Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(31): 9459-9467, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042710

RESUMEN

Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe2) homobilayer without any charge-blocking interlayer. We fabricated an unconventional homobilayer (i.e., HS) with a large twist angle (∼57°) by combining the chemical vapor deposition (CVD) and mechanical exfoliation (Exf.) techniques to fully exploit the lattice parameter mismatch and indirect/direct (CVD/Exf.) bandgap nature. These effectively weaken the interlayer charge transfer and allow the ET to control the carrier recombination channels. Our experimental and theoretical results explain a massive HS photoluminescence enhancement due to an efficient ET process. This work shows that the electronically decoupled MoSe2 homobilayer is coupled by the ET process, mimicking a "true" heterobilayer nature.

2.
Med Res Rev ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180380

RESUMEN

Chemotherapies are commonly used in cancer therapy, their applications are limited to low specificity, severe adverse reactions, and long-term medication-induced drug resistance. Poly(ADP-ribose) polymerase (PARP) inhibitors are a novel class of antitumor drugs developed to solve these intractable problems based on the mechanism of DNA damage repair, which have been widely applied in the treatment of ovarian cancer, breast cancer, and other cancers through inducing synthetic lethal effect and trapping PARP-DNA complex in BRCA gene mutated cancer cells. In recent years, PARP inhibitors have been widely used in combination with various first-line chemotherapy drugs, targeted drugs and immune checkpoint inhibitors to expand the scope of clinical application. However, the intricate mechanisms underlying the drug resistance to PARP inhibitors, including the restoration of homologous recombination, stabilization of DNA replication forks, overexpression of drug efflux protein, and epigenetic modifications pose great challenges and desirability in the development of novel PARP inhibitors. In this review, we will focus on the mechanism, structure-activity relationship, and multidrug resistance associated with the representative PARP inhibitors. Furthermore, we aim to provide insights into the development prospects and emerging trends to offer guidance for the clinical application and inspiration for the development of novel PARP inhibitors and degraders.

3.
J Org Chem ; 89(4): 2190-2199, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38279922

RESUMEN

Ketenimines represent an important class of reactive species, useful synthetic intermediates, and synthons. However, in general, ketenimines preferentially undergoes nucleophilic addition reactions with hydroxyl and amino groups, and carbon functional groups remain a less studied subset of such systems. Herein, we develop a straightforward syntheses of pyridin-4(1H)-imines that is achieved by cyclization of a reacting enaminone unit with α-acylketenimine which is generated from the reactions of sulfonyl azides and terminal ynones in situ (CuAAC/Ring cleavage reaction). The cascade process preferentially starts with the nucleophilic α-C of the enaminone unit instead of an amino group, attacking the electron-deficient central carbon of ketenimine, and the chemoselectivity unconventional products pyridin-4(1H)-imines were formed by intramolecular cyclization.

4.
J Org Chem ; 89(12): 9139-9143, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38861494

RESUMEN

Conjugated ynones represent an important class of reactive species, useful synthetic intermediates, and synthons. However, the reactivity and synthetic applications of ynones are usually focused on the transformation of mono- or dual-functional groups. Herein, we developed a straightforward synthesis of pyridin-2(1H)-imines from the transformation of conjugated ynones. This cascade process probably began with a Michael addition of ynones and 2-aminopyridines, further underwent an intramolecular cyclization to generate the N,O-bidentate intermediates, and finally reacted with sulfonyl azides giving the pyridin-2(1H)-imines with accompanying loss of diazo.

5.
J Nat Prod ; 87(9): 2310-2316, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39162422

RESUMEN

The revised structure, 2, assigned to the title natural product has been prepared by chemical synthesis using a reaction sequence involving six simple steps starting from 2,3-dimethoxybenzaldehyde and proceeding via intermediates 8, 12, and 14. A comparison of the NMR data acquired on synthetically derived compound 2 with those reported for the natural product reveals an excellent match. Preliminary biological screening of compound 2 along with analogues/precursors 7, 9, 10, 11, 13, 14, and 15 revealed that none exhibited antibacterial, antifungal or cytotoxic effects.


Asunto(s)
Alcaloides , Estructura Molecular , Alcaloides/química , Alcaloides/farmacología , Alcaloides/síntesis química , Microbiología del Suelo , Hypocreales/química , Resonancia Magnética Nuclear Biomolecular , Pruebas de Sensibilidad Microbiana , Benzaldehídos/química , Benzaldehídos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química
6.
Sensors (Basel) ; 24(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38339440

RESUMEN

The spectrum confocal displacement sensor is an innovative type of photoelectric sensor. The non-contact advantages of this method include the capacity to obtain highly accurate measurements without inflicting any harm as well as the ability to determine the object's surface contour recovery by reconstructing the measurement data. Consequently, it has been widely used in the field of three-dimensional topographic measuring. The spectral confocal displacement sensor consists of a light source, a dispersive objective, and an imaging spectrometer. The scanning mode can be categorized into point scanning and line scanning. Point scanning is inherently present when the scanning efficiency is low, resulting in a slower measurement speed. Further improvements are necessary in the research on the line-scanning type. It is crucial to expand the measurement range of existing studies to overcome the limitations encountered during the detection process. The objective of this study is to overcome the constraints of the existing line-swept spectral confocal displacement sensor's limited measuring range and lack of theoretical foundation for the entire system. This is accomplished by suggesting an appropriate approach for creating the optical design of the dispersive objective lens in the line-swept spectral confocal displacement sensor. Additionally, prism-grating beam splitting is employed to simulate and analyze the imaging spectrometer's back end. The combination of a prism and a grating eliminates the spectral line bending that occurs in the imaging spectrometer. The results indicate that a complete optical pathway for the line-scanning spectral confocal displacement sensor has been built, achieving an axial resolution of 0.8 µm, a scanning line length of 24 mm, and a dispersion range of 3.9 mm. This sensor significantly expands the range of measurements and fills a previously unaddressed gap in the field of analyzing the current stage of line-scanning spectral confocal displacement sensors. This is a groundbreaking achievement for both the sensor itself and the field it operates in. The line-scanning spectral confocal displacement sensor's design addresses a previously unmet need in systematic analysis by successfully obtaining a wide measuring range. This provides systematic theoretical backing for the advancement of the sensor, which has potential applications in the industrial detection of various ranges and complicated objects.

7.
Nano Lett ; 23(18): 8593-8601, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37625135

RESUMEN

Despite the great progress of current bacterially based biotherapeutics, their unsatisfying efficacy and underlying safety problems have limited their clinical application. Herein, inspired by probiotic Escherichia coli strain Nissle 1917, probiotic-derived outer membrane vesicles (OMVs) are found to serve as an effective therapeutic platform for the treatment of inflammatory bowel disease (IBD). To further enhance the therapeutic effect, the probiotic-derived OMV-encapsulating manganese dioxide nanozymes are constructed, named nanoprobiotics, which can adhere to inflamed colonic epithelium and eliminate intestinal excess reactive oxygen species in the murine IBD model. Moreover, combined with the anti-inflammatory medicine metformin, nanoprobiotics could further remold the pro-inflammatory microenvironment, improve the overall richness and diversity of the gut microbiota, and exhibit better therapeutic efficacy than commercial IBD chemotherapeutics. Importantly, insignificant overt systemic toxicity in this treatment was observed. By integrating cytokine storm calm with biotherapy, we develop a safe and effective bionanoplatform for the effective treatment of inflammation-mediated intestinal diseases.

8.
Chemistry ; 29(5): e202203265, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36278311

RESUMEN

Among the parent borirane, benzoborirene and ortho-dicarbadodecaborane-fused borirane, the latter possesses the highest ring strain and the highest Lewis acidity according to our density functional theory (DFT) studies. The synthesis of this class of compounds is thus considerably challenging. The existing examples require either a strong π-donating group or an extra ligand for B-coordination, which nevertheless suppresses or completely turns off the Lewis acidity. The title compound, which possesses both features, not only allows the 1,2-insertion of P=O, C=O or C≡N to proceed under milder conditions, but also enables the heretofore unknown dearomative 1,4-insertion of Ar-(C=O)- into a B-C bond. The fusion of strained molecular systems to an o-carborane cage shows great promise for boosting both the ring strain and acidity.


Asunto(s)
Boranos , Ácidos de Lewis , Ácidos de Lewis/química , Teoría Funcional de la Densidad , Boranos/química
9.
Theor Appl Genet ; 136(7): 163, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37368122

RESUMEN

KEY MESSAGE: We demonstrated a short-cycle B. napus line, Sef1, with a highly efficient and fast transformation system, which has great potential in large-scale functional gene analysis in a controlled environment. Rapeseed (Brassica napus L.) is an essential oil crop that accounts for a considerable share of global vegetable oil production. Nonetheless, studies on functional genes of B. napus are lagging behind due to the complicated genome and long growth cycle, this is largely due to the limited availability of gene analysis and modern genome editing-based molecular breeding. In this study, we demonstrated a short-cycle semi-winter-type Brassica napus 'Sef1' with very early-flowering and dwarf phenotype, which has great potential in large-scale indoor planting. Through the construction of an F2 population of Sef1 and Zhongshuang11, bulked segregant analysis (BSA) combined with the rape Bnapus50K SNP chip assay method was used to identify the early-flowering genes in Sef1, and a mutation in BnaFT.A02 was identified as a major locus significantly affecting the flowering time in Sef1. To further investigate the mechanism of early flowering in Sef1 and discover its potential in gene function analysis, an efficient Agrobacterium-mediated transformation system was established. The average transformation efficiency with explants of hypocotyls and cotyledons was 20.37% and 12.8%, respectively, and the entire transformation process took approximately 3 months from explant preparation to seed harvest of transformed plants. This study demonstrates the great potential of Sef1 for large-scale functional gene analysis.


Asunto(s)
Brassica napus , Brassica napus/genética , Genómica , Fenotipo , Análisis de Secuencia por Matrices de Oligonucleótidos , Ambiente Controlado
10.
Molecules ; 28(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37764287

RESUMEN

While fluorescent organic materials have many potential as well as proven applications and so have attracted significant attention, pyridine-olefin conjugates remain a less studied subset of such systems. Herein, therefore, we report on the development of the straightforward syntheses of pyridin-1(2H)-ylacrylates and the outcomes of a study of the effects of substituents on their fluorescent properties. Such compounds were prepared using a simple, metal-free and three-component coupling reaction involving 2-aminopyridines, sulfonyl azides and propiolates. The fluorescent properties of the ensuing products are significantly affected by the positions of substituents on the cyclic framework, with those located in central positions having the greatest impact. Electron-withdrawing groups tend to induce blue shifts while electron-donating ones cause red shifts. This work highlights the capacity that the micro-modification of fluorescent materials provides for fine-tuning their properties such that they may be usefully applied to, for example, the study of luminescent materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA