MPRGs at the single-cell level.

19.
Front Immunol ; 14: 1151755, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234148

RESUMEN

A high tumor mutation burden (TMB) is known to drive the response to immune checkpoint inhibitors (ICI) and is associated with favorable prognoses. However, because it is a one-dimensional numerical representation of non-synonymous genetic alterations, TMB suffers from clinical challenges due to its equal quantification. Since not all mutations elicit the same antitumor rejection, the effect on immunity of neoantigens encoded by different types or locations of somatic mutations may vary. In addition, other typical genomic features, including complex structural variants, are not captured by the conventional TMB metric. Given the diversity of cancer subtypes and the complexity of treatment regimens, this paper proposes that tumor mutations capable of causing various degrees of immunogenicity should be calculated separately. TMB should therefore, be segmented into more exact, higher dimensional feature vectors to exhaustively measure the foreignness of tumors. We systematically reviewed patients' multifaceted efficacy based on a refined TMB metric, investigated the association between multidimensional mutations and integrative immunotherapy outcomes, and developed a convergent categorical decision-making framework, TMBserval (Statistical Explainable machine learning with Regression-based VALidation). TMBserval integrates a multiple-instance learning concept with statistics to create a statistically interpretable model that addresses the broad interdependencies between multidimensional mutation burdens and decision endpoints. TMBserval is a pan-cancer-oriented many-to-many nonlinear regression model with discrimination and calibration power. Simulations and experimental analyses using data from 137 actual patients both demonstrated that our method could discriminate between patient groups in a high-dimensional feature space, thereby rationally expanding the beneficiary population of immunotherapy.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patología , Biomarcadores de Tumor/genética , Pronóstico , Inmunoterapia/métodos , Mutación
20.
J Control Release ; 358: 204-218, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37121518

RESUMEN

MiRNA-based gene therapy as a novel targeted therapy has yielded promising results in experimental cancer treatment, however, the inefficient delivery of miRNA to target tissues has limited its application in vivo. Here a unique dual-membrane-camouflaged miRNA21 antagomir delivery nanoplatform (M@NPs/miR21) with immune escape and homologous targeting properties was constructed by cancer cell membrane and macrophage membrane. Different from the single-cell membrane camouflage strategy, the dual-membrane camouflage miRNA21 antagomir delivery nanoplatform based on modification of CD47 protein with immune escape signal and galectin-3 protein with tumor cell aggregation enables efficient, safe and targeted therapy for colon cancer and lung metastases. Camouflaged with the dual-cell membrane, the "Trojan horse" like "pseudo-tumor cell" and/or "pseudo-macrophage" (M@NPs/miR21) carried the target gene miR21 antagomir to the tumor site and showed significant anti-tumor properties at the periphery and the core of subcutaneous tumor tissues. In addition, M@NPs/miR21 was more likely to penetrate dense tumor tissues and function within the tumor mass than NPs/miR21 without membrane coating. M@NPs/miR21 can deliver miR21 antagomir into MC38 cancer cells and tumor tissues, promote tumor apoptosis, and regulate the expression of Bcl2 and Ki67. Moreover, the M@NPs/miR21 gene delivery system not only can effectively inhibit the progression of subcutaneous tumors and lung metastases, but also showed minimal toxicity and good biosafety, making this delivery system particularly attractive for future translational research.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Nanopartículas , Humanos , Antagomirs , Biónica , MicroARNs/genética , Neoplasias Pulmonares/patología , Membrana Celular/metabolismo , Técnicas de Transferencia de Gen , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA