Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.565
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Biol ; 22(3): e3002528, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427710

RESUMEN

Streptomyces antibiotic regulatory proteins (SARPs) are widely distributed activators of antibiotic biosynthesis. Streptomyces coelicolor AfsR is an SARP regulator with an additional nucleotide-binding oligomerization domain (NOD) and a tetratricopeptide repeat (TPR) domain. Here, we present cryo-electron microscopy (cryo-EM) structures and in vitro assays to demonstrate how the SARP domain activates transcription and how it is modulated by NOD and TPR domains. The structures of transcription initiation complexes (TICs) show that the SARP domain forms a side-by-side dimer to simultaneously engage the afs box overlapping the -35 element and the σHrdB region 4 (R4), resembling a sigma adaptation mechanism. The SARP extensively interacts with the subunits of the RNA polymerase (RNAP) core enzyme including the ß-flap tip helix (FTH), the ß' zinc-binding domain (ZBD), and the highly flexible C-terminal domain of the α subunit (αCTD). Transcription assays of full-length AfsR and truncated proteins reveal the inhibitory effect of NOD and TPR on SARP transcription activation, which can be eliminated by ATP binding. In vitro phosphorylation hardly affects transcription activation of AfsR, but counteracts the disinhibition of ATP binding. Overall, our results present a detailed molecular view of how AfsR serves to activate transcription.


Asunto(s)
Proteínas de Unión al ADN , Streptomyces , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Microscopía por Crioelectrón , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Antibacterianos , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Cell ; 148(5): 873-85, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385957

RESUMEN

Tumor heterogeneity presents a challenge for inferring clonal evolution and driver gene identification. Here, we describe a method for analyzing the cancer genome at a single-cell nucleotide level. To perform our analyses, we first devised and validated a high-throughput whole-genome single-cell sequencing method using two lymphoblastoid cell line single cells. We then carried out whole-exome single-cell sequencing of 90 cells from a JAK2-negative myeloproliferative neoplasm patient. The sequencing data from 58 cells passed our quality control criteria, and these data indicated that this neoplasm represented a monoclonal evolution. We further identified essential thrombocythemia (ET)-related candidate mutations such as SESN2 and NTRK1, which may be involved in neoplasm progression. This pilot study allowed the initial characterization of the disease-related genetic architecture at the single-cell nucleotide level. Further, we established a single-cell sequencing method that opens the way for detailed analyses of a variety of tumor types, including those with high genetic complex between patients.


Asunto(s)
Evolución Clonal , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Análisis de la Célula Individual/métodos , Trombocitemia Esencial/genética , Exoma , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Mutación
3.
Proc Natl Acad Sci U S A ; 121(1): e2307395120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38157451

RESUMEN

Oxidative stress, which can be activated by a variety of environmental risk factors, has been implicated as an important pathogenic factor for inflammatory bowel disease (IBD). However, how oxidative stress drives IBD onset remains elusive. Here, we found that oxidative stress was strongly activated in inflamed tissues from both ulcerative colitis patients and Crohn's disease patients, and it caused nuclear-to-cytosolic TDP-43 transport and a reduction in the TDP-43 protein level. To investigate the function of TDP-43 in IBD, we inducibly deleted exons 2 to 3 of Tardbp (encoding Tdp-43) in mouse intestinal epithelium, which disrupted its nuclear localization and RNA-processing function. The deletion gave rise to spontaneous intestinal inflammation by inducing epithelial cell necroptosis. Suppression of the necroptotic pathway with deletion of Mlkl or the RIP1 inhibitor Nec-1 rescued colitis phenotypes. Mechanistically, disruption of nuclear TDP-43 caused excessive R-loop accumulation, which triggered DNA damage and genome instability and thereby induced PARP1 hyperactivation, leading to subsequent NAD+ depletion and ATP loss, consequently activating mitochondrion-dependent necroptosis in intestinal epithelial cells. Importantly, restoration of cellular NAD+ levels with NAD+ or NMN supplementation, as well as suppression of ALKBH7, an α-ketoglutarate dioxygenase in mitochondria, rescued TDP-43 deficiency-induced cell death and intestinal inflammation. Furthermore, TDP-43 protein levels were significantly inversely correlated with γ-H2A.X and p-MLKL levels in clinical IBD samples, suggesting the clinical relevance of TDP-43 deficiency-induced mitochondrion-dependent necroptosis. Taken together, these findings identify a unique pathogenic mechanism that links oxidative stress to intestinal inflammation and provide a potent and valid strategy for IBD intervention.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Necroptosis , Humanos , Animales , Ratones , NAD/metabolismo , Estructuras R-Loop , Enfermedades Inflamatorias del Intestino/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Inflamación/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo
4.
Chem Rev ; 124(6): 3494-3589, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478597

RESUMEN

The renewable energy industry demands rechargeable batteries that can be manufactured at low cost using abundant resources while offering high energy density, good safety, wide operating temperature windows, and long lifespans. Utilizing fluorine chemistry to redesign battery configurations/components is considered a critical strategy to fulfill these requirements due to the natural abundance, robust bond strength, and extraordinary electronegativity of fluorine and the high free energy of fluoride formation, which enables the fluorinated components with cost effectiveness, nonflammability, and intrinsic stability. In particular, fluorinated materials and electrode|electrolyte interphases have been demonstrated to significantly affect reaction reversibility/kinetics, safety, and temperature tolerance of rechargeable batteries. However, the underlining principles governing material design and the mechanistic insights of interphases at the atomic level have been largely overlooked. This review covers a wide range of topics from the exploration of fluorine-containing electrodes, fluorinated electrolyte constituents, and other fluorinated battery components for metal-ion shuttle batteries to constructing fluoride-ion batteries, dual-ion batteries, and other new chemistries. In doing so, this review aims to provide a comprehensive understanding of the structure-property interactions, the features of fluorinated interphases, and cutting-edge techniques for elucidating the role of fluorine chemistry in rechargeable batteries. Further, we present current challenges and promising strategies for employing fluorine chemistry, aiming to advance the electrochemical performance, wide temperature operation, and safety attributes of rechargeable batteries.

5.
Nature ; 583(7818): 771-774, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728236

RESUMEN

Seeing-the angular size of stellar images blurred by atmospheric turbulence-is a critical parameter used to assess the quality of astronomical sites at optical/infrared wavelengths. Median values at the best mid-latitude sites are generally in the range of 0.6-0.8 arcseconds1-3. Sites on the Antarctic plateau are characterized by comparatively weak turbulence in the free atmosphere above a strong but thin boundary layer4-6. The median seeing at Dome C is estimated to be 0.23-0.36 arcseconds7-10 above a boundary layer that has a typical height of 30 metres10-12. At Domes A and F, the only previous seeing measurements have been made during daytime13,14. Here we report measurements of night-time seeing at Dome A, using a differential image motion monitor15. Located at a height of just 8 metres, it recorded seeing as low as 0.13 arcseconds, and provided seeing statistics that are comparable to those at a height of 20 metres at Dome C. This indicates that the boundary layer was below 8 metres for 31 per cent of the time, with median seeing of 0.31 arcseconds, consistent with free-atmosphere seeing. The seeing and boundary-layer thickness are found to be strongly correlated with the near-surface temperature gradient. The correlation confirms a median thickness of approximately 14 metres for the boundary layer at Dome A, as found from a sonic radar16. The thinner boundary layer makes it less challenging to locate a telescope above it, thereby giving greater access to the free atmosphere.

6.
PLoS Genet ; 19(12): e1011073, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048348

RESUMEN

The reproductive process in various species has undergone evolutionary adaptations at both the physiological and molecular levels, playing a significant role in maintaining their populations. In lepidopteran insects, the spermatophore is a unique structure formed in the female reproductive system, in which sperm storage and activation take place. It is known that the formation of the spermatophore is regulated by seminal fluid proteins derived from males. However, studies investigating the genetic mechanisms behind spermatophore formation in lepidopterans have been limited. In this study, our focus was on SPSL1, a gene that encodes a trypsin-type seminal fluid protein in Spodoptera frugiperda, a pest species with global invasive tendencies. Our findings revealed that SPSL1 expression was predominantly observed in the male reproductive tracts, and the disruption of this gene resulted in male sterility. Surprisingly, fluorescence analysis indicated that the absence of SPSL1 did not affect spermatogenesis or sperm migration within the male reproductive system. However, when females mated with SPSL1-mutant males, several defects were observed. These included disruptions in spermatophore formation, sperm activation in the copulatory bursae, and sperm migration into the spermathecae. Additionally, mass spectrometry analysis highlighted reduced levels of energy-related metabolites, suggesting that SPSL1 plays an essential role in promoting hydrolysis reactions during copulation. Consequently, our study demonstrates that SPSL1 is crucial for male fertility due to its functions in spermatophore formation and sperm activation. This research provides valuable insights into the genetic factors underlying reproductive processes in lepidopteran insects and sheds light on potential strategies for controlling invasive pest populations.


Asunto(s)
Semen , Espermatogonias , Animales , Masculino , Femenino , Espermatogonias/fisiología , Spodoptera/genética , Espermatozoides/fisiología , Espermatogénesis/genética , Insectos
7.
PLoS Genet ; 19(1): e1010600, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634107

RESUMEN

In lepidopteran insects, dichotomous spermatogenesis produces eupyrene spermatozoa, which are nucleated, and apyrene spermatozoa, which are anucleated. Both sperm morphs are essential for fertilization, as eupyrene sperm fertilize the egg, and apyrene sperm is necessary for the migration of eupyrene sperm. In Drosophila, Prmt5 acts as a type II arginine methyltransferase that catalyzes the symmetrical dimethylation of arginine residues in the RNA helicase Vasa. Prmt5 is critical for the regulation of spermatogenesis, but Vasa is not. To date, functional genetic studies of spermatogenesis in the lepidopteran model Bombyx mori has been limited. In this study, we engineered mutations in BmPrmt5 and BmVasa through CRISPR/Cas9-based gene editing. Both BmPrmt5 and BmVasa loss-of-function mutants had similar male and female sterility phenotypes. Through immunofluorescence staining analysis, we found that the morphs of sperm from both BmPrmt5 and BmVasa mutants have severe defects, indicating essential roles for both BmPrmt5 and BmVasa in the regulation of spermatogenesis. Mass spectrometry results identified that R35, R54, and R56 of BmVasa were dimethylated in WT while unmethylated in BmPrmt5 mutants. RNA-seq analyses indicate that the defects in spermatogenesis in mutants resulted from reduced expression of the spermatogenesis-related genes, including BmSxl, implying that BmSxl acts downstream of BmPrmt5 and BmVasa to regulate apyrene sperm development. These findings indicate that BmPrmt5 and BmVasa constitute an integral regulatory module essential for spermatogenesis in B. mori.


Asunto(s)
Bombyx , Animales , Femenino , Masculino , Bombyx/genética , Drosophila , Fertilización , Proteína-Arginina N-Metiltransferasas/metabolismo , Semen , Espermatogénesis/genética , Espermatozoides/metabolismo , ARN Helicasas DEAD-box/metabolismo
8.
FASEB J ; 38(5): e23532, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38451470

RESUMEN

Although elevated glycolysis has been widely recognized as a hallmark for highly proliferating cells like stem cells and cancer, its regulatory mechanisms are still being updated. Here, we found a previously unappreciated mechanism of mammalian target of rapamycin complex 2 (mTORC2) in regulating glycolysis in intestinal stem cell maintenance and cancer progression. mTORC2 key subunits expression levels and its kinase activity were specifically upregulated in intestinal stem cells, mouse intestinal tumors, and human colorectal cancer (CRC) tissues. Genetic ablation of its key scaffolding protein Rictor in both mouse models and cell lines revealed that mTORC2 played an important role in promoting intestinal stem cell proliferation and self-renewal. Moreover, utilizing mouse models and organoid culture, mTORC2 loss of function was shown to impair growth of gut adenoma and tumor organoids. Based on these findings, we performed RNA-seq and noticed significant metabolic reprogramming in Rictor conditional knockout mice. Among all the pathways, carbohydrate metabolism was most profoundly altered, and further studies demonstrated that mTORC2 promoted glycolysis in intestinal epithelial cells. Most importantly, we showed that a rate-limiting enzyme in regulating glycolysis, 6-phosphofructo-2-kinase (PFKFB2), was a direct target for the mTORC2-AKT signaling. PFKFB2 was phosphorylated upon mTORC2 activation, but not mTORC1, and this process was AKT-dependent. Together, this study has identified a novel mechanism underlying mTORC2 activated glycolysis, offering potential therapeutic targets for treating CRC.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Células Epiteliales , Glucólisis , Mamíferos , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones Noqueados , Fosfofructoquinasa-2 , Sirolimus
9.
PLoS Genet ; 18(3): e1010131, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35312700

RESUMEN

Sperm deliver the male complement of DNA to the ovum, and thus play a key role in sexual reproduction. Accordingly, spermatogenesis has outstanding significance in fields as disparate as infertility treatments and pest-control, making it a broadly interesting and important focus for molecular genetics research in a wide range of species. Here we investigate spermatogenesis in the model lepidopteran insect Bombyx mori (silkworm moth), with particular focus on the gene PMFBP1 (polyamine modulated factor 1 binding protein 1). In humans and mouse, PMFBP1 is essential for spermatogenesis, and mutations of this gene are associated with acephalic spermatozoa, which cause infertility. We identified a B. mori gene labeled as "PMFBP1" in GenBank's RefSeq database and sought to assess its role in spermatogenesis. Like in mammals, the silkworm version of this gene (BmPMFBP1) is specifically expressed in testes. We subsequently generated BmPMFBP1 mutants using a transgenic CRISPR/Cas9 system. Mutant males were sterile while the fertility of mutant females was comparable to wildtype females. In B. mori, spermatogenesis yields two types of sperm, the nucleated fertile eupyrene sperm, and anucleated unfertile apyrene sperm. Mutant males produced abnormal eupyrene sperm bundles but normal apyrene sperm bundles. For eupyrene sperm, nuclei were mislocated and disordered inside the bundles. We also found the BmPMFBP1 deficiency blocked the release of eupyrene sperm bundles from testes to ejaculatory seminalis. We found no obvious abnormalities in the production of apyrene sperm in mutant males, and double-matings with apyrene-deficient sex-lethal mutants rescued the ΔBmPMFBP1 infertility phenotype. These results indicate BmPMFBP1 functions only in eupyrene spermatogenesis, and highlight that distinct genes underlie the development of the two sperm morphs commonly found in Lepidoptera. Bioinformatic analyses suggest PMFBP1 may have evolved independently in lepidoptera and mammals, and that despite the shared name, are likely not homologous genes.


Asunto(s)
Bombyx , Mariposas Nocturnas , Animales , Bombyx/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Fertilidad/fisiología , Masculino , Mamíferos , Ratones , Espermatogénesis/genética , Espermatozoides/metabolismo
10.
Nano Lett ; 24(10): 3221-3230, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416582

RESUMEN

The hydrolysis of hydrides, represented by MgH2, delivers substantial capacity and presents an appealing prospect for an on-site hydrogen supply. However, the sluggish hydrolysis kinetics and low hydrogen yield of MgH2 caused by the formation of a passivation Mg(OH)2 layer hinder its practical application. Herein, we present a dual strategy encompassing microstructural design and compounding, leading to the successful synthesis of a core-shell-like nanostructured MgH2@Mg(BH4)2 composite, which demonstrates excellent hydrolysis performance. Specifically, the optimal composite with a low Ea of 9.05 kJ mol-1 releases 2027.7 mL g-1 H2 in 60 min, and its hydrolysis rate escalates to 1356.7 mL g-1 min-1 H2 during the first minute at room temperature. The nanocoating Mg(BH4)2 plays a key role in enhancing the hydrolysis kinetics through the release of heat and the formation of local concentration of Mg2+ field after its hydrolysis. This work offers an innovative concept for the design of hydrolysis materials.

11.
J Biol Chem ; 299(9): 105130, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543366

RESUMEN

Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators in various biological processes. However, due to their low expression, their systematic characterization is difficult to determine. Here, we performed transcript annotation by a newly developed computational pipeline, termed RNA-seq and small RNA-seq combined strategy (RSCS), in a wide variety of cellular contexts. Thousands of high-confidence potential novel transcripts were identified by the RSCS, and the reliability of the transcriptome was verified by analysis of transcript structure, base composition, and sequence complexity. Evidenced by the length comparison, the frequency of the core promoter and the polyadenylation signal motifs, and the locations of transcription start and end sites, the transcripts appear to be full length. Furthermore, taking advantage of our strategy, we identified a large number of endogenous retrovirus-associated lncRNAs, and a novel endogenous retrovirus-lncRNA that was functionally involved in control of Yap1 expression and essential for early embryogenesis was identified. In summary, the RSCS can generate a more complete and precise transcriptome, and our findings greatly expanded the transcriptome annotation for the mammalian community.


Asunto(s)
Anotación de Secuencia Molecular , ARN Largo no Codificante , RNA-Seq , Animales , Desarrollo Embrionario/genética , Mamíferos/embriología , Mamíferos/genética , Anotación de Secuencia Molecular/métodos , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Retroviridae/genética , ARN Largo no Codificante/genética , RNA-Seq/métodos , Sitio de Iniciación de la Transcripción , Transcriptoma/genética , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo
12.
BMC Genomics ; 25(1): 412, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671394

RESUMEN

BACKGROUND: Solanum aculeatissimum and Solanum torvum belong to the Solanum species, and they are essential plants known for their high resistance to diseases and adverse conditions. They are frequently used as rootstocks for grafting and are often crossbred with other Solanum species to leverage their resistance traits. However, the phylogenetic relationship between S. aculeatissimum and S. torvum within the Solanum genus remains unclear. Therefore, this paper aims to sequence the complete chloroplast genomes of S. aculeatissimum and S. torvum and analyze them in comparison with 29 other previously published chloroplast genomes of Solanum species. RESULTS: We observed that the chloroplast genomes of S. aculeatissimum and S. torvum possess typical tetrameric structures, consisting of one Large Single Copy (LSC) region, two reverse-symmetric Inverted Repeats (IRs), and one Small Single Copy (SSC) region. The total length of these chloroplast genomes ranged from 154,942 to 156,004 bp, with minimal variation. The highest GC content was found in the IR region, while the lowest was in the SSC region. Regarding gene content, the total number of chloroplast genes and CDS genes remained relatively consistent, ranging from 128 to 134 and 83 to 91, respectively. Nevertheless, there was notable variability in the number of tRNA genes and rRNAs. Relative synonymous codon usage (RSCU) analysis revealed that both S. aculeatissimum and S. torvum preferred codons that utilized A and U bases. Analysis of the IR boundary regions indicated that contraction and expansion primarily occurred at the junction between SSC and IR regions. Nucleotide polymorphism analysis and structural variation analysis demonstrated that chloroplast variation in Solanum species mainly occurred in the LSC and SSC regions. Repeat sequence analysis revealed that A/T was the most frequent base pair in simple repeat sequences (SSR), while Palindromic and Forward repeats were more common in long sequence repeats (LSR), with Reverse and Complement repeats being less frequent. Phylogenetic analysis indicated that S. aculeatissimum and S. torvum belonged to the same meristem and were more closely related to Cultivated Eggplant. CONCLUSION: These findings enhance our comprehension of chloroplast genomes within the Solanum genus, offering valuable insights for plant classification, evolutionary studies, and potential molecular markers for species identification.


Asunto(s)
Composición de Base , Genoma del Cloroplasto , Filogenia , Solanum , Solanum/genética , Solanum/clasificación , Uso de Codones , Análisis de Secuencia de ADN
13.
J Am Chem Soc ; 146(22): 15061-15069, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787332

RESUMEN

The realization and discovery of quantum spin liquid (QSL) candidate materials are crucial for exploring exotic quantum phenomena and applications associated with QSLs. Most existing metal-organic two-dimensional (2D) quantum spin liquid candidates have structures with spins arranged on the triangular or kagome lattices, whereas honeycomb-structured metal-organic compounds with QSL characteristics are rare. Here, we report the use of 2,5-dihydroxy-1,4-benzoquinone (X2dhbq, X = Cl, Br, H) as the linkers to construct cobalt(II) honeycomb lattices (NEt4)2[Co2(X2dhbq)3] as promising Kitaev-type QSL candidate materials. The high-spin d7 Co2+ has pseudospin-1/2 ground-state doublets, and benzoquinone-based linkers not only provide two separate superexchange pathways that create bond-dependent frustrated interactions but also allow for chemical tunability to mediate magnetic coupling. Our magnetization data show antiferromagnetic interactions between neighboring metal centers with Weiss constants from -5.1 to -8.5 K depending on the X functional group in X2dhbq linkers (X = Cl, Br, H). No magnetic transition or spin freezing could be observed down to 2 K. Low-temperature susceptibility (down to 0.3 K) and specific heat (down to 0.055 K) of (NEt4)2[Co2(H2dhbq)3] were further analyzed. Heat capacity measurements confirmed no long-range order down to 0.055 K, evidenced by the broad peak instead of the λ-like anomaly. Our results indicate that these 2D cobalt benzoquinone frameworks are promising Kitaev QSL candidates with chemical tunability through ligands that can vary the magnetic coupling and frustration.

14.
J Am Chem Soc ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949598

RESUMEN

Advanced in vitro diagnosis technologies are highly desirable in early detection, prognosis, and progression monitoring of diseases. Here, we engineer a multiplex protein biosensing strategy based on the tunable liquid confinement self-assembly of multi-material heterochains, which show improved sensitivity, throughput, and accuracy compared to standard ELISA kits. By controlling the material combination and the number of ligand nanoparticles (NPs), we observe robust near-field enhancement as well as both strong electromagnetic resonance in polymer-semiconductor heterochains. In particular, their optical signals show a linear response to the coordination number of the semiconductor NPs in a wide range. Accordingly, a visible nanophotonic biosensor is developed by functionalizing antibodies on central polymer chains that can identify target proteins attached to semiconductor NPs. This allows for the specific detection of multiple protein biomarkers from healthy people and pancreatic cancer patients in one step with an ultralow detection limit (1 pg/mL). Furthermore, rapid and high-throughput quantification of protein expression levels in diverse clinical samples such as buffer, urine, and serum is achieved by combining a neural network algorithm, with an average accuracy of 97.3%. This work demonstrates that the heterochain-based biosensor is an exemplary candidate for constructing next-generation diagnostic tools and suitable for many clinical settings.

15.
Cancer ; 130(6): 973-984, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38018448

RESUMEN

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common cancer in children. IKZF3 (IKAROS family zinc finger 3) is a hematopoietic-specific transcription factor, and it has been validated that it is involved in leukemia. However, the role of IKZF3 single-nucleotide polymorphisms (SNPs) remains unclear. In this case-control study, the authors investigated the association of IKZF3 SNPs with ALL in children. METHODS: Six IKZF3 reference SNPs (rs9635726, rs2060941, rs907092, rs12946510, rs1453559, and rs62066988) were genotyped in 692 patients who had ALL (cases) and in 926 controls. The associations between IKZF3 polymorphisms and ALL risk were determined using odds ratios (ORs) and 95% confidence intervals (CIs). The associations of rs9635726 and rs2060941 with the risk of ALL were further estimated by using false-positive report probability (FPRP) analysis. Functional analysis in silico was performed to evaluate the probability that rs9635726 and rs2060941 might influence the regulation of IKZF3. RESULTS: The authors observed that rs9635726C>T (adjusted OR, 1.49; 95% CI, 1.06-2.11; p = .023) and rs2060941G>T (adjusted OR, 1.51; 95% CI, 1.24-1.84; p = .001) were related to and increased risk of ALL in the recessive and dominant models, respectively. Furthermore, the associations of both rs9635726 (FPRP = .177) and rs2060941 (FPRP < .001) with ALL were noteworthy in the FPRP analysis. Functional analysis indicated that rs9635726 and rs2060941 might repress the transcription of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. CONCLUSIONS: This study revealed that IKZF3 polymorphisms were associated with increased ALL susceptibility in children and might influence the expression of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. IKZF3 polymorphisms were suggested as a biomarker for childhood ALL.


Asunto(s)
Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Estudios de Casos y Controles , Genotipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factor de Transcripción Ikaros/genética , Predisposición Genética a la Enfermedad
16.
Anal Chem ; 96(15): 5771-5780, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38563229

RESUMEN

Metabolic abnormalities are at the center of many diseases, and the capability to film and quantify the metabolic activities of a single cell is important for understanding the heterogeneities in these abnormalities. In this paper, a functional plasmonic microscope (FPM) is used to image and measure metabolic activities without fluorescent labels at a single-cell level. The FPM can accurately image and quantify the subnanometer membrane fluctuations with a spatial resolution of 0.5 µm in real time. These active cell membrane fluctuations are caused by metabolic activities across the cell membrane. A three-dimensional (3D) morphology of the bottom cell membrane was imaged and reconstructed with FPM to illustrate the capability of the microscope for cell membrane characterization. Then, the subnanometer cell membrane fluctuations of single cells were imaged and quantified with the FPM using HeLa cells. Cell metabolic heterogeneity is analyzed based on membrane fluctuations of each individual cell that is exposed to similar environmental conditions. In addition, we demonstrated that the FPM could be used to evaluate the therapeutic responses of metabolic inhibitors (glycolysis pathway inhibitor STF 31) on a single-cell level. The result showed that the metabolic activities significantly decrease over time, but the nature of this response varies, depicting cell heterogeneity. A low-concentration dose showed a reduced fluctuation frequency with consistent fluctuation amplitudes, while the high-concentration dose showcased a decreasing trend in both cases. These results have demonstrated the capabilities of the functional plasmonic microscope to measure and quantify metabolic activities for drug discovery.


Asunto(s)
Colorantes , Microscopía , Humanos , Células HeLa , Membrana Celular , Membranas
17.
BMC Med ; 22(1): 42, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281914

RESUMEN

BACKGROUND: Microsatellite instability-high (MSI-H) is a unique genomic status in many cancers. However, its role in the genomic features and immunotherapy in cholangiocarcinoma (CCA) is unclear. This study aimed to systematically investigate the genomic characterization and immunotherapy efficacy of MSI-H patients with CCA. METHODS: We enrolled 887 patients with CCA in this study. Tumor samples were collected for next-generation sequencing. Differences in genomic alterations between the MSI-H and microsatellite stability (MSS) groups were analyzed. We also investigated the survival of PD-1 inhibitor-based immunotherapy between two groups of 139 patients with advanced CCA. RESULTS: Differential genetic alterations between the MSI-H and MSS groups included mutations in ARID1A, ACVR2A, TGFBR2, KMT2D, RNF43, and PBRM1 which were enriched in MSI-H groups. Patients with an MSI-H status have a significantly higher tumor mutation burden (TMB) (median 41.7 vs. 3.1 muts/Mb, P < 0.001) and more positive programmed death ligand 1 (PD-L1) expression (37.5% vs. 11.9%, P < 0.001) than those with an MSS status. Among patients receiving PD-1 inhibitor-based therapy, those with MSI-H had a longer median overall survival (OS, hazard ratio (HR) = 0.17, P = 0.001) and progression-free survival (PFS, HR = 0.14, P < 0.001) than patients with MSS. Integrating MSI-H and PD-L1 expression status (combined positive score ≥ 5) could distinguish the efficacy of immunotherapy. CONCLUSIONS: MSI-H status was associated with a higher TMB value and more positive PD-L1 expression in CCA tumors. Moreover, in patients with advanced CCA who received PD-1 inhibitor-based immunotherapy, MSI-H and positive PD-L1 expression were associated with improved both OS and PFS. TRIAL REGISTRATION: This study was registered on ClinicalTrials.gov on 07/01/2017 (NCT03892577).


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Inestabilidad de Microsatélites , Antígeno B7-H1/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Colangiocarcinoma/genética , Colangiocarcinoma/terapia , Mutación , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/terapia , Conductos Biliares Intrahepáticos/metabolismo , Inmunoterapia , Genómica , Biomarcadores de Tumor/genética
18.
J Transl Med ; 22(1): 65, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229122

RESUMEN

BACKGROUND: Accurate clinical structural variant (SV) calling is essential for cancer target identification and diagnosis but has been historically challenging due to the lack of ground truth for clinical specimens. Meanwhile, reduced clinical-testing cost is the key to the widespread clinical utility. METHODS: We analyzed massive data from tumor samples of 476 patients and developed a computational framework for accurate and cost-effective detection of clinically-relevant SVs. In addition, standard materials and classical experiments including immunohistochemistry and/or fluorescence in situ hybridization were used to validate the developed computational framework. RESULTS: We systematically evaluated the common algorithms for SV detection and established an expert-reviewed SV call set of 1,303 tumor-specific SVs with high-evidence levels. Moreover, we developed a random-forest-based decision model to improve the true positive of SVs. To independently validate the tailored 'two-step' strategy, we utilized standard materials and classical experiments. The accuracy of the model was over 90% (92-99.78%) for all types of data. CONCLUSION: Our study provides a valuable resource and an actionable guide to improve cancer-specific SV detection accuracy and clinical applicability.


Asunto(s)
Genómica , Neoplasias , Humanos , Benchmarking , Análisis Costo-Beneficio , Hibridación Fluorescente in Situ , Neoplasias/diagnóstico , Neoplasias/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento
19.
J Transl Med ; 22(1): 586, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902782

RESUMEN

The prevalence of papillary thyroid cancer (PTC) has been rising in recent years. Despite its relatively low mortality, PTC frequently metastasizes to lymph nodes and often recurs, posing significant health and economic burdens. The role of iodine in the pathogenesis and advancement of thyroid cancer remains poorly understood. Circular RNAs (circRNAs) are recognized to function as competing endogenous RNAs (ceRNAs) that modulate gene expression and play a role in various cancer stages. Consequently, this research aimed to elucidate the mechanism by which circRNA influences the impact of iodine on PTC. Our research indicates that high iodine levels can exacerbate the malignancy of PTC via the circ_0004851/miR-296-3p/FGF11 axis. These insights into iodine's biological role in PTC and the association of circRNA with the disease could pave the way for novel biomarkers and potentially effective therapeutic strategies to mitigate PTC progression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Yodo , MicroARNs , ARN Circular , Cáncer Papilar Tiroideo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Yodo/metabolismo , Línea Celular Tumoral , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Secuencia de Bases
20.
Blood ; 140(13): 1507-1521, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35675514

RESUMEN

Although acute lymphoblastic leukemia (ALL) is highly responsive to chemotherapy, it is unknown how or which host immune factors influence the long-term remission of this cancer. To this end, we systematically evaluated the effects of T-cell immunity on Ph+ ALL therapy outcomes. Using a murine Arf-/-BCR-ABL1 B-cell ALL model, we showed that loss of T cells in the host drastically increased leukemia relapse after dasatinib or cytotoxic chemotherapy. Although ABL1 mutations emerged early during dasatinib treatment in both immunocompetent and immunocompromised hosts, T-cell immunity was essential for suppressing the outgrowth of drug-resistant leukemia. Bulk and single-cell transcriptome profiling of T cells during therapy pointed to the activation of type 1 immunity-related cytokine signaling being linked to long-term leukemia remission in mice. Consistent with these observations, interferon γ and interleukin 12 directly modulated dasatinib antileukemia efficacy in vivo. Finally, we evaluated peripheral blood immune cell composition in 102 children with ALL during chemotherapy and observed a significant association of T-cell abundance with treatment outcomes. Together, these results suggest that T-cell immunity plays pivotal roles in maintaining long-term remission of ALL, highlighting that the interplay between host immunity and drug resistance can be harnessed to improve ALL chemotherapy outcomes.


Asunto(s)
Interferón gamma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Dasatinib/farmacología , Dasatinib/uso terapéutico , Interleucina-12 , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA