Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Cancer ; 130(7): 1176-1186, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38280969

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) treatment is largely based on a 'one-drug-fits-all' strategy in patients with similar pathological characteristics. However, given its biological heterogeneity, patients at the same clinical stage or similar therapies exhibit significant clinical differences. Thus, novel molecular subgroups based on these characteristics may better therapeutic outcomes. METHODS: Herein, 192 treatment-naïve NPC samples with corresponding clinicopathological information were obtained from Fujian Cancer Hospital between January 2015 and January 2018. The gene expression profiles of the samples were obtained by RNA sequencing. Molecular subtypes were identified by consensus clustering. External NPC cohorts were used as the validation sets. RESULTS: Patients with NPC were classified into immune, metabolic, and proliferative molecular subtypes with distinct clinical features. Additionally, this classification was repeatable and predictable as validated by the external NPC cohorts. Metabolomics has shown that arachidonic acid metabolites were associated with NPC malignancy. We also identified several key genes in each subtype using a weighted correlation network analysis. Furthermore, a prognostic risk model based on these key genes was developed and was significantly associated with disease-free survival (hazard ratio, 1.11; 95% CI, 1.07-1.16; P < 0.0001), which was further validated by an external NPC cohort (hazard ratio, 7.71; 95% CI, 1.39-42.73; P < 0.0001). Moreover, the 1-, 3-, and 5-year areas under the curve were 0.84 (95% CI, 0.74-0.94), 0.81 (95% CI, 0.73-0.89), and 0.82 (95% CI, 0.73-0.90), respectively, demonstrating a high predictive value. CONCLUSIONS: Overall, we defined a novel classification of nasopharyngeal carcinoma (immune, metabolism, and proliferation subtypes). Among these subtypes, metabolism and proliferation subtypes were associated with advanced stage and poor prognosis of NPC patients, whereas the immune subtype was linked to early stage and favorable prognosis.


Asunto(s)
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patología , Pronóstico , Modelos de Riesgos Proporcionales , Análisis por Conglomerados
2.
Curr Issues Mol Biol ; 45(1): 379-399, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36661513

RESUMEN

As one of the most important transcription factors regulating plant anthocyanin biosynthesis, MYB has attracted great attentions. In this study, we identified fifteen candidate anthocyanin biosynthesis related MYB (ABRM) proteins, including twelve R2R3-MYBs and three 1R-MYBs, from highbush blueberry. The subcellular localization prediction results showed that, with the exception of VcRVE8 (localized in chloroplast and nucleus), all of the blueberry ABRMs were nucleus-localized. The gene structure analysis revealed that the exon numbers of the blueberry ABRM genes varied greatly, ranging between one and eight. There are many light-responsive, phytohormone-responsive, abiotic stress-responsive and plant growth and development related cis-acting elements in the promoters of the blueberry ABRM genes. It is noteworthy that almost all of their promoters contain light-, ABA- and MeJA-responsive elements, which is consistent with the well-established results that anthocyanin accumulation and the expression of MYBs are influenced significantly by many factors, such as light, ABA and JA. The gene expression analysis revealed that VcMYB, VcMYB6, VcMYB23, VcMYBL2 and VcPH4 are expressed abundantly in blueberry fruits, and VcMYB is expressed the highest in the red, purple and blue fruits among all blueberry ABRMs. VcMYB shared high similarity with functionally proven ABRMs from many other plant species. The gene cloning results showed that VcMYB had three variable transcripts, but only the transient overexpression of VcMYB-1 promoted anthocyanin accumulation in the green fruits. Our study can provide a basis for future research on the anthocyanin biosynthesis related MYBs in blueberry.

3.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37108050

RESUMEN

Basic helix-loop-helix (bHLH)/HLH transcription factors are involved in various aspects of the growth and development of plants. Here, we identified four HLH genes, PePRE1-4, in moso bamboo plants that are homologous to Arabidopsis PRE genes. In bamboo seedlings, PePRE1/3 were found to be highly expressed in the internode and lamina joint by using quantitative RT-PCR analysis. In the elongating internode of bamboo shoots, PePRE genes are expressed at higher levels in the basal segment than in the mature top segment. Overexpression of PePREs (PePREs-OX) in Arabidopsis showed longer petioles and hypocotyls, as well as earlier flowering. PePRE1 overexpression restored the phenotype due to the deficiency of AtPRE genes caused by artificial micro-RNA. PePRE1-OX plants showed hypersensitivity to propiconazole treatment compared with the wild type. In addition, PePRE1/3 but not PePRE2/4 proteins accumulated as punctate structures in the cytosol, which was disrupted by the vesicle recycling inhibitor brefeldin A (BFA). PePRE genes have a positive function in the internode elongation of moso bamboo shoots, and overexpression of PePREs genes promotes flowering and growth in Arabidopsis. Our findings provided new insights about the fast-growing mechanism of bamboo shoots and the application of PRE genes from bamboo.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Poaceae/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Biochem Biophys Res Commun ; 624: 53-58, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-35932580

RESUMEN

KDM2A is a histone demethylase, which primarily catalyzes the demethylation of H3K36me2. Abnormal expression of KDM2A is observed in many types of cancers; however, the molecular events connected to KDM2A expression remain unclear. We report that KDM2A performs an oncogenic function in esophageal squamous cell carcinoma (ESCC) and is robustly expressed in ESCC cells. ShRNA-mediated knockdown of KDM2A resulted in a significant inhibition of the malignant phenotype of ESCC cell lines, whereas ectopic expression of KDM2A showed the opposite effect. We also analyzed the function of KDM2A using a CRISPR-CAS9 depletion system and subsequent rescue experiment, which also indicated a cancerous role of KDM2A. Interestingly, analysis of the gene expression network controlled by KDM2A using RNA-seq revealed an unexpected feature: KDM2A could induce expression of a set of well-documented oncogenic genes, including IL6 and LAT2, while simultaneously suppressing another set of oncogenes, including MAT2A and HMGCS1. Targeted inhibition of the upregulated oncogene in the KDM2A-depleted cells led to a synergistic suppressive effect on the malignant phenotype of ESCC cells. Our results revealed the dual role of KDM2A in ESCC cells, which may have therapeutic implications.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas F-Box , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metionina Adenosiltransferasa/metabolismo
5.
Vet Res ; 53(1): 21, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303923

RESUMEN

The aim of this study was to investigate whether oral administration of Lactobacillus brevis 23017 (LB) alone and in combination with ellagic acid inhibits ChTLR15/ChNLRP3/ChIL-1ß by activating the Nrf2/HO-1 pathway to attenuate intestinal inflammatory injury. Two animal experiments were performed. In Experiment 1, chickens were allocated into 7 groups: PBS, and low, medium and high dosages of live and heat-killed LB, named L/LB(+), M/LB(+) and H/LB(+), and L/LB(-), M/LB(-) and H/LB(-), respectively. In Experiment 2, chickens were divided into 5 groups: PBS, challenge control, and low, medium and high dosages of ellagic acid combined with LB(+), named L/EA + L/LB(+), M/EA + M/LB(+) and H/EA + H/LB(+), respectively. Chickens were gavaged with LB with or without ellagic acid once a day. Then, the mRNA and protein levels of the components of the Nrf2/HO-1 pathway found in the caecal tissues were quantified. On Day 7 post-infection with E. tenella, the levels of the components of the ChTLR15/NLRP3/IL-1ß pathway in the caeca were again quantified, and the anticoccidial effects were assessed. The results showed that the levels of the genes in the Nrf2/HO-1 pathway in the chickens in the LB(+) groups were higher than those in the LB(-) groups (p < 0.001); those in the H/LB(+) group were higher than those in the M/LB(+) and L/LB(+) groups (p < 0.001); and those in the H/EA + H/LB(+) group showed the highest expression levels compared with the other groups (p < 0.001). After challenge, the chickens in the H/LB(+) group displayed less inflammatory injury than those in the M/LB(+) and L/LB(+) groups (p < 0.05), and the chickens in the H/EA + H/LB(+) group showed stronger anti-inflammatory effects than the other groups (p < 0.05). Thus, these protective effects against infection were consistent with the above results. Overall, significant anti-inflammatory effects were observed in chickens orally gavaged with high dosages of live L. brevis 23017 and ellagic acid, which occurred by regulation of the ChTLR15/NLRP3/IL-1ß pathway.


Asunto(s)
Eimeria , Levilactobacillus brevis , Administración Oral , Animales , Antioxidantes , Pollos/metabolismo , Eimeria/metabolismo , Ácido Elágico/farmacología , Ácido Elágico/uso terapéutico , Hemo-Oxigenasa 1/genética , Levilactobacillus brevis/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
6.
Ecotoxicol Environ Saf ; 239: 113684, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35623149

RESUMEN

The accumulation of sodium chloride (NaCl) in soil is a worldwide problem with detrimental effects on the survival of soil animals. The effects of NaCl on earthworms remain unclear. Here, we show that the growth rate, cocoon production rate, annetocin precursor (ANN) mRNA level, and superoxide dismutase and catalase activities in earthworms were reduced under NaCl stress, whereas the mortality rate, reactive oxygen species (ROS) and malondialdehyde activity level increased. Histological damage to the earthworm body wall and intestine were observed under NaCl stress. NaCl stress increased DNA damage in the seminal vesicle and coelomocytes. The mRNA level of lumbrokinase, 1,3-beta-glucanse, coelomic cytolytic factor (CCF1), and alpha-amylase was significantly down-regulated, whereas that of earthworm excitatory peptides2 (EEP2) was up-regulated. From 16 S rRNA sequencing, the earthworm gut microbiota diversity decreased under NaCl stress. However, Verminephrobacter, Kluyvera, Lactobacillus, and Ochrobactrum increased under NaCl stress. These findings contribute to the risk assessment of the salt stress on soil organisms.


Asunto(s)
Microbioma Gastrointestinal , Oligoquetos , Contaminantes del Suelo , Animales , Catalasa/genética , Catalasa/metabolismo , Mecanismos de Defensa , Malondialdehído/farmacología , Estrés Oxidativo , ARN Mensajero , Estrés Salino , Cloruro de Sodio/farmacología , Suelo/química , Contaminantes del Suelo/análisis , Superóxido Dismutasa/metabolismo , Transcriptoma
7.
Vet Res ; 52(1): 15, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514434

RESUMEN

Avian coccidiosis caused by Eimeria leads to severe economic losses in the global poultry industry. Although chicken Toll-like receptor 15 (ChTLR15) was reported to be involved in Eimeria infection, the detailed mechanism underlying its role in the inflammatory response remains to be discovered. The present study demonstrated that the mRNA expression levels of ChTLR15, ChMyD88, ChNF-κB, ChNLRP3, ChCaspase-1, ChIL-18 and ChIL-1ß and the protein levels of ChTLR15 and ChNLRP3 in cecal tissues of Eimeria-infected chickens were significantly elevated at 4, 12, and 24 h compared with those in noninfected control chickens (p < 0.01). Moreover, the mRNA levels of molecules in the ChTLR15/ChNF-κB and ChNLRP3/ChIL-1ß pathways and the protein levels of ChTLR15 and ChNLRP3 in chicken embryo fibroblast cells (DF-1) stimulated by E. tenella sporozoites were consistent with those in Eimeria-infected chickens. Furthermore, overexpression of ChTLR15 in DF1 cells augmented activation of the ChTLR15/ChNF-κB and ChNLRP3/ChIL-1ß pathways when stimulated with E. tenella sporozoites, while knockdown of ChTLR15 in DF1 cells showed inverse effects. Taken together, the present study provides evidence that E. tenella sporozoites specifically activate ChTLR15 and then trigger activation of the ChNLRP3/ChIL-1ß pathway, which partially mediates inflammatory responses to Eimeria infection.


Asunto(s)
Proteínas Aviares/genética , Pollos , Coccidiosis/veterinaria , Eimeria tenella/fisiología , Inflamación/veterinaria , Enfermedades de las Aves de Corral/inmunología , Transducción de Señal/inmunología , Animales , Proteínas Aviares/metabolismo , Coccidiosis/inmunología , Coccidiosis/parasitología , Inflamación/inmunología , Inflamación/parasitología , Enfermedades de las Aves de Corral/parasitología
8.
Vet Res ; 52(1): 24, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596990

RESUMEN

Avian coccidiosis caused by Eimeria leads to huge economic losses on the global poultry industry. In this study, microneme adhesive repeat regions (MARR) bc1 of E. tenella microneme protein 3 (EtMIC3-bc1) was used as ligand, and peptides binding to EtMIC3 were screened from a phage display peptide library. The positive phage clones were checked by enzyme-linked immunosorbent assay (ELISA). Competitive ELISA was applied to further verify the binding capability between the positive phages and recombinant EtMIC3-bc1 protein or sporozoites protein. The inhibitory effects of target peptides on sporozoites invasion of MDBK cells were measured in vitro. Chickens were orally administrated with target positive phages and the protective effects against homologous challenge were evaluated. The model of three-dimensional (3D) structure for EtMIC3-bc1 was conducted, and molecular docking between target peptides and EtMIC3-bc1 model was analyzed. The results demonstrated that three selected positive phages specifically bind to EtMIC3-bc1 protein. The three peptides A, D and W effectively inhibited invasion of MDBK cells by sporozoites, showing inhibited ratio of 71.8%, 54.6% and 20.8%, respectively. Chickens in the group orally inoculated with phages A displayed more protective efficacies against homologous challenge than other groups. Molecular docking showed that amino acids in three peptides, especially in peptide A, insert into the hydrophobic groove of EtMIC3-bc1 protein, and bind to EtMIC3-bc1 through intermolecular hydrogen bonds. Taken together, the results suggest EtMIC3-binding peptides inhibit sporozoites entry into host cells. This study provides new idea for exploring novel strategies against coccidiosis.


Asunto(s)
Pollos , Coccidiosis/veterinaria , Eimeria tenella/inmunología , Enfermedades de las Aves de Corral/prevención & control , Proteínas Protozoarias/inmunología , Esporozoítos/inmunología , Animales , Bacteriófagos , Ciego/patología , Coccidiosis/prevención & control , Simulación del Acoplamiento Molecular , Enfermedades de las Aves de Corral/parasitología , Unión Proteica , Conformación Proteica
9.
Cell Biol Int ; 45(11): 2287-2293, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34363272

RESUMEN

Myasthenia gravis (MG) is a disease involving neuromuscular transmission that causes fatigue of skeletal muscles and fluctuating weakness. It has been shown that impairment of myogenic differentiation and myofiber maturation may be the underlying cause of MG. In this study, we detected the abnormal expression of circular RNA (circRNA) using next-generation sequencing in patients with MG. We then investigated the regulatory mechanism and the relationship among circRNA, microRNA, and messenger RNA using quantitative reverse-transcription polymerase chain reaction, bioinformatics analysis, and luciferase report analysis. The expression of inflammatory cytokines and regulatory T lymphocytes was shown to be increased. Circ-FBL was significantly increased in MG patients. Bioinformatics and luciferase report analyses confirmed that miR-133 and PAX7 were the downstream targets of circ-FBL. Overexpression of circ-FBL promoted myoblast proliferation by regulation of miR-133/PAX7. Taken together, our study showed that upregulation of circ-FBL promoted myogenic proliferation in patients with MG by regulating miR-133/PAX7.


Asunto(s)
MicroARNs/genética , Miastenia Gravis/genética , Factor de Transcripción PAX7/genética , Animales , Apoptosis/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Miastenia Gravis/metabolismo , Factor de Transcripción PAX7/metabolismo , ARN Circular/genética , ARN Mensajero
10.
Inorg Chem ; 60(20): 15136-15140, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34612632

RESUMEN

One-dimensional (1D) organic-inorganic hybrid lead halides with unique core-shell quantum wire structures and splendid photoluminescence properties have been considered one of the most promising high-efficiency broadband emitters. However, studies on the broadband emissions in 1D purely face-shared lead iodide hybrids are still rare so far. Herein, we report on a new 1D lead iodide hybrid, (2cepyH)PbI3 (2cepy = 1-(2-chloroethyl)pyrrolidine), characterized with face-sharing PbI6 octahedral chains. Upon UV photoexcitation, this material shows broadband yellow emissions originating from the self-trapped excitons associated with distorted Pb-I lattices on account of the strong exciton-phonon coupling, as proved by variable-temperature emission spectra. Moreover, experimental and calculated results reveal that (2cepyH)PbI3 is an indirect bandgap semiconductor, the band structures of which are governed by inorganic parts. Our work represents the first broadband emitter based on a 1D face-shared lead iodide hybrid and opens a new way to obtain the novel broadband emission materials.

11.
Bioorg Chem ; 106: 104496, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33288320

RESUMEN

Many artemisinin derivatives have good inhibitory effects on malignant tumors. In this work, a novel series of artemisinin derivatives containing piperazine and fluorine groups were designed and synthesized and their structures were confirmed by 1H NMR, 13C NMR and HRMS technologies. The in vitro cytotoxicity against various cancer cell lines was evaluated. Among the derivatives, compound 12h was found to exhibit not only the best activity against HCT-116 cells (IC50 = 0.12 ± 0.05 µM), but also low toxicity against normal cell line L02 (IC50 = 12.46 ± 0.10 µM). The mechanisms study revealed that compound 12h caused the cell cycle arrest in G1 phase, induced apoptosis in a concentration-dependent manner, significantly reduced mitochondrial membrane potential, increased intracellular ROS and Ca2+ levels, up-regulated the expression of Bax, cleaved caspase-9, cleaved caspase-3, and down-regulated the expression of Bcl-2 protein. A series of analyses confirmed that 12h can inhibit HCT-116 cells migration and induce apoptosis by a mechanism of the mitochondria-mediated pathway in the HCT-116 cell line. The present work indicates that compound 12h may merit further investigation as a potential therapeutic agent for colorectal cancer.


Asunto(s)
Antineoplásicos/farmacología , Artemisininas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Artemisininas/síntesis química , Artemisininas/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Mitocondrias/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
12.
Mikrochim Acta ; 188(9): 312, 2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34458949

RESUMEN

Enzymes have demonstrated great potential in the development of advanced electroanalysis devices due to their unique recognition and catalytic properties. However, unsatisfactory stability and limited electron communication of traditional enzyme sensors seriously hinder their large-scale application. In this work, a simple and effective method is proposed to improve the stability of enzyme sensors by using sodium hyaluronate (SH) as a protective film, MXene-Ti3C2/Glucose oxidase (GOD) as the reaction layer, and chitosan (CS) /reduced graphene oxide (rGO) as the adhesion layer. Results demonstrate that the repeatability of the designed sensor increased by 73.3% after improving the adhesion between the reaction layer and the current collector and that its response ability was greatly enhanced. Moreover, the long-term stability of the electrode surface with SH protective film proved to be superior than that without protective film, which suggests that this design can effectively improve the overall performance of the enzyme biosensor. This work proposed a multi-tier synergistic approach for improving the reliability of enzyme sensors. Graphical abstract Our proposed protective and adhesion layer can greatly improve the stability of enzyme sensor and realize the rapid detection of glucose in serum sample.


Asunto(s)
Técnicas Biosensibles/métodos , Glucemia/análisis , Técnicas Electroquímicas/métodos , Enzimas Inmovilizadas/química , Glucosa Oxidasa/química , Quitosano/análogos & derivados , Grafito/química , Humanos , Ácido Hialurónico/química , Límite de Detección , Titanio/química
13.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477636

RESUMEN

Soybean (Glycine max L.) is a major crop providing important source for protein and oil for human life. Low phosphate (LP) availability is a critical limiting factor affecting soybean production. Soybean plants develop a series of strategies to adapt to phosphate (Pi) limitation condition. However, the underlying molecular mechanisms responsible for LP stress response remain largely unknown. Here, we performed a label-free quantification (LFQ) analysis of soybean leaves grown under low and high phosphate conditions. We identified 267 induced and 440 reduced differential proteins from phosphate-starved leaves. Almost a quarter of the LP decreased proteins are involved in translation processes, while the LP increased proteins are accumulated in chlorophyll biosynthetic and carbon metabolic processes. Among these induced proteins, an enolase protein, GmENO2a was found to be mostly induced protein. On the transcriptional level, GmENO2a and GmENO2b, but not GmENO2c or GmENO2d, were dramatically induced by phosphate starvation. Among 14 enolase genes, only GmENO2a and GmENO2b genes contain the P1BS motif in their promoter regions. Furthermore, GmENO2b was specifically induced in the GmPHR31 overexpressing soybean plants. Our findings provide molecular insights into how soybean plants tune basic carbon metabolic pathway to adapt to Pi deprivation through the ENO2 enzymes.


Asunto(s)
Adaptación Fisiológica/genética , Glycine max/genética , Fosfopiruvato Hidratasa/genética , Proteómica , Regulación de la Expresión Génica de las Plantas/genética , Fosfatos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Glycine max/enzimología
14.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071242

RESUMEN

Organic acids are key components that determine the taste and flavor of fruits and play a vital role in maintaining fruit quality and nutritive value. In this study, the fruits of two cultivars of passion fruit Yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) were harvested at five different developmental stages (i.e., fruitlet, green, veraison, near-mature and mature stage) from an orchard located in subtropical region of Fujian Province, China. The contents of six organic acids were quantified using ultra-performance liquid chromatography (UPLC), activities of citric acid related enzymes were determined, and expression levels of genes involved in citric acid metabolism were measured by quantitative real-time PCR (qRT-PCR). The results revealed that citric acid was the predominant organic acid in both cultivars during fruit development. The highest citric acid contents were observed in both cultivars at green stage, which were reduced with fruit maturity. Correlation analysis showed that citrate synthase (CS), cytosolic aconitase (Cyt-ACO) and cytosolic isocitrate dehydrogenase (Cyt-IDH) may be involved in regulating citric acid biosynthesis. Meanwhile, the PeCS2, PeACO4, PeACO5 and PeIDH1 genes may play an important role in regulating the accumulation of citric acid. This study provides new insights for future elucidation of key mechanisms regulating organic acid biosynthesis in passion fruit.


Asunto(s)
Ácido Cítrico/análisis , Frutas/química , Frutas/genética , Compuestos Orgánicos/análisis , Passiflora/química , Passiflora/genética , China , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Isocitrato Deshidrogenasa , Valor Nutritivo , Passiflora/crecimiento & desarrollo , Extractos Vegetales
15.
J Sci Food Agric ; 101(13): 5652-5659, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33740266

RESUMEN

BACKGROUND: Monacolin K, an important secondary metabolite of Monascus, possesses a cholesterol-lowering effect and is widely used in the manufacture of antihypertensive drugs. In the present study, we constructed an extractive fermentation system by adding non-ionic surfactant and acquired a high monacolin K yield. The mechanism was determined by examining both cell morphology and the transcription levels of the related mokA-I genes in the monacolin K biosynthetic gene cluster. RESULTS: The monacolin K yield was effectively increased to 539.59 mg L-1 during extraction, which was an increase of 386.16% compared to that in the control group fermentation. The non-ionic surfactant showed good biocompatibility with Monascus. Electron scanning microscopy revealed alterations in the morphology of Monascus. The loosened mycelial structure and increased number of cell surface wrinkles were found to be related to the increased cell-membrane permeability and extracellular accumulation of monacolin K. Gene expression levels were measured via a quantitative reverse transciptase-polymerase chain reaction. By contrast, in the control group, mokA, mokB, mokC, mokD and mokF showed higher-level and longer-term expression in the extractive fermentation group, whereas mokE and mokG did not present a similar trend. The expression levels of mokH and mokI, encoding a transcription factor and efflux pump, respectively, were also higher than the control levels. CONCLUSION: The addition of a non-ionic surfactant to Monascus fermentation effectively increases the yield of monacolin K by transforming the fungus morphology and promoting the expression of monacolin K biosynthesis genes. © 2021 Society of Chemical Industry.


Asunto(s)
Proteínas Fúngicas/genética , Lovastatina/biosíntesis , Monascus/crecimiento & desarrollo , Monascus/metabolismo , Vías Biosintéticas , Fermentación , Proteínas Fúngicas/metabolismo , Monascus/genética , Familia de Multigenes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Plant Mol Biol ; 103(1-2): 63-74, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32040757

RESUMEN

KEY MESSAGE: PSBR1 is a moso bamboo gene negatively regulated by brassinosteroid, which encodes a mitochondrial localized protein. Overexpression of PSBR1 leads to growth inhibition in various growth progresses in Arabidopsis. The young shoot of moso bamboo (Phyllostachys edulis) is known as one of the fastest growing plant organs. The roles of phytohormones in the fast-growth of bamboo shoot are not fully understood. Brassinosteroids (BRs) are a group of growth-promoting steroid hormones that play important roles in cell elongation and division. While BR related genes are highly enriched in fast-growing internodes in moso bamboo, the functions of BR in the fast-growth process is not understood at the molecular level. Here, we identified a poaceae specific gene, PSBR1 (Poaceae specific and BR responsive gene 1) from the moso bamboo genome. PSBR1 was highly expressed in the stem and leaves of bamboo seedling, and the elongating nodes of fast-growing bamboo shoot. PSBR1's expression is increased by BR biosynthesis inhibitor propiconazole but decreased by BR treatment. PSBR1 encodes a novel protein that is localized to the mitochondria in tobacco and bamboo protoplast. The Arabidopsis transgenic plants overexpressing PSBR1 show growth inhibition in both vegetative and reproductive stages. This study suggests that PSBR1 is a BR regulated mitochondrial protein in bamboo, which inhibits plant growth when overexpressed in Arabidopsis.


Asunto(s)
Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Mitocondriales/genética , Proteínas de Plantas/genética , Poaceae/genética , Arabidopsis/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente
17.
Planta ; 252(2): 27, 2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32712728

RESUMEN

MAIN CONCLUSION: This study demonstrates that brassinosteroid is essential for seedling and shoot growth in moso bamboo. The shoot of moso bamboo is known to grow extremely fast. The roles of phytohormones in such fast growth of bamboo shoot remain unclear. Here we reported that endogenous brassinosteroid (BR) is a major factor promoting bamboo shoot internode elongation. Reducing endogenous brassinosteroid level by its biosynthesis inhibitor propiconazole stunted shoot growth in seedling stage, whereas exogenous BR application promoted scale leaf elongation and the inclination of lamina joint of leaves and scale leaves. Genome-wide transcriptome analysis identified hundreds of genes whose expression levels are altered by BR and propiconazole in shoots and roots of bamboo seedling. The data show that BR regulates cell wall-related genes, hydrogen peroxide catabolic genes, and auxin-related genes. Our study demonstrates an essential role of BR in fast growth bamboo shoots and identifies a large number of BR-responsive genes in bamboo seedlings.


Asunto(s)
Brasinoesteroides/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Poaceae/genética , Poaceae/fisiología , Plantones/genética , Plantones/fisiología , Transcriptoma/genética , Brasinoesteroides/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Poaceae/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Transcriptoma/efectos de los fármacos , Triazoles/farmacología
18.
J Sci Food Agric ; 100(12): 4521-4530, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32400028

RESUMEN

BACKGROUND: Nonionic surfactant Brij 35 in submerged fermentation of Monascus can significantly increase Monascus pigment yield. Here, the effects of nonionic surfactant Brij 35 on Monascus pigment secretion in extractive fermentation are discussed in terms of cell morphology, cloud point change, and pigment stability. RESULTS: At Brij 35 concentrations up to 32 g L-1 , the higher concentrations led to the loosening of the network structure on the surface of the fungal wall, enhanced cell wall permeability, and increased abundance of lipid droplets. Alternatively, when the concentration of Brij 35 exceeded 32 g L-1 , a large amount of substances accumulated on the surface of the fungal wall, permeability reduced, and the degree of oil droplet dispersion in cells decreased. Further, during extractive fermentation, Brij 35 induced formation of a grid structure on the fungal wall surface beginning on day 2, increased the number of intracellular lipid droplets, and promoted intracellular pigment secretion into the extracellular environment. When the cloud point temperature in the fermentation system approached that of fermentation, the nonionic surfactant exhibited stronger Monascus pigment extraction capacity, thereby enhancing pigment yield. Hence, Brij 35 can improve pigment stability and effectively reduce damage caused by natural factors, such as light and temperature. CONCLUSION: Brij 35 promotes the secretion of pigment by changing the fungal wall structure and cloud point, as well as by improving pigment stability. © 2020 Society of Chemical Industry.


Asunto(s)
Monascus/efectos de los fármacos , Monascus/crecimiento & desarrollo , Pigmentos Biológicos/biosíntesis , Polietilenglicoles/farmacología , Tensoactivos/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Fermentación , Monascus/química , Monascus/metabolismo , Pigmentos Biológicos/química
19.
J Sci Food Agric ; 99(3): 1233-1239, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30066423

RESUMEN

BACKGROUND: Different nonionic surfactants in submerged fermentation of Monascus sp. demonstrate significant differences regarding increasing pigment yield. In this study, 15 surfactants from five series were analyzed to investigate the influence of nonionic surfactants on Monascus pigments, with the aim of simultaneously obtaining a novel nonionic surfactant. RESULTS: Addition of the novel surfactant Brij 35 greatly enhanced pigment excretion and demonstrated good biocompatibility. Extracellular red, orange and yellow pigments increased by 1.47-, 1.71- and 2.07-fold respectively. Production of extracellular pigments was not only related to the hydrophile-lipophile balance value (HLB) but also affected by the cloud point temperature (CP) of the fermentation medium. It was found that nonionic surfactants can improve cell membrane permeability and cell storage capacity by modifying the cell walls of Monascus mycelium and by increasing lipid droplet levels, enhancing pigment excretion. Different nonionic surfactants modify Monascus mycelium to different degrees. CONCLUSION: The novel surfactant Brij 35, which has good capacity for pigment extraction and biocompatibility, was identified in the analysis. The effects of nonionic surfactants on the secretion of pigments are related to not only the modification of the cell wall and internal structure but also the CP and HLB. © 2018 Society of Chemical Industry.


Asunto(s)
Fraccionamiento Químico/métodos , Monascus/química , Pigmentos Biológicos/aislamiento & purificación , Permeabilidad de la Membrana Celular , Fraccionamiento Químico/instrumentación , Fermentación , Monascus/metabolismo , Micelio/química , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Tensoactivos/química
20.
Cell Physiol Biochem ; 47(2): 864-878, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29807362

RESUMEN

BACKGROUND/AIMS: Recent studies have indicated that exosomes secreted from adipose-derived stem cells (ADSCs) have important effects in the treatment of ischemic injury. However, the treatment mechanism is unclear. This study aimed to investigate whether ADSC-derived exosomes enriched with microRNA (miR)-30d-5p have a protective effect on acute ischemic stroke (AIS). METHODS: In the current study, inflammatory factors and miR-30d-5p expression were assessed in 70 subjects with AIS and 35 healthy controls. Exosomes were characterized by transmission electron microscopy and further examined using nanoparticle tracking analyses. A rat model of AIS and an in vitro model of oxygen- and glucose-deprived (OGD) primary microglia were established to study the protective mechanism of exosomes from miR-30d-5p-overexpressing ADSCs in ischemia-induced nerve injury. RESULTS: The results showed that following AIS, the expression of inflammatory cytokines increased, while the anti-inflammatory cytokines IL-4, IL-10, and miR-30d-5p decreased both in patients and in animal models. Moreover, in vitro studies demonstrated that suppression of autophagy significantly reduced the OGD-induced inflammatory response. In addition, exosome treatment was more effective in suppressing the inflammatory response by reversing OGD-induced and autophagy-mediated microglial polarization to M1. Furthermore, in vivo studies showed that exosomes derived from ADSCs significantly decreased the cerebral injury area of infarction by suppressing autophagy and promoting M2 microglia/macrophage polarization. CONCLUSIONS: Our results suggest that miR-30d-5p-enhanced ADSC-derived exosomes prevent cerebral injury by inhibiting autophagy-mediated microglial polarization to M1.


Asunto(s)
Autofagia , Exosomas/metabolismo , MicroARNs/metabolismo , Accidente Cerebrovascular/patología , Tejido Adiposo/citología , Anciano , Animales , Proteína 5 Relacionada con la Autofagia/química , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Citocinas/sangre , Femenino , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Microglía/citología , Microglía/metabolismo , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Células Madre/citología , Células Madre/metabolismo , Accidente Cerebrovascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA